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Abstract 

The alarming decline in global insect populations and diversity calls for improved 

monitoring methods with species specificity. Conventional trapping techniques are 

labor-intensive and fail to provide real-time in situ data on species composition. In 

response, novel remote and automated monitoring methods have emerged, offering 

the potential for high-resolution and efficient data collection. However, existing 

remote sensing techniques, which primarily focus on wingbeat frequencies or direct 

insect imaging, have inherent limitations. These include the overlap of wingbeat 

frequencies between species and image challenges of focusing on rapid-moving 

free-flying insects. 

To address these challenges, our research group has developed an entomological 

lidar, using the Scheimpflug principle to acquire signals across various distances. 

This approach captures detailed spectroscopic and dynamic features. Lidar could be 

a realistic photonic solution for monitoring the state of insect populations and 

diversity. My Ph.D. research investigates how the unique optical properties of 

insects, as characterized through infrared hyperspectral imaging, can enhance their 

identification in situ through lidar with multiple spectral bands or photonic 

methodologies. Specifically, I'm exploring how wing reflectance, interference 

patterns, surface roughness, and polarimetry can improve insect species 

differentiation. This research also investigates promising methodologies like dual-

band and hyperspectral lidar, which could identify insects in flight by their micro- 

and nanoscopic features. 

Entomological Lidar, combined with innovative photonic techniques, could 

complement or transform insect monitoring. This transformation can enhance pest 

control strategies, strengthen biodiversity studies, and deepen our knowledge of 

these crucial organisms.  
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Popular Science 

Gotta Catch 'em All:  A Real-Life Pokédex for Insect Identification 

Does the iconic Pokémon slogan spark a sense of adventure? What if there was a 

tool that could instantly identify insects like a real-world Pokédex? Scientists are 

working to turn this dream into reality, and it all starts with understanding the 

challenges we face. 

Conventional methods of insect study can be time-consuming, intrusive, and 

impractical to scale up. That's why we need new tools to quickly identify these vital 

creatures without disturbing their natural behaviors. New technologies like 

automation, remote sensing, and machine learning are being implemented to 

identify insects. However, challenges exist – insects in flight are hard to track and 

identifying them using wingbeat frequencies alone has limitations. With millions of 

insect species on Earth, the task is complex! 

To overcome these challenges, our team has developed a specialized tool: 

entomological lidar. This system uses laser light to monitor insects in flight over 

distances in the landscape. We can then analyze backscattered light to differentiate 

species and collect vast amounts of data—imagine recording up to 100,000 insect 

observations in a single day! This is about 1,000 times more than a standard insect 

trap can manage. Our technology could be used to track changes in biodiversity and 

understand insect migration patterns. 

Despite the potential, even lidar has trouble pinpointing the exact identity of every 

insect. That's where my Ph.D. research comes in. I'm exploring how the unique ways 

in which insect wings interact with light can help with identification. Imagine each 

species having invisible "fingerprints" on their wings – patterns of color and 

reflection that hold the key to who they are. Even seemingly dull moth wings exhibit 

surprising colors and shine when viewed at specific wavelengths. Transparent 

wings, like those of a fruit fly, display vibrant, soap-bubble-like colors due to a 

phenomenon called thin-film interference. My research focuses on understanding 

how the thickness and structure of insect wing membranes scatter light. By 

enhancing the properties of the light reflected from insect wings, we can improve 

our systems' ability to detect and identify these insects even at longer ranges.  

Our team is actively developing specialized lidar systems to detect these patterns. 

This tool could transform how we study insects, with far-reaching impacts on 

precision pest control and conservation efforts and, ultimately, helping us better 

understand and protect these essential creatures.  
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Populärvetenskaplig sammanfattning på Svenska 

Måste fånga fler: En riktig Pokédex för att identifiera insekter 

Föreställ dig ett verktyg som kan identifiera levande insekter direkt i fält, precis som 

en Pokédex i verkligheten. Ny teknologi kan göra denna dröm till verklighet, och 

börjar med att förstå de utmaningar vi står inför. 

Konventionella metoder för att studera insekter kan vara tidskrävande, svåra att 

skala upp och ger sällan realtidsinformation, ofta kräver de att vi fångar in eller till 

och med avlivar individer. Därför behövs nya verktyg för att snabbt identifiera dessa 

viktiga varelser utan att störa deras naturliga beteende. Banbrytande teknik som 

automatisering, och fjärranalys, samt datorseende, och maskininlärning utvecklas 

för att övervaka och identifiera insekter. Men utmaningar finns – insekter i flykt är 

svåra att fokusera på, och identifiering baserad på vingfrekvens har begränsningar. 

Med miljontals insektsarter på jorden är snabb bedömning av biologisk mångfald 

och övervakning av insekter en komplex uppgift. 

För att möta behovet av mindre arbetskrävande, kostnadseffektiva, icke-invasiva 

och storskaliga metoder för långsiktig insektsövervakning, har vårt team utvecklat 

ett specialiserat verktyg: entomologisk lidar. Detta system använder en laserstråle 

för att räkna insekter på avstånd i luften. Vi kan sedan analysera det reflekterade 

ljuset för att skilja arter och samla in enorma datamängder – tänk dig att registrera 

100 000 insektsobservationer på en enda dag! Det är 1 000 gånger mer än en vanlig 

insektsfälla klarar. Vår teknik ger en enorm fördel för att mäta förändringar i 

biologisk mångfald och förstå insektsmigrationsmönster. 

Även lidar har svårt att exakt identifiera varje insekt. Här kommer min forskning in. 

Jag undersöker hur insektsvingar sprider ljus för att förbättra identifieringen. Tänk 

dig att varje art har osynliga "fingeravtryck" på sina vingar – mönster av färg och 

ljusreflektion som avslöjar deras identitet. Till och med bruna nattfjärilsvingar visar 

överraskande färger med skimmer vid specifika våglängder. Genomskinliga vingar, 

som hos bananflugor, uppvisar skiftande färger som påminner om såpbubblor på 

grund av tunnfilmsinterferens. Min forskning fokuserar på hur vingmembranens 

tjocklek påverkar dessa ljusinteraktioner. Genom att förstå vingars ljusspridning kan 

vi förbättra identifieringen av insekter på avstånd i fält. 

Vårt team utvecklar specialiserade lidarsystem för att detektera dessa mönster. Detta 

verktyg kan revolutionera insektsstudier med långtgående effekter på 

skadedjursbekämpning, bevarandeinsatser och vår förståelse av dessa avgörande 

varelser.  
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Popular Science in Chinese 

《神奇宝贝》图鉴不再是梦：昆虫识别新科技 (科普简介) 

还记得《神奇宝贝》的经典口号“Gotta Catch 'em All”吗？这激起了多少人

探索大自然的热情！如果真有一款工具能像神奇宝贝图鉴那样，瞬间识别出

昆虫种类，那该有多酷？科学家们正努力让这个梦想照进现实。 

传统的昆虫研究费时费力，往往需要捕捉甚至杀死样本。我们需要的是既能

快速识别这些小生命，又不打扰它们生活的工具。科学家们想到了自动化、

遥感和机器学习等先进技术，希望能实现非接触式识别。然而，昆虫飞行轨

迹难以追踪，仅凭翅膀振动频率识别种类也有局限性。地球上昆虫种类繁多，

要准确识别它们绝非易事。 

为了解决这些难题，我们的团队开发了昆虫激光雷达。这个系统利用激光远

距离监测昆虫飞行，通过分析反射光来区分不同物种，还能收集海量数据。

想象一下，它一天能记录多达 10 万次昆虫观测，是普通诱虫陷阱的 1000 多

倍！这将成为追踪生物多样性变化和昆虫迁徙规律的有力工具。 

尽管激光雷达很强大，但要精确识别每一种昆虫仍有难度。这时，我的博士

研究就派上用场了。我研究昆虫翅膀与光的独特互动方式，希望能改进昆虫

识别技术。你可以把每种昆虫的翅膀想象成拥有独特的“指纹”——那些颜

色和反射光的纹理就是识别它们的线索。即使看似普通的飞蛾翅膀，在特定

波长的光照下也能呈现出令人惊叹的颜色和光泽。透明的翅膀，如果蝇的翅

膀，也会因“薄膜干涉”现象而呈现出类似肥皂泡的鲜艳色彩。我的研究重

点关注昆虫翅膀膜的厚度和结构如何影响这种独特的光学互动。如果能增强

昆虫翅膀反射光的一些特性，我们就能让昆虫识别系统更灵敏，甚至实现远

距离精准探测。 

我们的团队正积极开发专用激光雷达系统来检测这些特征。这必将给昆虫研

究带来革命性变革，造福于精准虫害防治和益虫保护工作，最终帮助我们更

好地理解和保护这些重要的小生物。  
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using lidar observations.  We applied hierarchical clustering (HCA) and Gaussian 

Mixture Models (GMM) to group observations based on modulation power spectra 

derived from retrieved entomological lidar waveforms.  To estimate diversity, we 

propose a criterion based on HCA linkage and use instrument noise as a negative 

control. Additionally, we explored the potential benefits of incorporating 

polarization for improved specificity. We investigate to what extent distinct signals 

are encountered at distinct ranges and hours of the day. 

My contributions to this paper included collaborating on the project's planning, 

participating in the field experiment, supervising an MSc student, and actively 

engaging in discussions and manuscript contributions. 

 

Paper V: Dual-Band Lidar and Statistical Moment-Based Assessment of Insect 

Diversity and Abundance in the Taï Virgin Rainforest 
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D. Dreyer, M. Li, H. Månefjord, A. S. D. Yamoa, Y. A. Gbogbo, L. Müller, A. 

Runemark, B. K. Kouakou, R. Boateng, A. A. Huzortey, J. T. Zoueu, B. Anderson, 

M. Brydegaard (Manuscript in preparation) (2024). 

In this study, we investigated a robust and straightforward method for interpreting 

lidar signals to directly reflect the biological properties of target insects. We used 

statistical moments to analyze the behavior and trends within lidar observations, 

with specific examples provided. Our study employed a dual-band lidar at 980nm 

and 808nm. We provide reflectance values for wild ensembles of insects, 

confirming that while melanization explains body reflectance, coherent scatter is 

necessary to explain wing scatter. 

My contributions to this paper included participating in the project's planning, 

obtaining the grant to conduct an expedition, taking part in the field experiment, 

assisting with insect trapping, and contributing to manuscript development. 

 

Paper VI: 3D-Printed Fluorescence Hyperspectral Lidar for Monitoring 

Tagged Insects  

H. Månefjord, L. Müller, M. Li, J. Salvador, S. Blomqvist, A. Runemark, C. 

Kirkeby, R. Ignell, J. Bood, M. Brydegaard, IEEE Journal of Selected Topics in 

Quantum Electronics 28 1-9 (2022). 

In this paper, we developed and field-tested a compact, inexpensive hyperspectral 

fluorescence lidar system designed for studying insect dispersal. Unlike coherent 

scatter methods, our system relies on fluorescence to identify tagged insects. Our 

3D-printed system successfully identified auto-powder-tagged honeybees and free-

flying mosquitoes (which had fed on fluorescent-dyed sugar water) under field 

conditions. This technique offers efficiency and broad applicability, allowing for 

parallel monitoring of multiple insect groups and facilitating novel ecological 

experiments. 

My contributions to this paper included collaborating on project planning, 

participating in the field experiment, assisting with insect capture by CO2 traps, 

handling and releasing, and contributing to the manuscript. 

 

Paper VII: A Biophotonic Platform for Quantitative Analysis in The Spatial, 

Spectral, Polarimetric, and Goniometric Domains  

H. Månefjord, M. Li, C. Brackmann, N. Reistad, A. Runemark, J. Rota, B. 

Anderson, J. T. Zoueu, A. Merdasa, M. Brydegaard, Review of Scientific 

Instruments 93 (2022).  

In this paper, we describe the development of BIOSPACE (Biophotonics, Imaging, 

Optical, Spectral, Polarimetric, Angular, and Compact Equipment), a low-cost, 
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versatile biophotonic instrument. Designed to be accessible for hands-on learning 

in education and research in low-income countries, BIOSPACE uses multiplexed 

light-emitting diodes and a synchronized camera for high-quality quantitative 

analysis of biological targets.  We detail the instrument's construction, calibration, 

evaluation, and diverse functionalities. 

My contributions to this paper included participating in planning, assisting with 

time-of-flight measurements, and writing the manuscript.  

 

Paper VIII:  Potential for identification of wild night-flying moths by remote 

infrared microscopy  

M. Li, C. Seinsche, S. Jansson, J. Hernandez, J. Rota, E. Warrant, M. Brydegaard, 

Journal of the Royal Society Interface (2022) (Featured by National Geographic 

Society and Nature). 

In this paper, we investigated the specular infrared reflectance spectra of moth 

species using polarimetric hyperspectral imaging in the short-wave infrared region. 

We found that wings exhibited glossy and specular properties at longer 

wavelengths, revealing distinct optical signatures between species. Our 

comprehensive modeling and parametrization demonstrated that microscopic wing 

surface features could be inferred from these infrared properties. These findings 

hold the potential to significantly improve remote identification of free-flying 

moths, possibly enabling sensing over considerable distances. 

My contributions to this paper include acquiring hyperspectral images during a trip 

to Norsk Elektro Optikk, Oslo. I also developed analysis and statistical code, 

visualized data, and drafted the manuscript. 

 

Paper IX: Feasibility of Insect Identification Based on Spectral Fringes 

Produced by Clear Wings 

M. Li, A. Runemark, N. Guilcher, J. Hernandez, J. Rota, M. Brydegaard, IEEE 

Journal of Selected Topics in Quantum Electronics 29 1-8 (2022). 

In this paper, we explored the potential of differentiating insects based on spectral 

fringes, or interference signals, reflected from their clear wings.  We conducted a 

survey study focusing on 87 common pollinator species in Skåne, Sweden. Using a 

hyperspectral camera to capture wing interference patterns, we accurately 

determined wing thickness. Our results demonstrate that distinct modulation 

patterns and wing thickness can significantly improve species identification using 

photonic sensors. 

My contributions to this paper included designing and collecting hyperspectral data 

in Norway, visualizing data, and drafting the manuscript.  
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Paper X: Discrimination of Hover Fly Species and Sexes by Wing Interference 

Signals 

M. Li, A. Runemark, J. Hernandez, J. Rota, R. Bygebjerg, M. Brydegaard, 

Advanced Science (2023) (Front page feature).  

In this paper, we investigated the potential of spectral approaches for remote and 

automatic insect species identification. We analyzed unique light patterns, known 

as wing interference signals (WISs), generated by the wings of free-flying insects 

that could be used for this purpose.  Our extensive study of 600 wings from 30 

hoverfly species revealed that factors such as wing thickness and heterogeneity, 

influenced by factors like larval diet and mimicry, could differentiate between 

species and sexes. Using just five parameters, we achieved 91% accuracy for the 

differentiation of sexes and closely related species. This highlights the potential of 

WIS-based surveillance for enhancing our ability to identify and protect insect 

diversity. 

My contribution to this paper included remoistening, spreading, and mounting 

hundreds of museum specimens. I also traveled to Oslo to acquire infrared 

hyperspectral data, developed the analysis code, visualized statistics, and drafted the 

manuscript. 

 

Paper XI: The Deadliest Animals with the Thinnest Wings – Near-Infrared 

Properties of Tropical Mosquitoes 

H. Månefjord✝, M. Li✝, J. Hernandez, L. Müller, C. Brackmann, A. Merdasa, C. 

Kirkeby, M. D. Bulo, R. Ignell, M. Brydegaard, Laser & Photonics Reviews 

(Submitted) (2024). 

✝ These authors contributed equally as the first authors. 

In this study, we employed photonic monitoring via hyperspectral imaging and laser 

multiplexing to investigate the spectroscopic properties of mosquitoes. We 

developed models that could deduce nanoscopic- and microscopic features like 

wing thickness and absorption paths of melanin and water. The investigation 

revealed extremely thin mosquito wings of 174 nm with high precision, which could 

be implemented for lidar and remote sensing of wild insects. 

In this paper, my contributions included participating in the hyperspectral imaging, 

preparing and mounting sub-micron wings of dead mosquitoes as well as 

immobilizing fresh specimens for scanning. I contributed to the manuscript text and 

figures. 
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Paper XII: Remote Nanoscopy with Infrared Elastic Hyperspectral Lidar 

L. Müller, M. Li, H. Månefjord, J. Salvador, N. Reistad, J. Hernandez, C. Kirkeby, 

A. Runemark, M. Brydegaard, Advanced Science (2023) (Featured by NKT).  

In this paper, we explored the potential of infrared hyperspectral lidar, a type of laser 

remote sensing, for long-distance insect monitoring and species identification. We 

developed an infrared hyperspectral lidar system with 64 spectral bands, capable of 

detecting unique, species-specific wing interference patterns in free-flying insects. 

As a proof of principle, we successfully retrieved coherent scatter from a damselfly 

wing, accurately determining its membrane thickness. We also captured signals 

from free-flying insects, estimated their wing thickness, and detected their wingbeat 

frequency, demonstrating the potential of this method for differentiating insect 

species. 

My contributions to this paper included participating in fieldwork, preparing 

samples for scanning, visualizing hyperspectral imaging data, and contributing to 

manuscript figures and text. MSc student supervision. 

 

Paper XIII: Resolving fast Wingbeat Flashes in situ with Entomological Lidar 

M. Li, H. Månefjord, M. Brydegaard, IEEE IPC Proceedings (Accepted) (2024). 

In this study, we evaluated the necessary sampling frequency to accurately capture 

wing modulation across various insect species using a kHz entomological lidar 

system. By systematically increasing the sampling rate, we assessed the resolution 

improvements in wing modulation measurements. Additionally, we collected data 

on environmental factors to understand their impact on the activity patterns of each 

classified insect group. 

My contributions to this paper included discussing the planning, setting up the field 

experiment, acquiring the experimental data, visualizing and illustrating the figures, 

and drafting the manuscript.  



16 

Abbreviations 

BIOSPACE Biophotonics, Imaging, Optical, Spectral, Polarimetric, Angular, and 

Compact Equipment 

DoLP Degree of Linear Polarization 

eDNA Environmental DNA 

EHSL Elastic Hyperspectral Scheimpflug Lidar 

FPA Focal Plane Array 

HCA Hierarchical Cluster Analysis 

HSI HyperSpectral Imaging 

LED Light-Emitting Diode 

Lidar Light Detection and Ranging 

NBC Naive Bayes Classifier 

NIR Near-Infrared (in this thesis: 700-1000 nm) 

SEM Scanning Electron Microscope 

SWIR Short-Wave InfraRed (in this thesis: 1000-2500 nm) 

ToF Time-Of-Flight 

UV UltraViolet (in this thesis: 200-400 nm) 

VIS VISible (in this thesis: 400-700 nm) 

WBF WingBeat Frequency 

WIS Wing Interference Signal 
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1.Introduction 

A single bumblebee, its fuzzy body dusted with pollen, might not seem remarkable, 

yet its tireless flights from flower to flower are vital for the reproduction of countless 

plant species. But the bumblebee is just one of millions of insect species, each 

playing a crucial role in the intricate dance of life. From pollinating our crops to 

recycling nutrients, these tiny creatures are the unsung heroes of our planet, quietly 

working to maintain the delicate balance of our ecosystems. 

1.1. Insects in Ecosystems 

1.1.1. Insects’ ecological significance 

Insect, known as the most abundant and diverse animals on Earth [1-3], and are 

often overlooked despite playing an undeniably crucial role in the ecological 

processes that sustain our natural world [4]. Animal pollinators, particularly insects 

like wild bees and hover flies, are essential for ensuring global food supply. These  

 

Fig. 1.1: Global map of pollination benefits (2000). The figure is adapted from ref [5]. 
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pollinators underpin the reproduction of roughly 75% of the world's leading food 

crops [6, 7]. Among them, bees are the most vital group, visiting over 90% of the 

leading 107 global crop types [8]. This pollination activity has a direct impact on 

our diets, with 5-8% of our intake by volume being attributable to their work [9]. 

The global map of pollination benefits shown in Fig. 1.1 highlights the far-reaching 

economic stability derived from robust pollination services.  

As decomposers, insects break down organic matter, which releases essential 

nutrients into the soil, boosting plant growth [4, 10] and forming the base of food 

chains [11, 12]. Additionally, many insects are natural pest control agents. 

Parasitoid wasps, for example, lay eggs inside other insects, controlling populations 

of crop-damaging pests [13].  

However, the relationship between insects and humans is not always mutually 

beneficial. Some insects are considered serious agricultural and forestry pests, 

causing significant crop [14-17] or tree farm [18, 19] damage and economic 

hardship [20]. The spruce bark beetle (Ips typographus) is a major pest in European 

forests, capable of killing millions of trees during outbreaks. This destruction 

impacts both the forest ecosystem and the timber industry [21-23]. Others, like 

mosquitoes and disease-carrying flies, represent major public health threats. As 

illustrated in Fig. 1.2, where the mortality caused by insect-transmitted diseases far 

exceeds that caused by larger, more traditionally feared animals such as crocodiles 

or lions. Mosquitoes alone stand out as the world's deadliest animals due to diseases 

like malaria, dengue, and Zika. Malaria alone caused approximately 627,000 deaths 

in 2020 [24], disproportionately affecting poorer regions like Africa and Southeast 

Asia [24-26].  

 

Fig. 1.2: Top 17 of the deadliest animals in the world based on the number of human 

deaths as of 2016. In the ranking of animals by annual human fatalities, the mosquito 

holds the grim title. Data is adapted from ref [27]. 
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1.1.2. Biodiversity monitoring and conservation challenges 

The monitoring of insect biodiversity is crucial for both the purposes of pest and 

disease vector control and pollination conservation, yet it faces numerous 

challenges. Insects are under-represented in general in biodiversity assessments 

compared with birds, mammals, and plants [29]. This is likely due to insects’ small 

size and the high degree of knowledge necessary for identification often requiring 

experts with a narrow focus on a single insect order or family [30]. Flies and 

parasitoid wasps, for example, are often overlooked in biodiversity assessments 

despite their ecological importance [31, 32], simply due to the difficulty of 

identifying them. These challenges in accurately monitoring insect populations and 

diversity likely contribute to the significant lack of biodiversity data from highly 

biodiverse regions such as Africa and South America (as shown by the heterogeneity 

in research effort depicted in Fig. 1.3. A lack of comprehensive and long-term 

monitoring policies and methods further hinders conservation efforts [33].  

1.2. Existing Approaches to Insect Detection and 

Identification 

1.2.1. Conventional monitoring methods  

Conventional methods, long considered the gold standard for monitoring and 

managing insect populations, often rely on various trapping systems to capture 

 

Fig. 1.3: Global map of invertebrate studies. The figure is adapted from ref  [28]. 
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insects under diverse environmental conditions. In our field campaigns, we utilized 

several conventional trapping systems to capture insects (see Fig. 1.4). 

While conventional insect monitoring systems provide valuable data, they possess 

inherent limitations. These systems frequently result in insect mortality and offer 

restricted catching capacities [34]. Additionally, they necessitate specialized 

taxonomic knowledge for analysis, which is both time-consuming and expensive. 

Consider the case of a comprehensive study conducted in the San Lorenzo Forest, 

Panama [35-37], which sought to quantify arthropod species richness within a 

tropical rainforest. This collaborative effort involved 102 taxonomists and a total of 

24,354 trap- (or person-) days of sampling. A total of 300,000 US$ was spent solely 

on fieldwork to acquire the sample. Despite substantial investment, only 23.7% of 

the 129,494 arthropods collected from a 0.48-hectare site could be identified to the 

species level after an 8-year interval, resulting in the identification of 6144 species 

[37]. This highlights the urgent need for more efficient collection and identification 

methods, as the time and cost of traditional taxonomy methods severely hinder our 

ability to develop timely management plans. 

 

Fig. 1.4: Overview of 

conventional insect 

trapping methods used 

in our field campaigns. 

a-b) Malaise traps: a - 

canopy, b – ground-

based. c) Sweep netting. 

d) Window trap with 

soapy water collection 

box. e) Pheromone trap 

for bark beetles. f-h) Pan 

traps in three colors to 

attract pollinators. i) UV 

light moth trap. j) 

Rotational light trap for 

various timeslots. k) 

CO2 and light bait traps 

for catching blood-

sucking insects. l-m) 

Mosquito traps with 

CO2 generation from 

yeast l) and dry ice m).  
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1.2.2. Insect identification using wingbeat frequency 

Acoustic [38] or electronic traps (E-traps) [39] offer a non-invasive way to capture 

and identify insects. These devices use sensors to detect and analyze the wingbeat 

frequencies (WBFs) of flying insects [39-42]. However, a significant challenge for 

both methods is their limitation in analyzing only one insect at a time, potentially 

causing bottlenecks in data collection. Additionally, there is considerable overlap in 

WBFs among different insect species, which can complicate species identification. 

As shown in Fig. 1.5, The 50 to 200 Hz range is crowded for WBFs, with significant 

overlap across various orders. This overlap is even more pronounced when 

considering species-level variations. Environmental factors such as temperature 

[43-45] and humidity [45, 46], along with biological factors like age [47, 48] and 

weight loading [49, 50], can also influence WBFs. Even within controlled 

laboratory environment, individual insects of the same species can display up to 

25% variability in their WBFs [51], further complicating the analysis. 

 

Fig. 1.5: Distribution of WBFs across major insect orders. This data was compiled 

through a massive literature review by Noélie Guilcher. See the accompanying Excel 

sheet for data sources and values [52]. 

1.2.3. Machine vision identification 

Machine vision offers a practical solution to the challenges of manual insect 

identification. It can be a non-invasive method that captures images of insects 

without causing them harm. Camera traps, some equipped with light bait [53] and 

others without [54], are strategically placed in natural habitats to capture detailed 

images of insects in their environment. The images are then analyzed using a trained 

convolutional neural network (CNN) for accurate identification. An example of a 

camera trap with light bait is shown in Fig. 1.6. CNNs have shown the capability to 

identify insects down to the family level [55-57] and even species level [58, 59]. 
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These systems can distinguish insects with remarkable precision. However, direct 

image-based machine vision systems face limitations: image clarity suffers with 

subject movement or focus issues, and light baits can introduce behavioral bias. 

These challenges underscore the need for continued refinement of detection 

techniques, potentially be those aimed at mitigating motion artifacts and reducing 

reliance on bait, to achieve accurate and unbiased insect identification. 

 

Fig. 1.6: Operation of a machine vision-equipped moth light trap [53]. a) Weather-

resistant system with UV light ring, camera, and white sheet. b) Operated at night for 

optimal moth attraction. c) Attractions of many moths, demonstrating effectiveness. d) 

Captured high-resolution image. 

1.2.4. Genetic methods 

Genetic-based techniques are revolutionizing insect biodiversity assessment, 

providing researchers with powerful new tools and insights. 

eDNA analysis involves detecting traces of insect DNA present in their environment 

[60-62], as animals naturally shed traces of DNA, by collecting samples of air, soil, 

or even flowers, researchers can identify related species without the need for direct 

observation. This non-invasive method enables efficient biodiversity surveys, 

cataloging a wide range of species from environmental samples [60]. However, 

eDNA degrades quickly [63], and its concentration does not always reflect organism 

abundance. Contamination risks present additional challenges.  

DNA barcoding offers another approach, using a short, standardized DNA sequence 

from a specimen and comparing it against a reference database [64] to accurately 

identify the species. Metabarcoding extends this approach to identify multiple 

species within a mixed sample [65-67]. However, metabarcoding often lacks 

detailed population-level information, while individual DNA barcoding [68, 69], 

provides more precise abundance and diversity data while being labor-intensive.  
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The effectiveness of both techniques relies heavily on the availability of 

comprehensive and accurate reference databases [64]. Additionally, the DNA 

extraction process destroys part of the sample. Importantly, neither eDNA nor DNA 

barcoding directly measures species biomass, a crucial metric for understanding 

ecological dynamics, abundance, distribution, and the effects of environmental 

changes. Therefore, integrating these genetic techniques with other methods and 

continued innovation are crucial to fully utilize their potential for understanding and 

conserving insect populations. 

1.2.5. Radar & Lidar 

Since the mid-20th century, radar technology has been used to track the migration 

patterns of birds, revealing valuable insights into their movements and behaviors 

[70]. Decades later, this technology was adapted and applied to the study of insect 

migration [71]. Radar systems, such as the one illustrated in Fig. 1.7, operate by 

emitting radio waves and analyzing their reflections to detect and monitor large 

insect swarms within a range of several kilometers [71-77]. This method provides 

data on migration routes, swarm sizes, and the altitudinal distribution of flying 

insects, enriching the understanding of their ecological impact. However, traditional 

radar has difficulty differentiating between insect species and generally works best 

for larger insects with a substantial radar cross-section [78]. A newer technology, 

Frequency-Modulated Continuous-Wave (FMCW) radar, allows for even more 

detailed monitoring of insect movement at lower altitudes (between 0 and 150 m) 

[79, 80]. FMCW radar's potential for insect detection is promising, but its full 

capabilities and limitations remain to be seen, as it has not yet been widely deployed 

in field testing. 

 

Fig. 1.7: Examples of radar and lidar in field research. a) Radar at Stensoffa field 

station in Sweden generates data on bird migration patterns. b) Lidar in the Tai virgin 

rainforest, Ivory Coast, provides insights into insect behavior and populations. 
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While radar technology has proven effective for tracking insect swarms, its 

limitations in species identification and the detection of smaller insects have spurred 

the development of alternative remote sensing techniques. Entomological lidar [81-

86], a specialized form of Light Detection and Ranging (Lidar), offers a unique and 

powerful remote sensing approach for detecting insects with improved sensitivity 

and accuracy [87, 88]. By measuring backscattered laser light, entomological lidar 

gathers detailed biometric data such as WBF, wing size, and body size. This data 

provides valuable insights for insect identification [87, 89-91]. The Scheimpflug 

configuration developed for lidar systems expands their capabilities, enabling the 

monitoring of insects throughout diverse habitats and over long distances (see Paper 

I and reference [92]).  Additionally, ongoing enhancements like polarimetric 

capabilities (see Paper II-IV) and dual-band features (see Paper V) are significantly 

improving precision, allowing us to better estimate diversity indices [92] and gain 

detailed biological information about the insects. 

However, entomological lidar does face certain challenges. The narrow beam can 

limit its effectiveness for tracking large insects or their swarm migrations.  

Additionally, pinpointing observations down to the species level remains difficult, 

as insects can intersect the lidar beam at various angles (see Papers I and VII).  To 

address this, laboratory systems are used to develop a database of reference signals 

from insect specimens (see Paper I and VII-XI). Studies demonstrate that insect 

features like melanin absorption, body size (affected by gravidity), surface 

roughness, and nanoscopic wing thickness can aid identification (see Paper VII-XI 

and references [93, 94]). Variables like changes in water and chitin levels reveal 

valuable information about an insect's state, potentially helping to determine 

species, sex, gravidity, and age (see Paper XI). Multiband lidar can differentiate 

between these features, and by carefully selecting the correct wavelength for a 

specific insect species, lidar can maximize the signal reflected from their wings.  

Hyperspectral lidar offers a complementary and promising approach for advancing 

entomological lidar in species identification (see Paper VI and XII and reference 

[95]). By capturing spatial, temporal, and spectral characteristics simultaneously, 

this technology enables the utilization of spectral data, such as wing interference 

signals, for more accurate species identification of in-flight targets. In addition, 

ongoing exploration of higher sampling frequencies in lidar systems, as shown in 

Paper XIII, coupled with continuous advancements in hardware and analytical 

methods, promises to further enhance the capabilities of entomological lidar. This 

multifaceted approach holds the potential to unlock valuable insights into insect 

populations, behaviors, and their essential roles within ecosystems. 
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1.3. Thesis Outline 

Paper I lays out the foundational techniques for using entomological lidar to track 

and monitor insects. It outlines the basic setup and early methodologies developed 

to differentiate insects based on their biometric data such as body and wing size, as 

well as wingbeat frequency. This paper sets the stage for subsequent enhancements 

and applications of lidar technology. 

Papers II-IV focus on integrating polarimetric capabilities into entomological lidar 

systems. These papers explore how polarization enhances detection specificity and 

identification accuracy across diverse habitats and distances.  

Paper V explores the implementation of dual-band features in lidar systems. It 

enhances the detection of insect biometrics by leveraging different wavelengths to 

maximize signal reflection from insect wings. 

Paper VI introduces the use of fluorescence lidar for detecting specifically tagged 

insects, expanding the scope of lidar applications in tracking and monitoring 

ecological behaviors of marked targets. 

Paper VII presents BIOSPACE, a cost-effective biophotonic instrument designed 

to empower research and education in low-resource settings. Demonstrate how 

BIOSPACE can be used to build a comprehensive insect database, directly 

enhancing the accuracy and capabilities of our lidar insect identification ability. 

Papers VIII-XI explore how stable features such as melanin absorption, surface 

roughness, and nanoscopic wing thickness enhance species identification for lidar 

technique. Additionally, variable properties like changes in water and chitin provide 

valuable information about an insect's state, aiding in the determination of species, 

sex, gravidity, and age. 

Paper XII introduces hyperspectral lidar technology, capturing spatial, temporal, 

and spectral data simultaneously. This paper focuses on how hyperspectral data can 

be utilized for detailed species identification, particularly through the analysis of 

wing interference patterns related to wing thickness. 

Paper XIII extends the capabilities of lidar by incorporating high sampling 

frequencies, pushing the boundaries of detection and analysis of rapid and subtle 

changes in insect wing modulation.  
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2.Light-Insect Interactions  

 

Light plays a crucial role in insect behavior and physiology, influencing everything 

from thermoregulation and signaling to camouflage and warning. When light 

interacts with insects, it undergoes a complex interplay of reflection, absorption, and 

scattering. These interactions can be categorized as either incoherent or coherent 

interactions. Incoherent interactions randomize light's properties, while coherent 

interactions preserve properties such as directionality and phase to some extent. A 

deep understanding of these light-insect interactions is essential for developing 

advanced remote sensing technologies such as entomological lidar. In this chapter, 

we delve into how the properties arising from the interaction between light and 

insects can be used to assist in the development of species-specific detection 

methods. 

2.1. Incoherent Phenomena 

Imagine shining a flashlight through your hand - you see a reddish glow, but not the 

details of your bones. This is due to incoherent light-matter interactions. As light 

passes through your hand, it scatters and diffuses, losing its original direction, 

polarization, and phase. This randomization of light properties is caused by 

absorption and scattering within a medium. The interplay of incoherent interactions 

enables the development of systems that can either reduce unwanted incoherence 

for improved signal strength or leverage these unique scattering characteristics for 

a variety of applications, such as differentiating insect species based on their water 

content and scattering coefficients. 

2.1.1. Absorption  

Insects are primarily defined by their exoskeleton, a crucial external structure that 

provides support and protection and facilitates movement [96]. This exoskeleton, 

composed mainly of chitin, a biopolymer, exhibits a strong absorption band around 

280 nm in the ultraviolet spectrum [97, 98] (Fig 2.1a). This absorption decreases 

towards the visible and infrared ranges, where it becomes transparent. 
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In addition to chitin, melanin (eumelanin) is a key factor component influencing the 

varied coloration of insects. It is the predominant pigment in the animal kingdom 

[99] and plays a significant role in determining the colors seen in insects [100], 

especially within the visible spectrum. Melanin exhibits broad absorption, and it is 

responsible for dark coloration in animals, see Fig. 2.1b. In the case of insects, 

melanin is generally highly concentrated in the dark spots of the eyes, legs, or 

patches on the body [100]. For butterflies, melanin helps thermoregulation by 

absorbing solar radiation across a wide range of wavelengths [101, 102]. Melanin 

also provides protection against UV light to mitigate the harm it potentially does to 

DNA [103].  

 

Fig. 2.1: Optical properties of Insect. a) Absorption spectrum of chitin, data originally 

from reference [98]. b) Absorption spectra of melanin (eumelanin) and water, data 

originally from references [104, 105]. c) Reflectance spectrum of live mosquitos 

measured with a hyperspectral camera, revealing strong melanin and water absorption 

features, highlighted by brown and blue arrows in the graph (adapted from Paper XI). 

Another strong absorber within insects is water, which is also a dominant absorber 

within most biological tissues [104]. Water is a major component of the insect body, 

particularly concentrated in the thorax. This high water content greatly affects an 

insect's overall weight, as demonstrated in a study [106] where wet insects were 

found to be 2.1 times heavier than their dry mass. In the NIR wavelength region, 

water displays strong absorption bands around 1450 nm due to the vibrational modes 

of the water molecule [105]. This 1450 nm water absorption is evident in the 

hyperspectral reflectance scan of live mosquitoes, see Fig. 2.1c. The water 

characteristic has been used as a critical factor in remote sensing before, such as in 

environmental monitoring for detecting water content in leaves [107] or used in 

radar cross-section measurements of birds and insects to estimate their weight [108, 

109]. Additionally, variations in water content can serve as indicators of different 

physiological states of insects, such as dehydration or feeding status [110], aiding 

in ecological studies and pest management strategies. 
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The Beer-Lambert Law, a fundamental principle in spectroscopy, quantifies the 

relationship between light absorption and the path length through an absorbing 

medium. It states that the transmitted light intensity decreases exponentially with 

increasing path length and concentration of the absorber, 

𝐼(𝜆) = I0(𝜆)e−𝜇(𝜆)ℓ   (2.1) 

where I(λ) is the intensity of the transmitted light, I0(λ) represents the initial light 

intensity, μ(λ) is the wavelength-dependent absorption coefficient, and ℓ is the 

effective path length. To take into consideration the absorption caused by both the 

water and eumelanin, the term ‘Absorbance’ A(λ) was introduced into the study to 

describe the absorption in the insects,  

𝐴(𝜆) = ℓ𝐻2O𝜇𝐻2O + ℓ𝑚𝑒𝑙.𝜇𝑚𝑒𝑙.           (2.2) 

where ℓH2O and ℓmel are the equivalent water and melanin path lengths. μH2O and μmel 

is the wavelength-dependent absorption coefficients for water [111] and melanin 

[112].  

Insects have evolved to leverage these absorption characteristics for camouflage, 

mating signals, and mimicry, enhancing their survival [113] and reproduction [114, 

115]. Insect absorption characteristics are key to developing tools and models that 

quantify and predict their properties. For example, dual-band lidar systems utilizing 

wavelengths differentially indexing the melanin absorption (e.g., 808 nm and 980 

nm) enable remote estimation of melanin content (see Paper V). Additionally, 

models can be developed to describe and estimate the effective path lengths of 

melanin and water within insects (Fig. 2.1 c and Paper XI).  

2.1.2. Incoherent scattering  

Incoherent scattering occurs when light is randomized, losing its dependence on 

direction, phase, and polarization prior to target interaction. When absorption is 

absent, this often results in a white matte appearance. This suggests that the white 

parts of an insect, such as the body or legs, or in the case of a gravid mosquito, the 

eggs within its abdomen, likely result from incoherent scattering of light (Fig. 2.2a). 

Polarimetric studies offer another way to investigate the origin of incoherent 

scattering. The image in Fig. 2.2b, showing de-polarized incoherent light signals 

from a pinned dried specimen, reveals that these signals predominantly originate 

from its veins and body.  

The scattering coefficient is used to quantify the degree of scattering caused by the 

insect. The scattering properties of insects vary with several factors. For example, 

the amount of light scattered by mosquitos varies when they are gravid [94]. 

Additionally, insects with more water in their bodies scatter light differently than 

dehydrated insects. The scattering properties of insects can also change significantly 
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in their early development during the first few days after hatching, gradually 

stabilizing as the insect ages [116].  

 

Fig. 2.2: Examples of incoherent scattering sources. a) An image of a pregnant 

mosquito, with its abdomen and setae on the body and legs displaying white colors 

(originally from reference [117]). b-c) False color polarimetric image of a hover fly 

(Eristalis arbustorum male), highlighting incoherent (de-polarized) signals originating 

from the veins and body. De-polarized component amplified 2x (1x Copol) for clarity. 

To model light transport within a scattering medium like an insect body, the 

Kubelka-Munk theory was employed for diffuse reflectance  (equation 44 from 

reference [118]). This theory is particularly suitable for ‘thin specimens of poorly 

scattering material.’ In biological tissue, scattering is generally described 

sufficiently by a power law [119, 120]. In analogy with the term Absorbance the 

term ‘Scatterance’ S(λ) was introduced, to represent the spectral dependent 

scattering: 

𝑆(𝜆) = (𝐷½
𝜆

)
𝛼

                                           (2.3) 

Here, D½ is the wavelength at which half of the light is reflected without absorption 

or transmission, acting as a gain factor for diffuse reflectance. The dimensionless 

parameter α governs the spectral shape of the scattering, allowing for adjustments 

in the spectral response. Based on Kubelka-Munk theory, the total diffuse 

reflectance from an insect can be described by the formula Rdiff,  

𝑅𝑑𝑖𝑓𝑓 (𝜆) =
𝑆

1+𝑆+𝐴
   (2.4) 

where A denotes the absorbance, as previously defined in equation 2.2. Rdiff 

approaches 100% as S becomes very large and Rdiff approaches 0% as A becomes 

very large. Additionally, Rdiff is 0 when S is 0. This model effectively describes the 

spectral signal in Fig. 2.1c, with the resulting parameter values shown in the same 

figure. 

The diffuse reflectance equation was simplified by setting A=0 to investigate the 

white spots present on the yellow fever mosquito (Aedes aegypti) in Paper XI. White 

coloration in thin objects is an unusual phenomenon, primarily because photons tend 

to escape before undergoing multiple scattering events [121-123]. Moreover, 
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nanostructures that strongly scatter visible light typically scatter less in the infrared 

range when their size is smaller than the wavelengths. Through the analysis, the 

reflectance characteristics of these white spots of Aedes aegypti can be accurately 

described using a short-pass filter function. 

𝑅𝑠𝑝𝑜𝑡(𝜆) =
1

1+( 𝜆
𝐷½

)
𝛼  (2.5) 

In Paper XI, the parameter D½ is found to be 1215 nm, and the parameter α is 

determined to be 4.2. This model confirms that the white spots on the Aedes aegypti 

mosquito exhibit high reflectance within the visible range (below 600 nm) and a 

gradual decline in reflectance at longer wavelengths.  

2.1.3. Anisotropy factor g and phase function 

When considering insects as lidar targets, it is essential to analyze how an insect as 

a whole interacts with and scatters light. This involves determining whether more 

light is scattered forward (in the original direction of travel) or backward (towards 

the light source). The anisotropy factor g is a useful parameter for quantifying the 

directional preference of scattered light from an object. It ranges from -1 (pure 

backward scattering) to 1 (pure forward scattering), with 0 indicating isotropic 

scattering (equal scattering in all directions). Larger objects typically exhibit 

forward scattering (g > 0), while smaller particles may show backward scattering (g 

< 0). The anisotropy factor g is defined [124] as: 

 𝑔 = ∫  
𝜋

0
𝑝(𝜃)cos (𝜃)d𝜃                            (2.6) 

where p(θ) represents the phase function, describing the angular distribution of 

scattered light, and θ is the scattering angle. The anisotropy factor summarizes 

scattering behavior, but directly measuring the phase function is more informative. 

This function reveals the precise pattern of light scattering at various angles. In 

Papers I and VII, the phase function of examined insect species was recorded using 

a goniometric system. 

An example of a phase function measurement is shown in Fig. 2.3. This figure 

illustrates how light scatters off a target insect, with the resulting patterns for co-

polarized and de-polarized light indicating whether scattering is predominantly 

forward or backward. In this specific case, strong forward scattering is observed for 

co-polarized light at the given wavelength, even when wings and elytra are removed 

(Fig. 2.3j, k). This persistent forward scattering might be attributed to the relatively 

small size of the bark beetle body, resulting in fewer scattering events that would 

otherwise randomize the light's direction. For de-polarized light, when the insect is 

turned sideways, the strong forward scattered signal is reduced (Fig. 2.3l, m). Insects 

with strong forward or backward light scattering are best studied using experimental 

setups with detectors positioned accordingly. Forward scattering is suited for 
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extinction measurements (e.g., eBOSS system in the study [106]) while 

backscattering benefits from single-ended systems such as entomological lidar [125, 

126]. This matched configuration maximizes signal capture while using lower-

intensity light sources for eye safety. 

 
Fig. 2.3 illustrates the scattering phase function of a bark beetle, with and without 

wings and elytra, under co- and de-polarized light (808 nm). The experiment involved 

rotating the illumination source around the mounted sample, capturing images at various 

angles with the camera, including backscatter a), side scatter d), and near-extinction g). 

Images b, e, h) show the beetle illuminated along its transverse plane at positions a), d), 

and g) respectively, while images c, f, i) show illumination along the sagittal plane at the 

same positions. The recorded phase functions for two specimens at different anatomical 

planes are shown, differentiating between co-polarized j, k) and de-polarized l, m) signals. 

Data adapted from Paper I. 

2.2. Partially Coherent Phenomena 

Random organized biological tissues lack a dominant spatial frequency and thus 

primarily contribute to incoherent scattering [104, 124]. The organized, periodic 

structure of biological tissue with dominant spatial frequencies leads to 

contributions to coherent scattering [127-129], which can result in various optical 

effects depending on the symmetry and orientation of these frequencies, including 

iridescent [130], non-iridescent [131], grating [132], or thin-film [133, 134] 

patterns.  

This relationship between structural organization and light scattering behavior in 

biological tissue is revealed through 2D Fourier analysis [135]. Fig. 2.4 illustrates 

this relationship between structural color and the arrangement of collagen fibers in 
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birds. Examples in Fig. 2.4a-d show the highly organized arrangement of fibers 

within green caruncles, producing a Fourier transform with distinct peaks. This 

frequency pattern indicates a clear, repeated structure in certain directions, 

demonstrating the regular spacing and alignment of the collagen fibers, see Fig. 

2.4d. In contrast, less organized but still patterned fibers within light blue caruncles 

in Fig. 2.4e-h result in a ring-shaped transformation. Broader peaks in the 1D 

Fourier power spectra in Fig. 2.4h reflect this less defined structure, resulting in a 

spread in spatial frequency and some diffuse signal from the non-organized parts. 

In the case of diffuse white tissue Fig. 2.4i, lacking organized structure, the Fourier 

transform power spectra are characterized by a continuous distribution of spatial 

frequencies with a gradual decrease in power at higher frequencies. While 2D 

Fourier analysis is informative, this approach can be extended to 3D using electron 

tomography, albeit at a higher computational cost.[128]. 

 

Fig. 2.4:  Structural coloration in birds, arising from the organization of collagen 

arrays within their caruncles. Shown are: a,e) Philepitta castanea (green caruncles) and 

Neodrepanis coruscans (light blue caruncles) with their respective structurally colored 

caruncles; b,f) Transmission electron micrographs of color-producing collagen arrays 

from these caruncles; c,g) Corresponding 2D Fourier power spectra, revealing the spatial 

organization of the collagen; and d,h) Normalized radial averages of single quadrants of 

the power spectra. (All figures from a-h) adapted from reference [135]) i) Illustration of 

Fourier power spectra differences between organized (structural color) and unorganized 

(diffuse white) tissues. 
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Fig. 2.5: Scanning electron microscope (SEM) study of the surface structure of a 

brown moth (Agrius convolvuli) wing scale. The 2D Fourier power spectrum reveals 

multiple periodicities across the surface, with each corresponding periodicity pattern 

marked. 

Just as the structural organization of collagen in birds affects how it scatters light, 

the same principle applies to the varied colors found in insects. The composition of 

chitin, water, and melanin, along with the arrangement of biological structures, 

gives rise to both incoherent (diffuse) [122, 136] and coherent (specular) reflectance 

[125, 137]. In those studies (Papers III, VII, VIII, X, XI), BIOSPACE and a 

polarimetric hyperspectral camera were utilized to separate incoherent and coherent 

signals from insect wings. In Paper VIII, the repetitive patterns on rough brown 

moth wing scales were investigated using 2D Fourier power spectra analysis of SEM 

images (one example is shown in Fig. 2.5, examining the lateral, XY frequencies 

across the surface.). The dominant spatial frequencies identified in the Fourier 

transform of the SEM images were then correlated with the spectroscopic features 

deduced from the infrared properties of the wing scales, highlighting the 

relationship between surface structural arrangement and infrared reflectance 

properties. 

2.2.1. Surface roughness 

The wings of both clear-winged and diffuse-winged insects can exhibit a rough 

surface, particularly evident at visible wavelengths [138, 139]. While insect wings 

may appear as a thin, flat layer of chitin, their uneven surfaces arise from various 

factors. For instance, the clear wings of the female mosquito (Aedes aegypti), as 

shown in Fig. 2.6, have veins and hair-like structures [140] that scatter light, leading 

to a reduction in the specular signal [141]. Other factors contributing to the 

roughness of clear wings include refractive indices gradient within the membrane 
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[132] leading to anti-reflection. The deformation during downstrokes [142], further 

reduces specular scattering and enhances diffuse reflectance. In Lepidoptera, the 

wings are covered in scales see Fig. 2.6c, d, which are chitinous biological structures 

with micro and nano-scale features [139, 143, 144]. These scales can significantly 

increase surface roughness, leading to incoherent scattering if they lack organized 

structures. 

 

Fig. 2.6: Both clear and 

diffuse wings do not have 

a flat, perfect membrane 

chitin surface. a, b) 

Microscopic images of the 

Aedes aegypti female 

mosquito wing. A strong 

wing interference pattern is 

visible when the wing is 

placed against a black 

background. c) Photograph 

of a Biston betularia. d,e) 

SEM image of the 

microstructure on the 

surface of the moth wing. 

The perceived roughness of insect wings can decrease as the wavelength of light 

used to observe them increases.  If the wavelength is not short enough to resolve the 

lateral (XY) micro and nano-scale structures, the wings could appear specular 

(smooth) at certain wavelengths. Imagine illumination with a short wavelength as 

ping-pong balls scattering randomly off a rough surface (diffuse reflection), while 

longer wavelengths, like basketballs, bounce predictably (specular reflection), see 

Fig.2.7. 

This wavelength-dependent scattering phenomenon has implications for lidar 

detection of insects, particularly those with rough wing structures like Lepidoptera. 

 

Fig. 2.7:  Wavelength influences light reflection on a rough surface. a) short 

wavelengths scatter diffusely off a rough surface (like ping-pong balls bouncing off an 

uneven floor). b) longer wavelengths exhibit more focused, specular reflection (like 

basketballs maintaining a predictable trajectory on the same surface). 
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A wing with low roughness makes a flash in lidar during wingbeat when the surface 

normally aligns with the beam. Therefore, smooth wings produce many harmonics. 

By translating lidar to mid- or long-wave infrared wavelengths, the apparent 

roughness of these wings can be reduced, as shown in Paper VIII, which can 

effectively mitigate the reduction in specular reflection caused by wrinkles, scales, 

or index gradients. This results in a stronger and more focused backscatter signal, 

enhancing detection capabilities and enabling species identification through the 

analysis of unique scattering patterns and resonant backscattering bands with lidar. 

This approach has been used in optical engineering and metrology since the 

invention of the CO2 laser at 10.6 µm used to make unpolished surfaces appear 

specular [145, 146]. 

2.2.2. Bidirectional reflectance distribution function  

The Bidirectional Reflectance Distribution Function (BRDF) was used to 

investigate how the perceived roughness of insect wings changes with varying 

wavelengths of incident light [147, 148]. The BRDF quantifies light reflection from 

a surface, considering incident and reflected light directions and wavelength, as the 

ratio of reflected radiance to incident irradiance. The BRDF has found applications 

in various fields, including digital imaging of heritage sites [149] and satellite 

imaging [150]. This function follows the principles of reciprocity and energy 

conservation [151], 

𝑅𝜆(𝜃i, 𝜑i, 𝜃r, 𝜑r) =
𝐼r(𝜃r,𝜑r)d𝜔r

𝐼i(𝜃i,𝜑i)cos 𝜃id𝜔i
                  (2.7) 

here, Ir(θr,φr) is the reflected light intensity within solid angle dωr, and Ii(θi,φi) is the 

incident light intensity within solid angle dωi, see Fig. 2.8. 

 

Fig. 2.8: The relationship 

between the reflected light 

intensity Ir(θr,φr) and the incident 

light intensity Ii(θi,φi). The figure 

is adapted from ref [151]. 

To model diffuse reflectance using the BRDF [149], the standard model is 

Lambertian scattering. In a Lambertian distribution, the BRDF, denoted as 

Rλ(θi,ϕi,θr,ϕr), as the surface appears equally bright from all viewing angles. To 
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account for surfaces that deviate from ideal Lambertian behavior, this model can be 

modified with a 1/r term. 

𝐼 = 𝐼0cos
1

𝑟(𝜃) = 𝐼0 √cos 𝜃
𝑟

                                (2.8) 

where r represents surface roughness. Here, r = 1 is a perfect Lambertian diffusor, 

and r = 0 is a perfect mirror. Note that conservation of brightness prevents the 

exponent from being less than 1, so r must always be between 0 and 1. The 

relationship between the BRDF definition of surface roughness and the angular 

spread of the scattered light lobes is illustrated in Fig. 2.9 with examples of different 

surface roughness. 

 

Fig. 2.9: How the bidirectional reflectance distribution function (BRDF) defines 

surface roughness. a) BRDF definition of surface roughness (r1 < r2< r3< r4), the smaller 

the r is, the less rough the surface is. b) The angular scatter lobe for different degrees of 

surface roughness. The figure is adapted from ref [152]. 

The specular reflectance model builds upon the diffuse model in equation 2.8. To 

capture the dependency of specular reflectance lobes on incident light, a symmetric 

link function, Flink(θ, θ0), with the property Flink(θ, –θ) = 0° (maximum of the cosine 

function) was incorporated. This guarantees that incident and reflected light angles 

are symmetrical. Moreover, θ0 was scaled by 1 – r, ensuring that the reflectance lobe 

of a perfect diffuser aligns with the surface normal, thus becoming equivalent to 

Lambertian reflectance: 

𝐼(𝜃, 𝜑) = 𝐼0 (cos (𝐹link (𝜃, (1 − 𝑟)𝜃0)cos (𝐹link (𝜑, (1 − 𝑟)𝜑0)))
1/𝑟

   (2.9) 

𝑟 ∈ 0 … 1 

    𝐹link (𝜃, 𝜃0) = 90∘ ((
𝜃+90∘

180∘ )

−log (2)

log(
90∘−𝜃0

180∘ )
− (

90∘−𝜃

180∘ )

−log (2)

log(
𝜃0+90∘

180∘ )
)         (2.10) 

𝜃, 𝜃0 ∈ −90∘ … + 90∘ 
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∫  
+90∘

−90∘ 𝐼(𝜃, 𝜑)𝑑𝜃𝑑𝜑 = 1        (2.11) 

The BRDF model was used to calculate the 180° backscatter from a moth using a 

vertically positioned polarization lidar in Paper VIII. The dynamic wing roll and 

pitch were adopted from a previous study [153]. The backscattered reflectance 

during the wingbeat was multiplied by the ventral projected wing area during the 

wingbeat, and the optical cross-section was obtained as a function of time. The de-

polarized signal is modeled with r = 1. This model does not account for light 

diffraction and directional reflectance caused by the grating-like structures on the 

scales. These periodic features likely vary in alignment across the wing.  

The BRDF model was also employed to investigate the surface roughness of clear 

wings in a recent master's project [152], to examine the relationship between the 

surface roughness of clear wings and the spectral fringes (calibrated as an optical 

cross-section in this example), see Fig. 2.10. The project revealed an inverse 

correlation between surface roughness and spectral fringe characteristics, 

specifically the intensity and spacing, especially in visible wavelengths. Wing veins 

were identified as the primary contributors to diffuse scattering, while wing 

membranes were mainly responsible for specular reflection. 

 

Fig. 2.10: Relationship between the estimated surface roughness and reflectance of 

hover flies clear wing. a) Estimated surface roughness on the dorsal (top) side of the 

wing. b) Estimated surface roughness on the ventral (bottom) side of the wing. c) 

Reflectance spectra from the dorsal side of the wing. d) Reflectance spectra from the 

ventral side of the wing. Surface roughness increases off-resonance. The figure is 

originally from [152]. 
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2.2.3. Specular and diffuse reflection  

Insect reflectance can be separated into incoherent (diffuse) reflectance, Rdiff, and 

coherent (specular) reflectance, Rspec. Diffuse reflectance arises from light 

undergoing multiple scattering events within the insect's body, such as within the 

abdomen or eggs. Specular reflectance, on the other hand, occurs when light 

interacts minimally with the insect's body, as in reflections from the thin membrane 

wings or tiny legs. Although specular reflection from insect surfaces is rare, it can 

far exceed diffuse reflection when the surface normally aligns with the light source 

and detector. Notably, while average insect reflectance in the NIR is around 20% 

[137, 154], specular components can be partially collimated, enabling detection over 

greater distances than diffuse reflectance [98, 155]. All work included in this thesis 

primarily focused on the NIR and SWIR regions, where melanin [112, 156]  and 

water [111, 157] are the main absorbers in insects.  

To quantify both specular and diffuse reflectance, a Kubelka-Munk model was 

previously employed [118], where Absorbance A (equation 2.2), Scatterance S 

(equation 2.3), and total reflectance (combining specular and diffuse components) 

are expressed as: 

𝑅spec. = |𝑅copol. (𝜆) − 𝑅depol. (𝜆)||
median 

                    (2.12) 

𝑅̂body (𝜆) = 𝑅spec. + 𝑅diff (𝜆) = 𝑅spec. +
𝑆

1+𝑆+𝐴
  (2.13) 

𝑅̂body (𝜆) = 𝑅spec. +
(

𝐷½
𝜆

)
𝛼

1+(
𝐷½

𝜆
)

𝛼
+ℓ𝐻20𝜇𝐻20(𝜆)+ℓmel 𝜇mel (𝜆)

    (2.14) 

where D½ is the wavelength of 50% reflectance, α adjusts the spectral shape, ℓH2O 

and ℓmel represent absorption in water and melanin respectively, and μH2O(λ) [111] 

and μmel(λ) [112] are the respective absorption coefficients, all of which were fitted 

to the measured diffuse reflectance using a numerical search algorithm.  

2.2.4. Surface roughness vs lidar signal harmonics  

Surface roughness determines whether reflected light is incoherent (diffuse) or 

coherent (specular), directly impacting the number of harmonics observed in 

entomological lidar signals [98, 125, 158].  

The glossy wings of certain insects exhibit specular reflectance, producing bright 

flashes of light as their wing surface normal coincides with the source-detector 

midpoint. These specular flashes, captured as spikes in lidar observations, contribute 

to a greater number of harmonics compared to rough surfaces [87, 94, 137, 159], as 

illustrated in Fig. 2.11a, b. This is because spike signals contain higher frequencies, 

requiring more harmonics to accurately represent the waveform.  
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Fig. 2.11: Comparison of lidar signals from insect wings with varying surface 

roughness. a, b) Specular (glossy) wing generates a significantly larger number of 

harmonics compared to c, d) Diffuse (rough) wing. The laser used for these observations 

was an 808 nm continuous wave laser with co-polarized light. 

Modulation spectra (Fig. 2.11 b and d) are composed of a non-oscillatory body 

contribution, a fundamental tone f0, and multiple overtones. These spectra have been 

utilized for species recognition through modulation spectroscopy [42, 160-164]. The 

first few harmonics are particularly informative for identification as they relate to 

wing shape, dynamics, and observation aspects [165]. However, challenges arise 

due to the fundamental tone's variability with insect weight and temperature [43, 44, 

166, 167], and its inconsistent signal strength [82, 158, 168]. To address these 

challenges, Scheimpflug lidar offers a promising solution. Its flexible band selection 

[88, 169, 170], ability to capture spectral fringes [171, 172], and integration with 

modulation spectroscopy [87] capture both modulation properties and spectroscopic 

properties. Instruments can be built with sensitivity to features such as surface 

roughness, wing thickness, and signal modulation. Improvements can be made to 

Scheimpflug lidar to reduce reliance on WBF, enabling the identification of a 

broader range of insect species.  

2.2.5. Insects as polarimetric lidar target 

Polarization describes the orientation of a light wave's oscillating electric field and 

its relationship with the magnetic field [148, 173]. This oscillation can be linear, 

circular, elliptical, or random, with the electric field's amplitude (E) indicating 

strength and its angle denoting direction. The relative phase between the electric 

and magnetic fields determines the handedness (right- or left-hand circular) of the 

polarization.  
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Polarization is used in various biomedical studies to gather detailed information 

about tissue [174-176]. It enhances imaging techniques, improving contrast for 

detailed tissue analysis [177, 178], such as separate superficial and deeper scatter 

contributions in biomedical imaging [176]. Animals use polarization for various 

functions [148, 179], including communication and vision [180-182]. Mantis 

shrimp possess specialized eyes that detect polarized light, aiding in hunting and 

social interactions [183]. Insects like field crickets [184] and dung beetles [185] use 

polarized light patterns for navigation [185-187]. Certain beetles reflect circularly 

polarized light [188-190], which enhances color and contrast, benefiting their 

communication and camouflage [148]. 

In entomological lidar studies, polarization was utilized to aid in insect 

identification based on the degree of polarization (DoLP) of backscattered light. 

Polarization lidar has previously been developed for atmospheric measurements 

[191]. Other research groups have also explored polarization lidar for insect studies 

[192, 193]. In the laboratory setting, polarization has been successfully applied to 

differentiate between gravid and non-gravid mosquitos [94].  

The polarization of light reflected from various insect species was investigated in 

the laboratory (see references [106, 170] and Papers I, III, VII-XII).  The 

experimental observations and measurements show that co-polarized and de-

polarized backscatter can differentiate between coherent reflection (mainly due to 

thin-film interference [93, 195]) and incoherent scattering (originating from random 

photon migration in tissue [174, 176, 177]).  

 

Fig. 2.12: Contributions to backscattered polarimetric signals from insect 

anatomical features. H and V represent horizontal and vertical polarization. The first 

letter in each combination (HV, VV) denotes the transmitted polarization, while the 

second letter denotes the detected polarization. The image is inspired by the reference 

[194].  
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When linearly polarized light (Fig. 2.12) interacts with an insect in flight, the 

backscattered signal contains both co-polarized and de-polarized components.  Co-

polarized backscatter results from coherent specular reflections, while de-polarized 

backscatter arises from incoherent diffuse reflections. The lidar signal includes an 

oscillatory component resulting from wing flapping and a non-oscillatory 

component from the insect's body. The non-oscillatory signal generally resembles 

the lidar beam's transit envelope. Thin-film interference with insect membranes 

results in backscattered co-polarized light, maintaining a high DoLP. The DoLP is 

defined as the ratio of light maintaining its original polarization Ico to the total light 

intensity Ico + Ide, ranging from 50% (completely unpolarized) to 100% (fully 

linearly polarized), although instances below 50% were observed, suggesting 

additional de-polarization mechanisms to be detailed in the following section. The 

equation for DoLP is given by 

DoLP =
Ico

Ico+Ide
    (2.15) 

Veins, scales, and abdomen tissue display low DoLP due to the random walk and 

photon migration of light entering these structures, leading to a loss of polarization, 

phase, and direction. Other factors like changes in scattering and absorption by 

melanin and water also contribute to this DoLP drop, as de-polarized photons 

undergoing longer migrations are more likely to be absorbed (time-of-flight 

phenomenon [120, 174]). The same insect can exhibit a DoLP change before and 

after consuming water/blood or becoming engorged with eggs [94] due to this.  

 

Fig. 2.13: Example of insects displaying different specularity and polarization and 

their lidar signal. a) An insect with a less specular surface and higher DoLP, and its 

corresponding power spectrum b). c) An insect with a more specular surface and lower 

DoLP, along with its power spectrum d). 
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Typical polarization lidar signals are shown in Fig. 2.13. The insect signal is 

separated into co-polarized and de-polarized components. The insect in Fig. 2.13a 

exhibits greater overall de-polarization and a less specular wing signal compared to 

the insect in Fig. 2.13c. This difference could potentially be attributed to a rough 

wing texture in a) and a glossy wing texture in c). The power spectra in Fig. 2.13b 

and d show that the rough-winged insect signal with lower overall DoLP has less 

pronounced overtones in the co-polarized component, consistent with rough 

surfaces leading to fewer harmonics. The glossy-winged insect's co-polarized signal 

instead shows many overtones. In both cases, the de-polarized signal in the power 

spectra exhibits oscillation, indicating that it contains both body signal and de-

polarized wing signal, contributing to the oscillatory behavior. 

2.2.6. Brewster angle at the air-chitin interface 

The Brewster angle, calculated as θB=56° for an air-chitin interface, assumes a step-

function change in the refractive index using the formula below,  

𝜃B = tan−1 (
𝑛𝑐ℎ𝑖𝑡𝑖𝑛

𝑛𝑎𝑖𝑟
)   (2.16) 

The Fresnel equations (to be discussed in Section 2.3.3) are used to calculate the 

reflectance for s- and p-polarized light at this interface, as shown in Fig. 2.14, 

illustrating their dependence on the incidence angle. When light strikes the chitinous 

surface at the Brewster angle, the p-polarized component is fully transmitted into 

the insect's exoskeleton, while the s-polarized component is partially reflected 

[173]. The transmitted p-polarized light undergoes multiple scattering events within 

the insect, leading to de-polarization and a mixed s- and p-polarized signal upon re-

emergence. Analyzing this reflected light reveals the properties of the insect's 

exoskeleton structures. 

 

Fig. 2.14: Fresnel reflection coefficients and Brewster angle effects at an air-chitin 

interface (nair = 1, nchitin = 1.53). a) Reflectance differences for s- and p-polarized 

light. b) Behavior of incident light at Brewster angle (56°), no p-polarized light is 

reflected. 
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2.2.7. Polarization and surface roughness  

Polarization has been used to study surface structure in radar [196, 197], microwave 

remote sensing [198], infrared [199, 200], and photometric [201]. Surface roughness 

influences the backscattering coefficients of electromagnetic waves, with the degree 

of influence depending on the incidence angle, frequency, and polarization of the 

waves [198, 201].  

The relationship between surface roughness and polarization is most pronounced 

near the Brewster angle [198]. Smooth surfaces at this angle primarily reflect s-

polarized light, yielding a high polarization ratio (p-polarized to s-polarized light), 

see Fig. 2.14. However, surface roughness disrupts this, causing increased p-

polarized reflection, making the polarization ratio a sensitive indicator of even slight 

roughness changes. 

The surface roughness of insect wings was investigated at the Brewster angle (in 

Paper VIII-X). For instance, the specular reflectance of a matte butterfly wing 

(illustrated in Fig. 2.15) can be modeled using a long-pass function. 

𝑅𝑠𝑝𝑒𝑐. = 𝑅long 
(𝜆/𝜆0)𝛼

1+(𝜆/𝜆0)𝛼   (2.17) 

where Rlong represents the asymptotic maximum reflectance, λ0 the cut-on 

wavelength or surface roughness, and α the slope steepness of the spectrum. This 

model is valid for specular reflectance at large incident angles. As shown in Fig. 

2.15 (specular wing pixel and entire wing), specular reflectance typically increases 

and plateaus towards the infrared region. However, in a previous study (Paper VIII), 

it was observed some moth species with reflectance that continued increasing 

without reaching a plateau within the 900-2500 nm spectral range, suggesting their 

surfaces were too rough for accurate assessment with the SWIR hyperspectral 

camera with wavelength range 900-2500 nm. The wavelength-dependent 

polarization changes for specific regions or the entire matte wing can be expressed 

using the following formula:   

DoLP =
𝐼co

𝐼co+𝐼de
=

1+e−(𝜆p/𝜆)
𝛾

2
         (2.18) 

where Ico and Ide represent co-polarized and de-polarized reflected intensities. The 

wavelength at which wings become co-polarized is denoted as λp, and the spectral 

dependence of DoLP is given by γ. A higher λp indicates a more diffuse wing (see 

the comparison between the specular and diffuse wing pixel in Fig. 2.15f), while a 

higher γ means DoLP increases with wavelength more rapidly. The matte body in 

Fig. 2.15 exhibits a DoLP below 50%, suggesting factors beyond simple diffuse 

reflection. Moth scales and hairs may trap specular co-polarized light, leaving 

primarily de-polarized light to escape, thus lowering the observed DoLP. 
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Fig. 2.15: Example of hyperspectral polarimetric imaging used to study surface 

roughness in matte-winged insects. a) A commercial camera image of a European 

peacock butterfly (Aglais io) under normal diffuse sunlight. b) Co-polarized false-color 

image of the same butterfly under specular illumination with Brewster angle. c) De-

polarized false-color image of the butterfly under specular illumination with Brewster 

angle. d) False-color image under diffuse illumination. Red and blue arrows in b-d) show 

illumination and detection configurations. Polarization is denoted as HH, HV, or UH, 

with the first letter indicating transmitted and the second received polarization. e) 

Reflectance of selected specular wing pixel, diffuse wing pixel, and body pixel from b) 

under three different illumination and detection configurations (HH, HV, UH). f) DoLP 

calculated for all three pixels from the matte wing, showing their polarization ratio to 

wavelength. g) Reflectance from the entire wing under three different illumination and 

detection configurations (HH, HV, UH). h) DoLP of the entire wing over wavelength. i, 

j) DoLP images of the same butterfly at two wavelengths, showing increased linear 

polarization at higher wavelengths. 
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2.3. Coherent Phenomena 

Coherent interactions preserve the original optical properties of light: direction, 

phase, and polarization. For instance, when light reflects off a thin insect membrane, 

which essentially acts like a mirror, it changes direction but maintains the light's 

initial phase and polarization. 

2.3.1. Refractive index 

The refractive index n of a material quantifies how light interacts with it by altering 

its group velocity v and wavelength λ compared to a vacuum (c and λ₀): v = c/n and 

λ = λ₀/n. The refractive index varies with wavelength, a phenomenon called 

dispersion, leading to the separation of different wavelengths. Materials commonly 

found in insect structures, such as chitin [202], melanin [203], or water [157], 

exhibit dispersion in the visible wavelength range, see Fig. 2.16a. The Cauchy 

equation models dispersion as: 

𝑛(𝜆) = 𝑘0 +
𝑘1

𝜆2    (2.19) 

Where n(λ) is the refractive index at a specific wavelength λ. k0 and k1 are constants 

specific to the material. Typical values in the case of insect chitin are  k0= 1.517 and 

k1 = 8800 nm² [202]. When developing models to quantify insect microscopic 

features and structures, it is important to consider the changes in refractive index 

with wavelength, as different values could lead to varying results.  

To add complexity, insect microscopic surface structures can have complex 

compositions resulting in a gradient refractive index. For example, when 

considering light interacting with a membrane as shown in Fig. 2.16b, an air-chitin-

air interaction is simplified, assuming a step function change in refractive index.  

However, the complex composition of the membrane, with its uneven surface and 

varying density, results in refractive index gradients. Calculations [132] reveal that 

transitioning from a step function refractive index profile to a gradient profile 

reduces reflectance, especially in the shorter wavelength region where photons 

experience a smoother gradient in relation to their wavelength (see Fig. 2.16c). 

Furthermore, the gradient profile flattens the spectral fringe modulation (potentially 

suppressing spectral fringe production in biological films). This can lead to low 

overall reflectance across the visible spectrum. This phenomenon is also observed 

in the Papilio ulysses butterfly, which appears "blacker than black" due to 

structurally enhanced blackness [151]. The cuticle spike structure in Fig. 2.16g not 

only efficiently scatters incident light towards the diffusely distributed pigmentation 

[151] but also creates a gradient surface refractive index, as illustrated in Fig. 2.16h, 

leading to exceptional light absorption.  
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Fig. 2.16: Refractive indices of common insect materials and the impact of structure 

on gradient refractive index surface. a) Refractive index of melanin [203], chitin [202] 

and water [157]. Data were extracted from the corresponding references. b) Scanning 

electron micrograph of a section of Hetaerina americana damselfly wings, the photo is 

cited from [132]. c) Calculated transmittance and reflectance spectra for a thin film with 

an average thickness of 1000 nm. The refractive index was assumed to change linearly in 

surface layers with thicknesses h = 0, 100, 200, and 300 nm; the figure is cited from [132]. 

d) Image of Papilio ulysses butterfly. e) SEM image of the surface of a single scale from 

the matte black region of the butterfly shown in d). f) TEM image of the cross-section of 

a single scale from the matte black region of the butterfly shown in d). g) Zoomed-in view 

of one of the spikes shown in f). h) Sub-wavelength structures lead to a gradient refractive 

index surface. Images e-g) are from reference [151]. 

2.3.2. Snell’s law  

Snell's law describes the change in direction of light as it passes from one medium 

to another with a different refractive index. This change in direction, known as 

refraction, is caused by the mismatching of refractive indices of the two media and 

the angle at which the light strikes the interface. Snell's law is expressed as: 
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𝑛1sin (𝜃𝑖) = 𝑛2sin (𝜃𝑡)                                 (2.20) 

where n1 and n2 are the refractive indices of the two media, θi is the angle of 

incidence, and θt is the angle of refraction. 

Some beetles and weevils possess intricate multilayer structures within their 

exoskeletons, composed of thin parallel layers of chitin with distinct refractive 

indices [127, 204, 205]. When light interacts with these multilayered structures, it 

undergoes refraction at each interface according to Snell's law. This repeated 

refraction, combined with subsequent interactions between the refracted light 

waves, can produce vibrant colors. 

2.3.3. Fresnel equations 

While Snell's Law describes how light changes direction at an interface due to 

refractive index mismatch, the Fresnel equations quantify the amount of light that 

is reflected and transmitted at this boundary [206]. For a single thin film, the analysis 

is simplified compared to the matrix formalism typically employed for multilayer 

structures [132, 207]. Importantly, the Fresnel equations distinguish between the 

light's polarization, whether it is p-polarized (parallel) or s-polarized (perpendicular) 

to the plane of incidence. The equations for a single thin film are [173]: 

𝑅𝑠 = |
𝑛1𝑐𝑜𝑠 (𝜃𝑖)−𝑛2𝑐𝑜𝑠 (𝜃𝑡)

𝑛1𝑐𝑜𝑠 (𝜃𝑖)+𝑛2𝑐𝑜𝑠 (𝜃𝑡)
|
2
, 𝑇𝑠 = 1 − 𝑅𝑠              (2.21) 

𝑅𝑝 = |
𝑛2cos (𝜃𝑖)−𝑛1cos (𝜃𝑡)

𝑛2cos (𝜃𝑖)+𝑛1cos (𝜃𝑡)
|
2
 , 𝑇𝑝 = 1 − 𝑅𝑝              (2.22) 

here, Rs and Rp is the reflectance of s-polarized and p-polarized light, respectively, 

while Ts and Tp represent the corresponding transmittance values, n1 and n2 is the 

refractive index of the first medium (from which the light is coming), and the second 

medium (into which the light is going), θi is the angle of incidence, and θt is the 

angle of transmission, which can be found using Snell's law. In the case of lidar with 

normal incidence (the light beams perpendicular to the surface), the angles of 

incidence and refraction are zero. The Fresnel equation for an air-chitin interaction 

then simplifies to: 

 𝑅𝐹𝑟𝑒𝑠𝑛𝑒𝑙 = |
𝑛1−𝑛2

𝑛1+𝑛2
|
2
=|

𝑛𝑎𝑖𝑟−𝑛𝑐ℎ𝑖.

𝑛𝑎𝑖𝑟+𝑛𝑐ℎ𝑖.
|

2
           (2.23) 

where RFresnel represents the reflectance determined by the refractive indices of air 

(nair, typically approximated as 1) and chitin nchi. The refractive index of chitin, nchi, 

is wavelength λ dependent, as described in equation 2.19.  

While the Fresnel equations provide the magnitudes of reflected and transmitted 

light separately, they do not directly give us the combined effect, as this depends on 

the complex interaction (interference) between the reflected and transmitted waves. 
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To account for the effective reflectance, the Fresnel equations need to be combined 

with thin-film equations [130], which will be discussed in a later section. 

2.3.4. Kramers-Kronig-relation 

The refractive index of a material is a complex quantity consisting of a real part ε₁, 

which determines the degree of refraction, and an imaginary part ε₂, which signifies 

absorption. The Kramers-Kronig (KK) relations [208] reveal a fundamental 

connection between these components: a material's absorption characteristics 

directly shape its refractive properties, and vice versa. This connection is rooted in 

causality, the principle that a material's response to light must adhere to the cause-

and-effect relationship inherent in physical phenomena [209]. 

Mathematically, the KK relations are expressed as integral transforms, 

demonstrating the interdependence of the real and imaginary parts of the refractive 

index: 

       𝜀1(𝜔) = 1 +
2

𝜋
𝒫 ∫  

∞

0

𝜔′𝜀2(𝜔′)

𝜔′2−𝜔2 𝑑𝜔′                    (2.24) 

       𝜀2(𝜔) = −
2𝜔

𝜋
𝒫 ∫  

∞

0

𝜀1(𝜔′)−1

𝜔′2−𝜔2 𝑑𝜔′                      (2.25) 

where P denotes the Cauchy principal value. At frequencies much higher than the 

material's resonance (ω >> ω'), the real part of the dielectric function (ε₁(ω)) 

approaches 1, indicating negligible dispersion. However, at resonance (ω = ω'), the 

real part of the dielectric function (ε₁(ω)) approaches infinity, necessitating the use 

of the principal value method. This signifies a strong coupling between the real (ε₁) 

and imaginary (ε₂) components of the dielectric function, resulting in significant 

absorption and pronounced changes in the refractive index, see example in Fig. 

2.17. Water shows strong absorption peaks in the infrared spectrum and refractive  

 
Fig. 2.17:  The complex refractive index of water. Data from reference [111]. The 

figure is inspired by reference [212]. 
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index derivation. Fig. 2.17 demonstrates that the refractive index of water remains 

relatively constant in the visible and NIR spectrum (before 2000 nm) due to the 

absence of strong water absorption lines in the range. However, significant 

variations in the refractive index are observed in the NIR (above 2000 nm) and 

SWIR regions. Applying the same logic, the refractive index of chitin is relatively 

flat in the NIR to SWIR range because its only absorption band peaks at 280 nm.  

To maintain the cause-and-effect relationship described by the KK relations, the real 

and imaginary parts of a material's refractive index must be related. Dispersion, 

which refers to the dependence of a material's refractive index on the wavelength of 

light, results in changes in the phase velocity of light as it propagates through the 

material. This means that the speed of light varies with wavelength, leading to 

phenomena such as the separation of white light into its constituent wavelengths. 

Dispersion is crucial for comprehending the complex phenomenon of structural 

coloration in insects, where intricate nanoscale structures interact with light to 

produce vibrant colors [210, 211]. 

2.3.5. Thin film interference  

 

Fig. 2.18: Illustration of thin film interference conditions of uniform thickness. a) 

Showcasing angle of incidence θi, angle of transmission θt, refractive index of the 

medium n, and film thickness d. b-c) In constructive interference, waves with aligned 

phases amplify each other. In destructive interference, waves with opposite phases cancel 

each other out. 

Thin-film interference, illustrated in Fig. 2.18, is a phenomenon arising from the 

interaction of light waves reflected at the upper and lower boundaries of a thin-film 

[173]. This interference can result in the selective amplification or attenuation of 

specific wavelengths, producing iridescent colors often observed in nature [132, 

213, 214]. A 180° phase shift occurs when a wave reflects from a medium with a 

higher refractive index (n2 > n1), while no phase shift occurs with a lower refractive 

index (n2 < n1). The resulting colors depend on film thickness, refractive index 

contrast, and incident light angle.  
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Consider a thin chitin layer forming an insect's clear wing, surrounded by air. Since 

the refractive index of chitin nchitin is greater than that of air nair at the top surfaces 

of the wing, reflections at these boundaries induce a 180° phase shift. For 

constructive interference to occur, the optical path length difference (twice the wing 

thickness) must equal an odd multiple of half the wavelength within the chitin: 

2𝑑𝑛𝑐ℎ𝑖. cos(𝜃𝑡) = (𝑚 −
1

2
) 𝜆𝑚𝑎𝑥, 𝑚 ∈ ℕ                      (2.26) 

2𝑑𝑛𝑐ℎ𝑖.√1 −
sin2 (𝜃𝑖)

𝑛chi. 
2 = (𝑚 −

1

2
) 𝜆𝑚𝑎𝑥, 𝑚 ∈ ℕ       (2.27) 

Destructive interference occurs when the optical path length difference equals an 

integer multiple of the wavelength within the chitin: 

2𝑑𝑛𝑐ℎ𝑖. cos(𝜃𝑡) = m 𝜆𝑚𝑖𝑛, 𝑚 ∈ ℕ              (2.28) 

2𝑛𝑑𝑐ℎ𝑖.√1 −
sin2 (𝜃𝑖)

𝑛chi. 
2 = 𝑚𝜆𝑚𝑖𝑛, 𝑚 ∈ ℕ                        (2.29) 

where d is the wing thickness, nchi. is the refractive index of chitin, λ is the 

wavelength, θi is the angle of incidence, θt is the angle of transmission, and m is an 

integer. For lidar measurements, the angle of incidence θi is zero (like the 

hyperspectral lidar measurement in Paper XII), so the entire square root factor in 

equations 2.27 and 2.29 can be omitted. However, for hyperspectral scan 

measurements performed in Papers I, VIII, IX, X, and XII in a laboratory, an angle 

of incidence is present and must be considered to adjust for the resulting spectral 

shift. For example, due to the increasing incidence angle, a spectral peak at 600 nm, 

captured at a 56° incident angle (n=1.53), would exhibit a blue shift to 505 nm when 

corrected to normal incidence. Such compensation is thus crucial to ensure 

comparability between laboratory hyperspectral and field lidar observations. 

2.3.6. Fringe model 

A fringe model was developed to express the spectral fringes observed in clear 

insect wings. This model incorporates a thin-film equation, derived from previous 

research on iridescence from pigeon neck feather [130], and Fresnel equations to 

account for the reflection and interference of light. 

𝐹(𝜆, 𝑑 ) =

4𝑅𝐹𝑟𝑒𝑠𝑛𝑒𝑙 sin2 (2𝜋𝑑 

√𝑛𝑐ℎ𝑖.
2−sin2 𝜃

𝜆
)

(1−𝑅𝐹𝑟𝑒𝑠𝑛𝑒𝑙)2+4𝑅𝐹𝑟𝑒𝑠𝑛𝑒𝑙 sin2 (2𝜋𝑑 

√𝑛𝑐ℎ𝑖.
2−sin2 𝜃

𝜆
)

             (2.30) 
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where F(λ,d) is the fringe, λ is the wavelength of light that interacts with the wing, 

and d is the wing's chitin layer thickness. RFresnel is from equation 2.23, and the 

refractive index of chitin varies with wavelength, as shown in equation 2.19.  

While the model F(λ,d), incorporating thin-film interference effects, addressed 

scaling and material dispersion issues, it still could not account for the overall 

change in reflectance over varying wavelengths due to the heterogeneous nature of 

the wing's chitin layer thickness [132]. To address this issue, an approach (first 

appearing in Paper X) utilizes a long-pass function for amplitude and a short-pass 

function for bias to weigh the spectral fringe. This leads to the evaluation of spatial 

thickness heterogeneity across each wing by adjusting the fringe amplitude a and 

bias b relative to a specific cut-off wavelength λ0, 

𝑅̂𝑤𝑖𝑛𝑔(𝜆) =
𝑎𝐹(𝜆,𝑑)𝜆𝑘+𝑏𝜆0

𝑘

𝜆0
𝑘+𝜆𝑘

        (2.31) 

The exponent k in these functions influences how reflectance changes with 

wavelength. In the hover fly study from Paper X, it was found that k = e = 2.311 to 

best describe all effective fringes. However, in Paper XI, due to thinner wings and 

observing only a single fringe period, k could not be determined and was set to zero. 

The use of short- and long-pass functions is analogous to the use of electronic filters 

in signal processing to selectively pass specific frequency ranges [215] 

For wings that do not produce fringes, the F(λ, d) term vanishes, and the reflectance 

of the wing with no spectral fringe is thus described solely by the bias term of the 

fringe model from equation 2.31: 

𝑅̂𝑤𝑖𝑛𝑔(𝜆) =
𝑏

1+
𝜆

𝜆0

𝑘                    (2.32) 

How the amplitude and bias terms address the increasing fringe modulation towards 

infrared wavelengths, and decreasing modulation towards visible wavelengths is 

illustrated in Fig. 2.19. It also shows examples of thick and thin wing pixel spectral 

fringes. The effective fringe was obtained by XY spatially integrating all wing pixel 

spectral profiles. The differing degrees of modulation in these fringes can be 

described by the modulation depth, M, calculated using the following equation: 

𝑀 =
𝜎𝜆(𝑅𝜆)⋅𝜇𝜆(𝐹(𝜆,𝑑))

𝜎𝜆(𝐹(𝜆,𝑑))⋅𝜇𝜆(𝑅𝜆)
   (2.33) 

where Rλ denotes measured reflectance, F denotes the computed fringe, λ is the 

wavelength, σλ denotes standard deviation in the spectral domain, and µλ is the 

spectral mean value.  

Thicker wing regions exhibit narrower fringes, more susceptible to dephasing with 

neighbor regions (XY destructive interference, not XZ which is related to thickness) 

in the VIS spectrum due to the chirped nature of fringe periodicity. For a thin film, 

the periodicity of the interference fringes is constant in the frequency domain; the  
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frequency f is directly proportional to the order m [132, 156]. Therefore, the fringes 

occur at regularly spaced frequencies, leading to non-uniform (chirped) spacing in 

the wavelength domain due to the inverse relationship between frequency and 

wavelength. As a result, fringes are more closely spaced at shorter wavelengths, 

 

Fig. 2.19: Characterization of structural coloration in hover fly (Episyrphus 

balteatus) wings. a) Photograph of a hoverfly wing exhibiting structural coloration. b) 

False color image highlighting the wing's interference pattern. c) Wing thickness map 

derived from the interference signal. d) Fringe modulation depth map, revealing 

variations in the intensity of the interference signal at each wing pixel. e) Example of 

spectral fringes from thin and thick wing regions, as well as the effective fringe formed 

by spatially integrating the spectral profiles of all wing pixels within the SWIR 

hyperspectral camera detection range window. The fringe is weighted by the long and 

short pass functions to evaluate the heterogeneity of the wing; amplitude a and bias b are 

also illustrated in the same figure for the effective fringe. f) 2D histogram depicting the 

distribution of wing thickness and modulation depth across the wing surface. g, h) 

Demonstration that the resolved effective thickness and modulation depth are not simply 

the mean of all thickness or modulation values from the wing. 
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increasing the likelihood of dephasing with neighbor regions in the VIS compared 

to the SWIR range. Consequently, thicker wing membranes contribute less to the 

overall modulation of the effective fringe, as seen in Fig. 2.19c and d. While thinner 

wing regions exhibit higher modulation depths.  

The effective fringe, formed by XY spatially integrating the spectral profiles of all 

wing pixels, has a final appearance determined by the interaction between spectral 

fringes from areas with varying thicknesses (XZ). When the wing is dominated by 

thin regions with high modulation fringes, their cumulative contribution results in 

the effective fringe converging towards the characteristic spectral patterns of these 

thinner regions. Notably, the effective thickness does not directly correspond to the 

mean of all wing thicknesses and fringe modulations due to the disproportionate 

influence of these thinner, highly modulating regions with different thicknesses. 

Capturing spectral fringes using lidar is a promising method for performing remote 

nanoscopy and retrieving wing thickness characteristics from in-flight insects. Wing 

thickness has been shown in recent studies to be a feasible feature for identifying 

species, sex, and gravidity (Papers IX, X, XI, XII) and is more reliable than 

modulation spectra [40, 159, 160]. The wing interference pattern and signal are 

thermally stable [216], and consistent over time [93]. Lidar systems can be 

implemented with various laser bands. In Paper XII, in-flight insect fringes were 

successfully captured and retrieved wing thickness using hyperspectral lidar with a 

single flash. Spectral fringes can also be captured with passive lidar systems 

utilizing sunlight [158, 171, 217]. Additionally, employing several laser bands [88, 

169, 170, 218] enables the extraction of biologically relevant nanoscale features, 

such as melanin content ratio in the body and wings, which can be used for insect 

identification with dual- or multi-band lidar systems (Paper V). If the chosen laser 

band is resonant with the insect wing's interference fringes, as demonstrated in 

Papers I- III, the degree of flash polarization can be utilized for insect identification. 

Furthermore, in Paper XI, the speed required to capture specular flashes was 

analyzed, enabling remote nanoscopy for improved insect identification.  
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3.Research Methodology 

3.1. Hyperspectral camera 

 

Hyperspectral imaging (HSI) is a technique where a camera collects detailed image 

data across a wide spectrum of light, extending beyond the capabilities of standard 

cameras, which capture images only in the three specular bands: red, green, and 

blue. HSI records hundreds of narrow spectral bands across a wide range of 

wavelengths, from UV [219, 220] to SWIR wavelengths [221, 222]. 

In remote sensing, satellites equipped with HSI sensors collect detailed spectral 

profiles [223], enabling the mapping of land cover, tracking changes in vegetation 

[224], identifying specific minerals based on their unique spectral signatures [225], 

and estimating water quality [226]. The ability of HSI to differentiate between 

materials based on their spectral characteristics is also being utilized in medical 

diagnostics. The spectral reflectance of skin tissues provides a non-invasive method 

for estimating optical parameters [227] or use as a diagnostic tool [228, 229]. In 

combination with lidar for tree height identification, the distinct spectral reflectance 

of different tree species results in accurate identification and classification using 

HSI [230, 231]. In the field of entomology, intricate details of wing patterns, body 

pigmentation, and physiological states can be captured and analyzed using HSI for 

accurate species identification and classification [232].  

In all the studies included within this thesis, two different push-broom hyperspectral 

cameras: a visible-extended InGaAs camera  (Norsk Elektro Optikk) with a spectral 

range of 900-1600 nm and a sterling-cooled HgCdTe SWIR camera (MCT) [221] 

(Norsk Elektro Optikk) covering 900-2500 nm were used. These cameras collect 

light through an objective lens, focusing it onto a narrow slit that acts as a spatial 

line selector. The transmitted light is then collimated and spectrally dispersed by a 

diffraction grating before being re-imaged onto a two-dimensional focal plane array 

(FPA). The FPA material determines the spectral range of each camera: for example, 

Si-CMOS FPAs typically cover 350-1100 nm, InGaAs FPAs cover 900-1700 nm, 

and HgCdTe FPAs cover 900-2500 nm. Different spectral filtering is also 

implemented to achieve the desired spectral ranges for specific experiments and to 

eliminate second-order effects. A fiber-coupled tungsten halogen lamp 

(Illumination Technologies model 2900) and a standard Philips tungsten bulb were 

used as light sources, both of which exhibit a blackbody-like spectrum. 
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Each hyperspectral image forms a 3D data cube, see Fig.3.1, with two spatial 

dimensions and one spectral dimension. Each camera exposure captures a 

continuous spectrum (288 spectral bands for the HgCdTe camera, 382 spectral 

bands for the extended InGaAs camera) for each pixel along the swath width. A 

complete hyperspectral image is built up over time by scanning the imaging scene. 

Typically, the camera is fixed in a stationary position, while the sample is placed on 

a motorized translation stage that moves it across the camera's field of view. This 

creates a hyperspectral data cube, a 3D dataset consisting of a 2D spatial image at 

each wavelength.  

 
Fig. 3.1: Detailed hyperspectral data cube of a dried Bogong moth specimen. Data 

was acquired using a push-broom hyperspectral camera with an extended InGaAs sensor 

(450-1700 nm wavelength range). The cube's x-axis represents the spatial distribution, 

the y-axis represents the line-scan acquisition sequence, and the z-axis represents spectral 

profiles. Each pixel (xi, yi) contains a full spectrum across contiguous bands. Analysis of 

a selected pixel spectrum reveals a strong melanin presence in the wing scale, with 

intensity decreasing towards the infrared region. 

 

Reflectance calibration is necessary due to the influence of factors such as the 

illumination source's spectral output, grating efficiency, detector quantum 

efficiency, and the angles of illumination and collection. This is accomplished by 

converting raw intensity into reflectance using a reference image. A standard 

Lambertian diffuse surface, typically Spectralon® with 50% diffuse reflectance, is 

used as the calibration target. However, the calibrated reflectance may sometimes 

exceed 100%. This is because a potentially specular signal is being calibrated 

against a Lambertian diffuse reference target, resulting in reflectance values that can 

exceed the expected range.  

The visible-extended InGaAs camera is particularly suited for capturing features 

like melanin and water absorption bands, providing insights into insect body and 

wing melanization, thickness, and water content. The extended range into the 

infrared of the SWIR camera enables the investigation of surface roughness and 

polarization changes at longer wavelengths. 
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3.2. Polarimetric goniometry 

A polarimetric goniometer is used to examine how light interacts with a target, 

particularly insects, by analyzing changes in light's polarization after reflection or 

scattering [137]. This involves precise control of illumination angles and detailed 

measurement of the scattered light, providing insights into the target's optical 

properties. Using different polarizations helps interpret how an insect's structure 

alters light polarization depending on the viewing angle. 

 

Fig. 3.2: Polarimetric goniometry 

analysis of an insect sample 

under varying conditions. a) CAD 

model of the SPOTIG system 

(image from reference [137]). b, c) 

Polarization changes in a bark 

beetle with progressively removed 

structures (wings intact, wings 

removed, wings and elytra 

removed) and viewed from 

different angles within anatomical 

planes. Due to the flat wing 

positioning, high polarization 

specular reflection is visible only in 

the frontal plane from ventral or 

dorsal views. 

Two polarimetric goniometers have been developed to study the optical properties 

of insects. The first, SPOTIG (Spectral Polarimetric Optical Tomographic Imaging 

Goniometer) [137], features three motorized rotation stages, facilitating the 

manipulation of polarization filters, the camera, and the target specimen, see Fig. 

3.2. This flexible setup provides insights into insect optical cross-sections and how 

anatomical features with varying optical properties influence lidar signatures. 

SPOTIG was notably employed to document the optical parameters of bark beetles 

in Paper I in detail, capturing backscattering and extinction cross-sections, along 

with the phase function, from three anatomical planes. The backscatter optical cross-

sections were further parameterized using spherical harmonics to efficiently 

represent the target's complete features for lidar applications.  

Building on SPOTIG's foundation, the BIOSPACE (Biophotonics, Imaging, 

Optical, Spectral, Polarimetric, Angular, and Compact Equipment) polarimetric 
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goniometer was created. Constructed primarily from LEGO components to facilitate 

adaptability and distribution for educational purposes due to its affordability, 

BIOSPACE boasts adjustable illumination spectral bands achieved through LED 

multiplexing, enabling the study of polarimetric signatures across diverse 

wavelengths. Its modular design, having free rotation of the polarization filter and 

either the insect sample or light source, enhances flexibility in measurement angles. 

BIOSPACE's wider spectral range and enhanced flexibility compared to SPOTIG 

have been instrumental in generating comprehensive reference databases of insect 

optical signatures, particularly through measurements of museum specimens. These 

findings have been presented in Papers III, VII, and XI.  

3.3. Lidar 

Scheimpflug lidar leverages the Scheimpflug principle, a 19th-century photographic 

technique [233, 234], to achieve an extended depth of field. Unlike traditional time-

of-flight (ToF) lidar, relying on pulsed lasers [235], Scheimpflug lidar employs one 

or more continuous wave laser diodes, often multiplexed, and a line sensor to 

capture backscattered light from an illuminated air volume [169, 236, 237]. 

Scheimpflug lidar range resolution is achieved through the Scheimpflug criterion 

and Hinge rule [169, 238], resulting in infinite focal depth where each sensor pixel 

corresponds to a specific section of the laser beam. 

3.3.1. Light detection and ranging 

Lidar, also known as laser radar, measures distances by emitting pulses of laser light 

toward a target and measuring the time it takes for the light to return to the sensor 

[235]. The conventional ToF lidar measurement calculates distances using the 

following formula: 

𝑅 =
𝑡𝑐

2𝑛𝑚𝑒𝑑𝑖𝑢𝑚
                    (3.1) 

Where R is the distance to the target, t is the time difference between the transmitted 

and received light pulses, and c is the speed of light. The resolution of a lidar system, 

which determines the level of detail captured in the measurements and the minimum 

resolvable distance between two objects (range resolution, ΔR), is crucial. Higher 

resolution systems can distinguish between closely spaced objects and provide more 

accurate distance measurements [235]. It is calculated using the formula: 

Δ𝑅 =
𝜏𝑝𝑐

2𝑛𝑚𝑒𝑑𝑖𝑢𝑚
                   (3.2) 

where τp is the pulse duration. ToF lidar is used in environmental monitoring (forest 

mapping [239, 240], biomass assessment [241]), atmospheric science (aerosol 
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concentration [235, 242], cloud height [243]), and pollution tracking [244]. Recent 

research comparing ToF and Scheimpflug lidar found them comparable in 

performance for aerosol sensing [245], with Scheimpflug lidar offering a more cost-

effective and simpler solution. 

3.3.2. Scheimpflug principle 

 

Fig. 3.3: Comparative focus mechanisms in three different camera systems: a, d) 

Conventional camera with limited depth of field; b, e) Pinhole camera with broad depth 

of field but motion blur; c, f) Scheimpflug camera with extended depth of field for 

simultaneous capture of near and far objects but with image distortion. Image inspired by 

work [194].  

The Scheimpflug principle, popularized by Austrian Captain Theodor Scheimpflug 

[234] but discovered by Jules Carpentier [233], provides a unique approach to 

manipulating depth of field in photography. In conventional cameras, the lens and 

image sensor are parallel, limiting the range of sharp focus (as shown in Fig. 3.3a, 

d). Pinhole cameras (Fig. 3.3b, e) offer an extended depth of field due to their tiny 

aperture but often require long exposure times, causing motion blur. The 

Scheimpflug principle involves tilting the lens relative to the image sensor (Fig. 

3.3c, f). This tilts the plane of focus and results in both near and far objects being in 
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sharp focus simultaneously. This technique offers greater control over depth of field 

compared to conventional photography, though it can introduce some distortion. 

The Scheimpflug principle finds applications in various fields, such as structural 

displacement monitoring [246]. 

3.3.3. Scheimpflug lidar 

The application of the Scheimpflug principle to lidar systems is a relatively recent 

development [81, 169]. It has been used in atmospheric detection, [170, 191, 238, 

247] and flame diagnostics [194], and entomology in insect study [88-91, 126, 154, 

237, 248]. Fig. 3.4 illustrates the Scheimpflug condition, which requires the plane 

of the detector and the plane of the lens to meet at a point on the object plane. The 

Hinge condition further specifies that the tilted lens plane parallel to the detector, 

also intersects the front focal plane of the lens at this same point on the object plane. 

The range r to a target, can be approximated by considering the chip-normalized 

pixel positions (pr and pλ), the baseline length (ℓBL = 0.814m), the slant angle 

between the optical axes (Фslant), and the receiver field of view (𝜃FoV): 

𝑟̂(𝑝𝑟, 𝑝𝜆) = ℓBLcot (Φslant + 𝜃FoV𝑝𝑟)                     (3.3) 

This formula is originally from Paper XII. For a basic entomological lidar system, 

such as the one used in Paper I, one wavelength band is used and multiplexed to 

capture both background and laser signal reflections from in-flight insect targets, 

 

 
Fig. 3.4: Scheimpflug and Hinge configuration in an entomological lidar system. 

Varying observations along the laser beam are detected at distinct locations on the tilted 

detector, with each pixel corresponding to a unique distance from the lidar. The figure is 

based on references [86, 249] with minor modifications.  
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it measures the backscattered intensity as a function of range and time. This type of 

lidar data contains information on insect time of detection, range, optical cross-

section (in mm²), and apparent size (in mm) [125]. The optical cross-section is 

calibrated using a fixed target of known distance and reflectance. Typically, a 

neoprene flat board serves as the lidar termination and is also used for calibration. 

The insect signal is then calibrated to optical cross-sections based on the neoprene 

reference. Apparent size, derived from the pixel footprint and telescope 

magnification, provides an estimate of the insect’s dimensions (see detailed 

explanation in Paper II). Captured lidar time series data generally reveal wingbeats 

of in-flight insects. Power spectral analysis via Welch’s method of these 

modulations provides wingbeat frequency, characteristics, and surface roughness at 

the illumination wavelength. Depending on the insect body’s orientation, the 

fundamental frequency may not be the strongest signal in the power spectrum [158]. 

For a detailed discussion of calibration and sizing calculations, see a recent study 

[89]. 

3.3.4. Backward-lasing with Scheimpflug lidar 

Backward propagating lasers in lidar are desirable to circumvent the range 

attenuation of the signal. This can be accomplished through atmospheric lasing and 

filamentation. Atmospheric lasing manipulates the atmosphere itself to amplify the 

returning light signal, offering increased signal strength and longer detection ranges, 

but requires specific conditions and sophisticated systems [250-255]. Filamentation, 

using high-intensity femtosecond laser pulses, creates a waveguide in the 

atmosphere, enhancing sensitivity and probe volumes, but also necessitates complex 

and expensive technology [256-258]. By capturing the specular reflections from flat 

membranes, it is possible to achieve “backward-lasing” from atmospheric insects. 

The lasing approach based on optical breakdown in the medium is not feasible for 

insect monitoring as it is destructive. The use of flat targets presents a simpler and 

more practical approach to backward-lasing. This method involves directly 

reflecting the outgoing laser beam backward off a flat surface, maintaining its 

collimation, polarization, and phase while propagating in the backward direction 

[98, 259, 260]. This approach has found applications in gas sensing [261] and has 

been instrumental in achieving the longest lidar-ranging distances [262]. 

Snowflakes [259, 263] and insect wings [247] are naturally occurring structures that 

act as flat targets for lidar. The reflective properties of insect wings can be optimized 

by selecting a laser wavelength that resonates with the wing thickness or aligns with 

a specific infrared spectral band where the wing surface is most specular and 

reflective. This approach enhances insect wings’ reflectivity for lidar systems, 

leveraging their natural flatness for coherent backscatter and polarization analysis. 

This enables specularity estimation, remote nanoscopy via thin-film interference, 

see Paper XII, and enhanced flatness in the infrared. 
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3.3.5. Polarization lidar 

Polarization lidar was first developed for atmospheric studies utilizing a linearly 

polarized pulsed laser to distinguish between ice and water clouds [264]. Due to 

their spherical shape, liquid water drops preserve the polarization of backscattered 

light, only changing its propagation direction. In contrast, non-spherical ice crystals 

induce a change in the polarization of the backscattered light through multiple 

scattering events. By analyzing the polarization of the backscattered light, the lidar 

can thus effectively differentiate between ice and water clouds [265]. This 

technology has since found further applications in atmospheric research [191, 263, 

266] and ecological studies [192, 193, 267]. 

 

Fig. 3.5: Schematic of a polarization lidar, showcasing the key components and their 

function. The laser transmitter itself is integrated with two 3W TE-polarized 808 nm laser 

diodes. One of these laser beams is then rotated 90 ° using a wide-angle polymer half-

wave plate. A polarization beam splitter combines these beams for transmission. 

Backscattered light is collected and passed through a polarization analyzer, separating the 

orthogonal components for detection and subsequent analysis of the target’s de-

polarization characteristics. Figure inspired by lecture slide from Biophotonics course and 

reference [194]. 

Polarization lidar for insect study (an example of the schematic is shown in Fig. 3.5) 

utilizes a laser module with two polarized laser diodes multiplexed into de-

polarized, co-polarized, and background bands. The receiver telescope projects the 

collected light through a linear polarizer onto a linear detector array, enabling 

analysis of the backscattered light’s polarization. As previously discussed, the DoLP 

observed in the backscattered signal from insect is influenced by several factors, 
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including the location of light scattering on the insect [98, 137], absorption of light 

by melanin, blood, or water [120, 174], and scattering effects related to the insect’s 

body size and the influence of gravidity  [94]. The differences in polarization 

signatures in lidar observations are effective in separating glossy wing and diffuse 

wing signals, as shown in Paper II-IV, the dependence of signal range on flash 

coherence and the frequency content of specular flashes was investigated, knowing 

that de-polarized incoherent scatter attenuates by the squared range. The findings 

demonstrate that the glossiness of an insect’s wings directly impacts how easily it 

can be detected using lidar. The most detailed information about wing glossiness is 

obtained by analyzing the harmonic content within the co-polarized power spectra.  

The polarization characteristics observed in lidar signals can be compared to a 

reference library of polarization signatures associated with specific insect species. 

This library, as demonstrated in Papers III, VII, and XI, can be generated using 

BIOSPACE scans by analyzing the varying scattering profiles produced when 

wavelengths and polarization are adjusted. By comparing lidar signals to this 

established reference library, it is possible to identify insect species in the field. This 

database should store quantitative data in SI units to ensure compatibility and enable 

meaningful comparisons across different instruments and research groups. This 

approach fosters an accurate understanding of light scattering from insects and 

allows retrieval of quantitative measures in metric units, ultimately aiding in insect 

species identification. 

3.3.6. Dual-band lidar  

Previous research has demonstrated the feasibility of retrieving kHz modulation 

wingbeat from free-flying insects and simultaneously retrieving dual-band signals 

[159]. This has enabled the separation of mosquito species and sex based on dual-

band signatures. Other optical sensors using dual wavelengths have also proven 

effective in separating insect species [51, 162, 163]. Building upon this concept, 

dual-band lidar was developed and has proven valuable in various fields, including 

atmospheric [170, 268] and ecological research [88].  

A typical dual-band lidar system, similar in configuration to polarization lidar but 

with a modified laser transmitter module [88], transmits superimposed laser beams 

at 808 nm and 980 nm with multiplexing (Fig. 3.6). Dual-band illumination enables 

estimation of insect melanization and wing thickness. By analyzing differences in 

backscattered light due to both differential absorption and thin-film interference, 

increased diffuse reflectance at the longer wavelength is correlated with a higher  
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Fig. 3.6: Photos of a dual-band lidar. a-b) Lidar system and its components. c) Laser 

transmitter module; in this instance, there is no half-wave plate since no altering the 

polarization plane. Instead, combining a 980 nm and 808 nm laser beam together. BS: 

beam splitter. 

 

Fig. 3.7: Diffuse reflectance from a dried bark beetle abdomen, showcasing 

variations in wavelengths and their impact on insect specificity. a-b) Reflectance dips 

before 1200 nm indicate melanin presence, with a model provided to show melanin path 

length at the chosen pixel. c) Generally observation using dual-band LiDAR demonstrates 

that 980 nm is less affected by melanin, thus providing a stronger signal for body and 

wing analysis compared to 808 nm. d) Specific instances where the 808 nm wing signal 

exceeds that of 980 nm during certain wingbeats, indicating wing membrane resonance 

with 808 nm, a crucial clue to insect specificity. 
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degree of melanization [104], and wavelength-dependent variations in the intensity 

of specular flashes provide insights into the insect’s wing thickness. An example of 

Dual-band lidar observations (Fig. 3.7) reveals that the 980 nm wavelength, being 

less absorbed by melanin, generally results in a stronger lidar signal from both the 

insect’s body and wings compared to 808 nm. However, Fig. 3.7d shows that during 

certain wingbeats, the 808 nm wing signal surpasses that of 980 nm, suggesting that 

the wing membrane resonates more with the 808 nm wavelength at specific roll 

pitches. The varying response between 808 and 980 nm during different wingbeats 

highlights how wing structure, such as wing thickness, influences wavelength-

specific interactions, potentially enabling more accurate species-specific 

identification. 

3.3.7. Hyperspectral lidar 

 

Fig. 3.8: Example of Elastic Hyperspectral Scheimpflug Lidar (EHSL). a) 

Scheimpflug and hinge conditions were applied twice on a hyperspectral lidar. The figure 

is based on references [86, 249] with minor modifications. b) Photo of the EHSL setup. 

Hyperspectral lidar offers detailed spectral profiles across numerous narrow bands. 

With the capability to operate across various wavelength ranges, including visible 

(VIS) [172, 230, 269], NIR [231], and SWIR [231], hyperspectral lidar has found 

diverse applications. In environmental monitoring, for instance, hyperspectral lidar 

has been utilized for remote sensing of vegetation or forests [230, 231, 270]. 

Additionally, it is also used to differentiate rock in geological studies and mining 

operations [271, 272]. Beyond terrestrial applications, hyperspectral lidar has also 

extended its reach to aquatic studies [172]. Other promising applications involve 

monitoring powder-tagged insects, where the fluorescence of an applied powder is 

measured [273], and induced fluorescence [274-276].  
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Existing hyperspectral lidar systems typically offer around 8 spectral bands and a 

detection range of 20 to 30 meters [270, 272], providing valuable insights into the 

composition of objects and environments. A new hyperspectral lidar system (Paper 

XII) has been developed that utilizes 64 bands and achieves a detection range of up 

to 100 meters. The 100 meters range limitation is due to the test site meadow size, 

not the lidar system itself. Paper XII’s hyperspectral lidar system (Fig. 3.8) achieves 

spectral dispersion and maintains focus across scene depth and the SWIR spectral 

range by applying Scheimpflug and hinge conditions twice. The object plane is 

projected onto a tilted entrance slit, then dispersed light is projected onto a tilted 2D 

array detector. The system uses a supercontinuum light source with a long-pass filter 

to minimize insect disturbance. This unique combination of lidar and hyperspectral 

imaging enables the collection of detailed spectral reflectance and interference 

signals (Fig. 3.9) from insects, showing the potential for remote identification of 

insect species and advancing entomological research through remote insect studies. 

 

Fig. 3.9: Hyperspectral lidar signals from free-flying insects (figure originally from 

Paper XII). a) Large insect (85m): spiky waveforms, glossy wings, precise fringe model 

fit. b) Spectral reflectance with fringe model fit. c) Smaller insect (58m): less precise 

fringe model fit. d) 430 nm fringe difference. 
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4.Computational data processing 

4.1. Scheimpflug lidar data analysis 

 

4.1.1. Raw data visualization and initial signal identification 

Entomological lidar offers flexibility for various upgrades or adjustments. It can be 

adapted to operate in various modes, including polarimetric, dual-band, multi-band, 

fluorescence, or hyperspectral. To illustrate lidar data processing, this section is 

focused on polarization lidar data only. Note that lidar settings are also highly 

customizable, the camera exposure, lines of exposure, offset, and laser module 

choice can all be adjusted [88, 169, 170, 236-238, 245]. Therefore, it is important to 

maintain careful documentation of these settings. 

In polarization lidar, the laser alternates between de-polarization, co-polarization, 

and background modes. The lidar was set to capture 30,000 exposure lines per file. 

Each file takes approximately 4 seconds to record and reaches 120MB in size 

(sampling frequency at 9kHz). Continuous 24-hour data collection would generate 

approximately 2.47 TB of data. Given this volume, an initial overview of the data 

is crucial to monitor data quality. To create this overview, plots are generated that 

color-code the maximum de-polarized, co-polarized, and background readings 

within each file. These plots offer insights into temporal and spatial variations in 

insect presence (appearing as bright green dots) while also revealing atmospheric 

changes, such as increased cloud echoes under humid conditions.  

Consider frame 3991, recorded on June 6, 2022, at 22:46:08 (Fig. 4.1a). Zooming 

in on this timeframe (Fig. 4.1b) shows distinct signals (later classified as insects) 

along with persistent aerosol plumes (clouds). Fig. 4.1c details intensity counts for 

this frame, including pixel-wise median and maximum values. Insect signals are 

isolated using a threshold defined as the median plus five times the interquartile 

range (IQR), or SNR=5. This SNR ratio is configurable, but it has proven effective 

for visually highlighting insect observations while suppressing cloud/mist signals.  

Fig. 4.1d illustrates how the threshold adapts based on each pixel’s median and IQR, 

for separation of rare, localized events (insects) from continuous aerosol signals. 
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4.1.2. Observation extraction 

When visualizing frame 3991 around one of these observations (Fig. 4.2a), the raw 

data reveals stripes due to the lidar laser’s multiplexed operation. This cycling of 

de-polarized, co-polarized, and background modes is illustrated in Fig. 4.2b. The 

data was extracted for each band. The insect observation appears as shown in Fig. 

4.2c-e for the different bands. After acquisition, background subtraction was 

performed on both the co-polarized and de-polarized signals (Fig. 4.2c, d). To 

isolate insect signals from noise, a detection threshold was applied, retaining only 

signals with an SNR of 5 or higher (Fig. 4.1d and 4.2f). Finally, the insect signals 

were isolated and cropped using methods detailed in previous work [125]. 

 

Fig. 4.2: Illustration of raw data acquisition and processing. a) and b) show the raw 

data captured with the laser multiplexed to de-polarized, co-polarized, and background 

bands. c) and d) depict the subtraction of de-polarized and co-polarized signals from the 

raw data, respectively. f) shows the detection mask applied to retain only signals 

exceeding a defined threshold of SNR=5, effectively isolating insect signals from 

background noise. 

The data shown in Fig. 4.2f is presented as a 2D false-color image in Fig. 4.3a. This 

visualization employs color coding to differentiate signals: red represents de-

polarization, green signifies co-polarization, and blue indicates background.  This 

approach enables the observation of the insect’s movement and heading direction 

within the brief period captured by the lidar. The height and apparent size of the 

insect were derived using lidar processing methodologies established in previous 

work [89, 125]. Fig. 4.3c sums all intensity pixels from Fig. 4.3a, revealing the 

insect’s wingbeat pattern. For further calibration of the optical cross-section (mm2), 

a reference target range and its corresponding optical cross-section is required. A 
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base calibration method involves placing a flat neoprene board in the lidar beam to 

serve as a reference target and termination. 

 

Fig. 4.3: An example of an insect observation obtained using polarization lidar 

technology (figure originally from Paper II). a) A false-color spatiotemporal display 

showcases the insect’s presence. b) A single-camera exposure highlights the insect echo. 

c) The time series for both polarization bands reveal an oscillatory component due to wing 

movement, along with a biased envelope caused by the insect’s body. d) The 

corresponding power spectrum identifies the fundamental frequency as the highest tone 

in this specific observation.  

4.1.3.  Hierarchical clustering & biodiversity assessment 

Entomological lidar, while highly effective at quantifying insects passing through 

its laser beam [87, 89, 125, 277], faces challenges in associating these echoes with 

specific, verified taxa. This difficulty is similar to the challenge of identifying 

insects exclusively by their WBFs, as various factors can influence an insect’s flight 

orientation and WBF. Both environmental conditions (temperature [43-45], 

humidity [45, 46]) and individual insect characteristics (age [47, 48], weight loading 

[49, 50]) can influence WBFs. These variations can lead to misidentification, as 

different insects may exhibit similar oscillatory signals and be grouped together, or 

the same insect may be identified as a different species due to changes in its WBF 

in response to environmental factors.  

Despite these limitations, field data analysis using unsupervised hierarchical cluster 

analysis (HCA) reveals numerous distinct signal types [51, 87, 92, 277]. It is 
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anticipated that a diverse insect assemblage would exhibit a similarly diverse range 

of signals, whereas a less diverse group would display fewer distinct signals. This 

deterministic approach, previously applied to photonic sensors and lidar [51, 87, 93, 

287], has successfully grouped observations into many groups of clusters. Some of 

these clusters have been associated with specific insects, like male and female 

mosquitoes [87, 277]. While a perfect match between the number of clusters (NoC) 

and species richness is unlikely, an increase in NoC is generally expected as species 

richness increases. A study [51] found a 67% correlation between photonic-sensed 

insect signals and insect families identified in Malaise traps, and the algorithm 

estimated higher insect diversity than was revealed by family-level trap 

identifications. However, malaise trap catches vary significantly depending on 

deployment location and time, potentially capturing vastly different species and 

resulting in poor correlation between individual deployments [34], suggesting that 

the limitations of the Malaise trap itself may be hindering a more accurate 

assessment of insect biodiversity. 

HCA is well-suited for lidar data due to its ability to handle inconsistencies and 

group data points based on relative similarities rather than absolute distances or 

predefined labels [278]. By analyzing the power modulation spectra and calculating 

pairwise similarities using Euclidean distances [279], HCA organizes observations 

into a hierarchical structure (Z). This structure serves as a foundation for deriving 

clusters by setting distance thresholds or specifying the desired number of clusters. 

This approach enables the exploration of natural groupings within the data, aiding 

in the determination of distinct signal types representing different species based on 

their unique power modulation spectra. 

An example of how this method was applied is described below. The data used in 

the following examples is from an unpublished study related to dual-band lidar 

signals (Related Work B). In this experiment, a dual-band lidar system was deployed 

to measure the population and diversity of a Swedish meadow over three 

consecutive days. To minimize bias and provide a negative control for biodiversity 

assessment, background noise captured by the lidar system was processed in the 

same manner as the lidar signals themselves, see Fig. 4.4. Both the lidar data and 

noise were normalized and compensated for slope using the data processing pipeline 

described in [92]. The number of compensated clusters exceeding the threshold 

provides an estimate of the number of species/clusters. To calculate compensated 

clustering, we employ a multi-step process involving the Pwelch method, logged 

Euclidean distances, and median slope detrending. The detailed formula and 

implementation can be found in the reference [92]: 

 𝑁𝑜𝐶 = ∑  𝑁−1
𝑝 [𝑍comp.(p) > (|𝑍comp.(p) )|

median 
+ |𝑍comp. (𝑝)|

𝐼𝑄𝑅
)]        (4.1) 
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Fig. 4.4: Determination of optimal 

linkage threshold for biodiversity 

search. a) The relationship between 

the number of sample pairs and their 

corresponding compensated linkage 

distances, with an emphasis on 

dissimilarity. b) Histogram depicting 

the frequency distribution of linkage 

Z values. The vertical threshold line 

highlights the cutoff for significant Z 

values. 

 

Fig. 4.5: Spatiotemporal patterns of insect activity and biodiversity across the 

experimental period. Heatmaps a, e, i) illustrate the spatial and temporal distribution of 

insect activity based on lidar observations for each experimental day, with brighter colors 

indicating higher activity levels within 15-minute intervals. Line graphs b, f, j) depict the 

overall temporal pattern of insect activity throughout each day. Heatmaps c, g, k) reveal 
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the variation in insect biodiversity across the three experimental days, with each decade 

representing the number of unique insect clustering groups within specific time and range 

intervals. Line graphs d, h, l) illustrate the overall temporal variation in biodiversity 

throughout each day. A combined line graph m) displays the total lidar-detected insect 

counts across the entire transect for each day, highlighting areas of higher abundance. 

Finally, a line graph n) shows the variation in biodiversity across the entire transect for 

each day, illustrating differences in group activity with respect to range. 

The analysis of insect biodiversity in a Swedish meadow over three consecutive 

days reveals intriguing patterns in insect activity, species richness, and spatial 

distribution. Utilizing equation 4.1, a total of 153 unique insect species was 

estimated to present across the three days of observation. Heatmaps (Fig. 4.5) 

illustrate distinct patterns in insect activity and diversity distribution throughout the 

day and across different spatial zones within the meadow. Notably, the 60-100 meter 

range consistently demonstrated high insect activity, suggesting this area may offer 

favorable conditions or resources for insect populations.  

Additionally, specific clustering groups exhibited unique preferences for particular 

time intervals and spatial ranges, with some groups exclusively active in the late 

afternoon and evening, see Fig. 4.6. These findings highlight the complex dynamics 

of biodiversity within ecosystems and emphasize the value of advanced remote 

sensing techniques to visualize population and diversity distribution, enabling the 

possibility to correlate species distribution with habitat characteristics, activity 

patterns, and resource availability. 

 

Fig. 4.6: Temporal and spatial distribution of clustering groups. Different colors 

represent distinct clusters 
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4.2. Hyperspectral data analysis 

4.2.1. Reflectance calibration of hyperspectral image  

The unprocessed spectral data acquired by a hyperspectral system is influenced by 

several instrumental factors. These encompass the spectral irradiance of the 

illumination source, the diffraction efficiency of the grating, the quantum efficiency 

of the detector, and the specific geometries of illumination and collection. 

Calibration using known reference standards is required to compensate for these 

effects. Reflectance calibration is performed using an equation derived from 

measurements of the sample, dark current, and a white reference. The dark current, 

measured in the absence of light, is important for subtracting electronic noise. In 

hyperspectral cameras with integrated shutters, the equation often simplifies to (Fig. 

4.7): 

𝑅(𝑦,𝜆) =
𝐼S(𝑦,𝜆)

𝐼W(𝑦,𝜆)

     (4.2) 

The choice of reference material is important. Both Teflon (approximately 99% 

reflectance) and a Lambertian gray Spectralon® references are good options. Note 

that calibrating a specular surface against a diffuse reference can result in reflectance 

values exceeding 100%. 

 

Fig. 4.7: Hyperspectral scan scenario where the sample and reference are placed on 

the same plane. This configuration ensures close pixel-by-pixel matching between the 

camera's Y pixels and the reference. 

4.2.2. Effective fringe and membrane thickness 

Earlier discussions established that clear insect wings produce fringes due to thin-

film interference. This phenomenon was elaborated upon using equations 

introduced in chapter 2; resonance backscatter conditions were addressed by 

equation 2.27, and non-resonance conditions by equation 2.29. Furthermore, each 
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fringe was described through equation 2.30 in conjunction with the Fresnel 

equations (equation 2.23) and the refractive index of chitin (equation 2.19). The 

method of modulation for each fringe was characterized by a formula where R 

represents measured reflectance, F signifies the computed fringe, 𝜆 is the 

wavelength, 𝜎𝜆 denotes the standard deviation in the spectral domain, and 𝜇𝜆 is the 

spectral mean value, 

The model in equation 2.30, 𝐹 (𝜆, 𝑑𝑝𝑖𝑥) was used to calculate fringes based on 

membrane thickness 𝑑𝑝𝑖𝑥. Fringe modulation was estimated using equations 2.31 

and 2.33 (see equation 2.19 for examples from thick, thin, and effective 

thicknesses). To do this, 1000 fringes with realistic membrane thicknesses (ranging 

from 350 nm to 4000 nm as used in Paper X) were computed to ensure accurate 

numerical fitting within the limits of the hyperspectral camera's spectral range (950 

nm to 2500 nm as used in Paper X). To model fringes across entire wings (including 

those with single thickness, 𝑑𝑤𝑖𝑛𝑔, the function 𝐹 (𝜆, 𝑑𝑝𝑖𝑥) from equation 2.30 was 

expanded into equation 4.3. The measured fringes, R𝜆, were compared with 

computed fringes, 𝐹 (𝜆, 𝑑𝑝𝑖𝑥), using the correlation coefficient 𝐶 and quality 

parameter 𝑄.  Taking derivatives of Q helped disregard slopes and squared factors 

that could introduce calculation complexities. Finally, this model was applied to 

each wing pixel to determine membrane thicknesses and modulation depths, for 

example fringes. 

𝐶(𝑅, 𝐹) =
∫  

2.5

0.95
(𝐹𝜆,𝑑𝑝𝑖𝑥

−𝜇𝜆(𝐹𝜆,𝑑𝑝𝑖𝑥
))(𝑅𝜆−𝜇𝜆(𝑅𝜆))

√∫  
2.5

0.95 (𝐹𝜆,𝑑𝑝𝑖𝑥
−𝜇𝜆(𝐹𝜆,𝑑𝑝𝑖𝑥

))

2

∂𝜆 ∫  
2.5

0.95 (𝑅𝜆−𝜇𝜆(𝑅𝜆))
2

∂𝜆
2

         (4.3)                 

Q(𝑑pix ) = 𝐶(𝑅, 𝐹) (𝐶 (
∂𝑅

∂𝜆
,

∂𝐹

∂𝜆
))

2

          (4.4) 

This enhanced model accounts for fringe modulation behavior, which increases with 

infrared wavelengths and decreases with visible wavelengths. Long-pass and short-

pass functions were used to model modulation amplitude and bias. Parameters such 

as amplitude 𝛼, bias 𝛽, and heterogeneity 𝜆0 were fitted numerically across all 

recordings, ultimately parameterizing the fringe into just four values. 
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5.Conclusions and Outlook 

This study builds upon advancements made during campaigns at the HySpex 

hyperspectral camera lab. We have conducted several field campaigns using 

entomological Scheimpflug lidar, progressively enhancing the system's capabilities 

with each endeavor. The development and validation of the polarimetric kHz lidar 

system enhances measurement specificity while preserving lidar's inherent ability 

to provide precise temporal and spatial information on detected insects. The 

introduction of dual-band lidar has proven invaluable in assisting with insect 

identification, leveraging the relationship between backscatter signals with insect 

membrane thickness and degree of melanization. Furthermore, the recent 

advancement in hyperspectral lidar technology has enabled detailed spectral 

analysis of insect membrane characteristics. This technology also captures detailed 

temporal and spatial data while still allowing for the detection of wingbeat patterns. 

After examining thousands of specimens, we discovered that features such as 

membrane thickness, surface roughness, and polarization hold the potential for 

accurately identifying species and sex across diverse insect groups. Moreover, 

variations in melanin, chitin, and water content were found to enhance the 

capabilities of photonics-based systems to distinguish between gender, species, and 

life stages of insects.  

Building upon these findings, we developed a novel, unsupervised biodiversity 

assessment algorithm that utilizes lidar data. Similar to acoustic indices used in 

ecological research, this algorithm clusters signals based on similarity, eliminating 

the need for a training dataset. This innovative approach enables rapid, large-scale 

biodiversity assessment and provides preliminary estimates of species richness 

without the need for time-consuming species identification. However, the accuracy 

of these estimations is contingent upon the algorithm and lidar instrument's ability 

to differentiate between the expected number of groups within a given habitat. If 

this criterion is not met, the accuracy of the richness estimation will be limited by 

the capabilities of either the algorithm or the instrument itself. The prerequisite for 

species differentiation is that differences in physical properties exceed within-

species variation. We have established this to be true and have successfully 

extracted multiple quantitative micro-features from free-flying insects. This 

confirms that this approach can accurately and efficiently assess biodiversity using 

lidar technology. 
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Our work on the 'Farfetched Flatness' of rough-surfaced wing insects like brown 

moths has demonstrated the capability of longer wavelengths to enhance backscatter 

signal strength, effectively minimizing the loss of specular reflection caused by 

surface features like wrinkles, scales, and refractive gradient, potentially broadening 

the use of long wavelengths in ecological studies for insect detection. The future 

could benefit from a much larger database that utilizes tools like BIOSCAPE to 

augment lidar observations with scanned species data based on spectral and 

polarization properties. This could be achieved through parallelization, citizen 

science initiatives, and engaging high schools in data collection [280]. The 

collection of quantitative optical properties data of insects in standardized metric 

units is essential for building universally applicable and interpretable entomological 

databases. 

Advancements in entomological lidar, combined with spectroscopy and 

polarimetry, offer transformative potential for insect identification and monitoring. 

This technology provides detailed insights into insect behavior and ecology, leading 

to improved strategies for pest control, pollination, and disease prevention. 

Ultimately, gaining a deeper understanding of insect populations and their 

interactions with the environment promises a more sustainable future. 

Looking ahead, several promising directions for this research are evident. One such 

direction is to enhance the lidar system's capabilities by exploring the use of 

carefully selected laser bands to resolve insect wing thickness, potentially 

eliminating the need for complex setups like supercontinuum light sources. 

Furthermore, incorporating DNA sampling [65-67] along the lidar beam path could 

validate the lidar index monitor changes in insect abundance and diversity and be 

more cost-effective. This will enable the assessment of the correlation between 

captured insect species richness and lidar data, providing valuable insights into 

ecological dynamics. Additionally, integrating lidar with machine learning 

algorithms [55, 281, 282] has the potential to expand its applications in long-term 

ecosystem monitoring. 

In the field of sustainable agriculture, lidar technology could prove invaluable. By 

assessing biodiversity changes under different farming systems, it could 

revolutionize landscape management practices. Similarly, in forestry, lidar could be 

utilized to monitor pest populations and their ecological impact, leading to more 

effective management strategies.  

The future of entomological research lies in advancing these monitoring 

technologies and integrating them into broader ecological frameworks. A critical 

challenge remains in making these technologies accessible. By making lidar 

technology affordable and user-friendly, global biodiversity assessment can be 

empowered, ensuring its reach on a worldwide scale. As knowledge expands, a path 

is charted toward a more informed and sustainable coexistence with the natural 

world. 
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Appendix 

Guide to pinning insects for optical scanning 

Here's a detailed guide on how to pin insects for the BIOSPACE scan.  Remember, 

we need the wings flattened out to get the best normal incidence reflection when 

scanned at the right angle. For more visual help, we have a lot of videos on insect 

pinning and lidar assembly on our group YouTube channel, @biophotonicslund653. 

To the new Ph.D. and PostDoc of the lidar group, please help keep this channel alive 

after we leave. If you need the logins, contact me. 

 

 

Fig. S1: Example of a finished pinning board. When borrowing samples from a 

museum, it is important to carefully track which individual specimen is which. 
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Acquisition: 

Obtain insect specimens from museums, or catch them yourself, or acquire them 

from insect breeders. If your specimens are dry, you need to soften them in a wet 

chamber first. 

Preparation of a Wet Chamber: 

1. Build a wet chamber using a box with a lid, wet tissue paper, plastazote 

foam, pins, scissors, and a knife. 

2. Add water to the box and place tissue paper inside. Pin the specimen onto 

the plastazote foam, and place the insect and flastazote foam in the box, 

ensuring it does not touch the water of the wet tissue paper. Close the lid 

and let it sit for a day. 

Softening the Specimen: 

After a day, check the specimen's flexibility. If it has been moistened sufficiently, 

the specimen will be flexible enough for further handling. 

Building a Pinning Board: 

1. Cut two long rectangles from plastazote foam and place them parallel to 

each other on a larger piece of foam. 

2. Position the specimen between these rectangles, leaving a gap 

approximately the width of the insect's body. 

3. Fix the two long rectangles with insect pins, and then push the specimen 

into the gap and leave the wing outside the gap and on the same plane as 

the two rectangle boards upper surface. 

Pinning the Wings: 

1. Use wing-setting tape (preferably made from baking paper) at least double 

or triple the size of the wing area. 

2. Gently move the wings onto the side of the rectangle board and secure them 

with the wing-setting tape and pins. Ensure the pins do not pierce the wings 

themselves. 

Drying: 

Place the board in a dry, stable location away from direct sunlight. Allow at least 

two days for the specimen to dry in the desired position. This drying period ensures 

the wings remain in the desired configuration permanently. 

Handling Beetles with Elytra: 

1. Place beetles in a wet chamber for a day. No direct touch of water or wet 

tissue. 
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2. Use a needle or tweezers to gently open the elytra (hardened wing covers) 

to expose the wings underneath. 

3. Follow the same wing-pinning procedure as with other insects. 

4. When pinning beetle wings, extra care is needed due to the complex folding 

within the elytra, requiring patience to avoid damaging the wings. 

Re-pinning for Different Scans: 

1. For most museum specimen collection, the pin is through the specimen's 

thorax. 

2. For scans requiring the frontal plane view, remove the pin from the thorax 

and re-pin the specimen through its anteroposterior. 

Handling Fresh Specimens: 

1. Freeze fresh or live insects for at least half a day. 

2. After freezing, place them on dry tissue to prevent moisture absorption. 

3. Since these specimens do not require a wet chamber, proceed with pinning 

directly. 
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Abstract

Forestry is raising concern about the out-

breaks of European spruce bark beetle,

Ips typographus, causing extensive dam-

age to the spruce forest and timber values.

Precise monitoring of these beetles is a

necessary step towards preventing out-

breaks. Current commercial monitoring

methods are catch-based and lack in both

temporal and spatial resolution. In this

work, light scattering from beetles is char-

acterized, and the feasibility of entomological lidar as a tool for long-term moni-

toring of bark beetles is explored. Laboratory optical properties, wing thickness,

and wingbeat frequency of bark beetles are reported, and these parameters can

infer target identity in lidar data. Lidar results from a Swedish forest with con-

trolled bark beetle release event are presented. The capability of lidar to simulta-

neously monitor both insects and a pheromone plume mixed with chemical

smoke governing the dispersal of many insects is demonstrated. In conclusion,

entomological lidar is a promising tool for monitoring bark beetles.

KEYWORD S

bark beetle, coherent scattering, entomological lidar, environmental monitoring, Ips

typographus, target characterization, thin films

Abbreviations: DoLP, degree of linear polarization; FoV, field of view; IQR, interquartile range; NIR, near infrared; OCS, optical cross-section;
SWIR, short-wave infrared; WBF, wing beat frequency; WIP, wing interference pattern.

Precise monitoring of European spruce bark beetle Ips typographus is necessary for fighting bark beetle infestation early. In this work optical
properties wing thickness and WBF of bark beetles are reported and these parameters infer target identity in lidar data. Lidar results from a Swedish
forest with a controlled bark beetle release event are presented. We concluded that our entomological lidar is a promising tool for remote monitoring
bark beetles
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1 | INTRODUCTION

The spruce bark beetle (Ips typographus) is one of the
most severe insect pests in European forests, capable of
killing millions of spruce trees in large outbreaks [1].
During normal conditions, the adult insects mainly
attack trees that are already dead. Storm damage or
severe drought stress, however, lead to ample availability
of brood material for the beetles. Rapid population
increases have then been observed, resulting in outbreaks
during which healthy trees are attacked and killed [2].
Spruce bark beetles communicate via pheromones to
form aggregated attacks, which overcome the defense
capacity of living trees [3]. Whereas most attacks occur
within a distance of 500 m from a previous attack [4], the
spruce bark beetle can disperse several kilometers [5].
Both the flight activity and the development from egg to
mature bark beetle are temperature-dependent. The flight
mainly occurs during days with a temperature above
16–20�C [6]. A new generation of bark beetles is initiated
by overwintering adults in May and June, and maturity is
reached in July to August. In central Europe and Den-
mark, the first generation commonly initiates a second
generation peaking during late summer [7]. In Sweden,
this has been rare historically, but the likelihood of two
generations per year increases due to climate change [8]
and it has been observed that there is a second generation
emerging beetles in the south of Sweden in July [9].

A common countermeasure against bark beetles out-
breaks is the timely sanitary cutting of recently attacked
trees. Pheromone traps are used for monitoring flying
beetles, and when there are a large number of beetles in
the trap, it indicates a high risk of attacks. Traps are usu-
ally emptied weekly during the swarming season. The
Swedish Forest Agency (Skogsstyrelsen), in 2020, contin-
uously operates traps in 60 locations throughout the
country [10]. Even though the traps are emptied weekly,
it is still laborious to collect the trap catches, and the trap
catches are therefore also limited in time resolution. They
do not show the population dispersal and cannot be used
to infer how the weather changes throughout the week
affect bark beetle activity. The catch efficiency is also
highly location-dependent, and trapped rotten insects
can deter the beetles away from traps [11].

The efficiency of outbreak control depends on know-
ing the time, location, and magnitude of infestations.
Therefore, surveillance of the population density of bee-
tles is crucial. Several methods have been used by
researchers to access the population dynamic of insects,
such as e-traps [12, 13], entomological radar [14, 15], and
lidar [16–22]. Existing aerial topographic lidar has pri-
marily been used for damage assessment [23]. E-trap pro-
vides a limited assessment of insects fluxes and no

dispersal estimation, and radar is unable to monitor
untagged insects imbedded in the forest due to ground
clutter. To overcome the limitations of those photonic
surveillance methods, our group developed a kHz ento-
mological lidar for non-intrusive remote sensing [17,
19, 22, 24, 25]. It provides optical oscillatory and micro-
structure information of the in-flight target, based on the
retrieved spectral and polarization information.

This study aims to evaluate the feasibility of entomo-
logical lidar as a tool for long-term monitoring of bark
beetles. For this reason, we characterized ex-vivo bark
beetle with hyperspectral imaging and goniometry, and
we recorded in-vivo dynamic scattering of beetles in a
flight chamber. We investigated the relationship between
the acquired optical properties and lidar measurement
in-situ. In addition, we demonstrated the ability of lidar
in visualizing and monitoring an otherwise unperceivable
plume of pheromones together with insect activity simul-
taneously. In summary, this study provides improved
knowledge for surveillance and identification of bark bee-
tles. We concluded that our entomological lidar is a
promising tool for remote monitoring of bark beetle pop-
ulation density, allowing for fighting bark beetle infesta-
tion early.

2 | MATERIALS AND METHODS

Several laboratory instruments were used to characterize
bark beetles optically. Hyperspectral push-broom imag-
ing was carried out to assess spectral features from the
body, elytra, and wings. An imaging polarimetric goni-
ometer system was used to study the scattering cross-
section and de-polarization of anatomical features of bee-
tles from various aspects of observation. A dual-band
polarimetric setup was used to investigate the dynamic
scattering properties and wingbeat frequency (WBF) of
free-flying beetles in a flight chamber. Finally, the labora-
tory recordings were compared to in-field lidar measure-
ments of released beetles.

2.1 | Field collection

Beetles were captured by using pheromone traps [26]
during a lidar in-field campaign in April and May 2019 in
the vicinity of Nytebodaskogen, Sweden (56�20004.0”N
14�22059.300E). Beetles were preserved by freezing or dry-
ing. For the mounting purpose, specimens were re-mois-
ture, and the softened beetles were pinned vertically
through the thorax with small stainless steel insect pins
(size 100 μm). The elytra were opened up, and the hind
wings extended and positioned horizontally to the body.
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The body sizes and wingspans of 30 randomly selected
beetles were measured with a caliper.

2.2 | Hyperspectral imaging (ex-vivo)

We carried out hyperspectral push-broom scans with an
instrument similar to previous studies [27]. The source
was a halogen-tungsten lamp, which delivered light from
a ø8 mm fiber bundle from an 80 mm distance (5.7� light
cone). The light source and camera were arranged in a
specular condition of ±22� to the bark beetle wing sur-
face. The specimens were mounted on a black neoprene
sheet with pins to minimize the background reflectance.
The hyperspectral camera is based on a visible extended
InGaAs imager (Hyspex, Norsk Elektro Optikk, Norway)
with a spectral coverage of 600 nm to 1600 nm filter set-
tings in this study. The camera was operated with a
microscope objective yielding a swat width of 40 mm
with a resolution of 62.5 μm per pixel and 3 nm per spec-
tral bands. The objective had an aperture of ø 16 mm and
a working distance of 80 mm, and the collected light cone
was 11�. The recorded hyperspectral images were cali-
brated to diffuse reflectance using a Lambertian gray ref-
erence with a 50% diffuse reflectance (Spectralon®). Note
that the objective only captures 3.0% of the Lambertian
distribution, calibrate a reflected signal from a specular
surface to a diffuse reference could produce up to ~3400%
times stronger reflectance signal than from a diffuse
object.

2.3 | Imaging Polarimetric Goniometry
(ex-vivo)

Studies have shown that the body and wings of insects
display distinct degrees of linear polarization (DoLP)
from various aspects and scattering angles [28–30]. We
use the definition of DoLP:

DoLP=
Ico

Ico + Ide
: ð1Þ

where Ico is the intensity of measured co-polarized
reflected light and Ide is the intensity of de-polarized
reflected light (the dark current and background are
assumed subtracted).

A spectral polarimetric optical tomographic imaging
goniometer system (SPOTIG, see details in [30]) was used
to study the DoLP contributed from anatomical features
of the beetles. Such a system has been previously used in
3D reconstruction of insects [31, 32], and a similar tech-
nique has been used for optical tomography with a light

sheet [33]. SPOTIG uses an LED as the light source
(680 mW, 810 nm), and the light is horizontally polarized
and collimated into an ø 25 mm beam. A sample is
mounted on another rotational stage in order to investi-
gate different projection aspects, and the light source can
be rotated around the sample to change the scattering
angle. The light scattered from the sample is collected by
a horizontal microscope (f100mm, ø25mm, WD 20 cm).
A linear polarization analyzer on a third rotation stage
allows retrieval of both co- and de-polarization measure-
ments (HH and HV, respectively). The camera used is
a 12 bit, USB3 CMOS imager, with 1240 × 980,
4.8 × 4.8 μm pixels (Basler Ace acA2500-60 um USB3
Mono). The strobe modulated light source for automatic
background subtraction.

Backscattering is recorded by placing the light source
on the same side of the sample as the camera. Forward
scattering/extinction can be recorded by rotating the light
source to the opposite side of the sample. Flat-field cali-
bration is done by setting the system in different illumi-
nation configurations and acquire an image of a
homogeneous calibration target. The backscattering
(θsc = 165�) and forward scattering (θsc = 14�) properties
of beetles were studied in all anatomical planes, which
was done by mounting each specimen in the
corresponding plane and rotating the aspect stage 360� in
steps of 5� (aspect angle is presented by φ). The same pro-
cedure was repeated for a beetle specimen with removed
wings and specimens with removed wings and elytra in
co- and de-polarization. In extinction mode (θsc = 0�), the
same experimental procedure as in backscattering mode
was used.

The scattering phase function of beetles was also stud-
ied. Each specimen was mounted on the aspect stage,
and the light source was rotated around the specimen to
scan the scatter angle between −164� < θsc < −14� and
14� < θsc < 164� with a step size of 5�. The same proce-
dure was repeated for the beetle specimen without wings
and specimen without wings and elytra. The phase func-
tion measurement was done in both co- and de-polarized
modes.

2.4 | Entomological flight chamber
measurement (in-vivo)

Dual-band backscattering properties of beetles in free
flight were studied in our entomological chamber, see
details of the setup in [29]. A dichroic beamsplitter was
used to combine an 808 nm NIR laser beam (5 W) and a
1550 nm SWIR laser beam (3 W). The superimposed
NIR/SWIR beam was horizontally polarized and colli-
mated with an ø 50.8 mm lens. Detection optics (another
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ø 50.8 mm lens) was placed adjacent to the light source,
and the field of view (FoV) of the detector was over-
lapped with the NIR/SWIR laser beam to form the probe
volume. A long-pass filter (RG780) was used to remove
ambient LED light. A polarizing beamsplitter was used to
separate the received backscattered light into co- and de-
polarized components. Each polarization was measured
by a Si/InGaAs sandwiched photodiode (K3413-09,
Hamamatsu, Japan), with a trans-impedance amplifier
(TIA, OPA404) with 47 MΩ transimpedance and ~ 4 kHz
bandwidth. Both NIR/SWIR laser beam and detection
optics FoV were terminated in separate dark cones of
neoprene. An enclosed chamber was built around the
probe volume without blocking the beam or detectors
[29]. White diffuse (Lambertian 100%) Teflon balls
(ø 6.35 mm) was dropped through the probe volume
to calibrate the backscattered light signals in all
4 channels from volts to optical cross-sections (mm2)
[18, 34, 35]. Beetles were released inside the chamber,
and the modulated signals were measured with a
sampling rate of 20 kHz in both wavelength- and
polarization bands (DAQ-USB6012, National Instru-
ments, USA).

2.5 | Lidar at field site measurement
(in-vivo and in-situ)

A lidar in-field campaign was undertaken in
Nytebodaskogen, Sweden (56�20004.0”N 14�22059.300E) on
May 13th - 17th, 2019, see Figure 1. The lidar system was
set up on a small hill next to a barn. The lidar transect
was about 120 meters long and 4 meters above the

ground. The transect stretched over a clearing in a valley
and terminated on a termination board covered with
black neoprene (1.8% diffuse reflectance at wavelength
808 nm). A pheromone trap was positioned at mid-
distance of the lidar transect and right underneath the
lidar beam to lure the bark beetles, and a weather station
was set next to the pheromone trap. The lidar was run-
ning 24 hours every day except the times when hard
drives were replaced to enable gathering more data. On
May 16th, 2019, we carried out a controlled bark beetle
release event and a smoke release event separately right
next to the pheromone trap. The smoke is a chemical
mixture of hydrochloric acid and ammonia. The release
was used to visualize the movement of pheromone plume
from the trap, and the controlled bark beetle released
was to obtain reference measurement of bark beetles
in-situ.

We used a kHz entomological Scheimpflug lidar at
808 nm, resembling previous work [36, 37]. It was a sin-
gle band lidar system, and it transmitted a 3.2 W laser
beam. The beam was expanded and collimated by a
refractor telescope (ø 76 mm, f = 200 mm). The back-
scattered light was collected by a Newtonian telescope
(ø 205 mm, f = 800 mm) and focused onto a CMOS sen-
sor array with 2048 pixels and 16-bit dynamic count. An
RG780 long-pass filter and a bandpass filter (808 nm,
FWHM: 3 nm) were used to block background light. The
baseline of expander and collector are separated by
814 mm, and the CMOS array was tilted 45� in
Scheimpflug configuration to achieve infinite focal depth
[17, 18, 22, 35–38]. The laser and the CMOS camera were
connected to a multiplexer and a laser driver, and the
laser was controlled by a strobe signal sent from the
CMOS sensor to switch on and off alternately, the sensor
line rate was 3.5 kHz, and the sampling rate for both
backscattered signal and background were 1.75 kHz [37].
Each acquired data file is 10 seconds long and contains
35 000 lines exposures.

3 | RESULTS AND DISCUSSION

Here, we report on a successful characterization of the
spectral property of bark beetles from both in-vivo and
ex-vivo experiments. Using the hyperspectral camera, we
studied membrane thickness and its variance within and
between individuals. Soap-bubble color patterns found
on beetle wings in Figure 2 are caused by the thin-film
effect, a typical example of coherent and incoherent light
interference. Cross-section and polarization of scattered
light from beetles were studied with goniometer from
various observation angles. Several beetles were released

FIGURE 1 Aerial view of the lidar site in Nyteboda. The

entomological lidar was set on a small hill, and it was monitoring

over a small clearing in a valley. The lidar beam was terminated by

a black neoprene board. A pheromone trap and a weather station

were placed halfway of the lidar transect path
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in the dual-band polarimetric flight chamber to deter-
mine the WBF and dynamic properties of flying beetles.
When laser light interacts with free-flying bark beetles, the
recorded signal can be decomposed into a non-oscillatory
and oscillatory scatter contribution [21, 22, 24, 25]. The
oscillatory signal is contributed from the wing throughout
many wingbeats, and the non-oscillatory scattered signal
is contributed from the body and elytra. Both frequency
components of the signals can be further decomposed into
coherent (Ico-Ide) and incoherent scattering (Ide). The light
interaction with the body and elytra is primarily diffuse
[39], with the dominant chromophores being melanin act-
ing as a gain factor on the reflectance (~λ-3.48) [40] and for
the body also liquid water scaling with the interaction
path length.

3.1 | Hyperspectral imaging (ex-vivo)

Beetles captured in-situ from Nyteboda, Sweden, were
measured according to Section 2.1 and had a median
body length of 4.8 mm (IQR: 0.25 mm), median body
width of 1.9 mm (IQR: 0.16 mm), and a median wing
length of 6.7 mm (IQR: 0.40 mm).

Beetle wings appear transparent in the diffuse angle
of light incidence (Figure 2A) but can display structural
colored patterns at the specular light condition. A false-
color image was formed from the hyperspectral images in
Figure 2B, C. Three bands (1320, 1064, and 808 nm) coin-
ciding with commercial laser diode wavelengths are dis-
played in red, green, and blue lines. The reflectance
spectra of three specular pixels are shown in Figure 2D,
exhibiting strong spectral fringes. Thicker wing sections
display narrow spectral fringes. The extreme wave num-
bers (indicated with closed and open circles in
Figure 2D) were used to calculate the wing.

membrane thickness by a linear fitting method [41].
We also present the spectrum of the elytra, which is
sloped due to the melanization of the insect carapace and
is approximately by,

RElytra =13:6× exp −8:65× 1019 λð Þ−6:83� �
+2:92: ð2Þ

where RElytra is in percentage and λ is in unit of
nm. Parameter 13.6 corresponding to 13.6% of diffused
light from elytra was collected, parameter 8.65 × 1019 is
for scaling the fitting equation and parameter 2.92

FIGURE 2 Thin-film properties of a beetle wing. A, A true-color image of a bark beetle specimen under the diffuse lighting. B, C,

False-color hyperspectral image of the same specimen in the NIR wavelength range, distinct interference color patterns are shown in the

wing. The area highlighted by a red rectangle in B, is magnified and presented in C. D, The diffuse reflectance spectra of three specular

pixels were selected from the hyperspectral image C. E, Reflectance maxima (closed circles) and minima (open circles) from D, for each

selected pixel are fitted with a linear function with an extremum number to calculate the corresponding membrane thickness
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corresponding to the reflectance offset due to refractive
index. The melanization gain factor value from our fitting
is 6.83 which is larger than the one provided by the refer-
ence, 3.48 [40].

The wing interference pattern (WIP) can roughly map
out the wing membrane thickness distribution, see
Figure 3A,B. Specular pixels were selected with an inten-
sity threshold, enabling calculation of the membrane
thickness distribution of the insect wings [42]. The thick-
ness of the membranes decreases from the anterior wing
margin to the posterior wing margin, as the veins con-
fined to the anterior wing margin thicken the membrane
to support the vein-free structure near the posterior wing
margin.

Fringes shown in Figure 2D only provide wing thick-
ness information of the selected pixels. It is like perform
a point measurement on the membrane with a spectrom-
eter. But for the purpose of remote sensing, it is more
likely for the lidar to retrieve a strong backscattered spec-
ular signal reflected from the whole wing, rather than a
small section of the membrane. Therefore, we spatially
integrated all spectral fringes for all specular pixels and
the result effective fringe is shown in Figure 3C. If such
fringes survived a spatial integration into an effective
fringe from the entire wing, it would enable us to retrieve
the nanoscopic wing thickness remotely, which could be
highly species-specific. Note that spatially integrated
fringe magnitude is more moderate than the ones from

individual pixels in Figure 2D. The same measurements
were carried out on 10 randomly chosen beetles to esti-
mate the variation among individuals. The obtained
effective wing membrane thickness of the entire wings of
beetles was thereby calculated to 525 ± 28 nm. This bio-
logical variance of just 5% is exceptional by itself, consid-
ering that the variance of wingbeat-measurement
displays at least five times higher relative spread (>25%).

All wavelengths of effective fringe were corrected for
the angle of incidence of 22�, and the fringe maxima and
minima from Figure 3C have wavelength values of
1592 nm, 1063 nm, 802 nm, and 646 nm under normal
incidence. Three commercial laser diode wavelengths
were also displayed in Figure 3C, where laser bands
808 nm and 1064 nm are very close to the destructive
and constructive wavelength of 802 nm and 1063 nm.

3.2 | Imaging Polarimetric Goniometry,
DoLP (ex-vivo)

Using a goniometer, we investigated the DoLP of beetles
in different anatomical planes in backscatter- and for-
ward scatter configurations. DoLP results are presented
in Figure 4-5.

In backscattering configuration, see Figure 4, lights
scattered from the beetle body and elytra are highly de-
polarized regardless of the aspect angles. Small features

FIGURE 3 Visual representation of the bark beetle membrane thickness among the whole wings. A, A false-color hyperspectral image

of a beetle specimen. B, A color map of the membrane thickness distribution of the same specimen. C, The diffuse reflectance contributed

from the whole wing, the gray background shows the spectra variations from 10 random selected beetle specimens and the red curve is the

median curve of the 10 measurements. D, Reflectance maxima (closed circles) and minima (open circles) from C, are fitted with a linear

function with an extremum number to calculate the corresponding membrane thickness
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such as hair on the beetle maintain a high DoLP due to
light undergoes less scattering events within small fea-
tures. Beetle wing exhibits minimal de-polarization when
the light impinges in specular condition (±8�), as shown
in Figure 4B. However, the DoLP of the wing changes
when the observer moved away from the specular condi-
tion, see Figure 4A,C. Hence, when the beetle wing is in
a normal incidence with the lidar probe beam, we will
receive the strongest co-polarized backscattered signal.

In forward-scattering mode (see Figure 5), the
impinging light maintains a high degree of polarization.
It could be due to the forward scattered light undergoes a
single or few scattering events through the thin body
structure, such as wings and elytra. Since light did not
penetrate through the thicker body part of the beetle, the
polarization features of those areas could not be deter-
mined in the forward scattering configuration.

3.3 | Imaging Polarimetric Goniometry,
OCSs and phase function (ex-vivo)

The goniometer was also used to study the optical cross-
sections (OCSs) and phase function of ex-vivo beetles.
The measured OCS (in mm2) of a beetle is presented in
Figure 6 in all anatomical planes for co- and de-polariza-
tion. Anatomical terms in the figure are used to describe
the beetle positioning to the camera. In both extinction
and backscattering modes, the largest OCS value is
observed when measuring the beetle from ventral (belly)
or dorsal (back). According to Figures 4 and 5, a beetle
has the largest projection if the beetle is observed from
the dorsal/ventral side, due to the positioning of wings
and elytra corresponding to a large cross-section area.

Figure 4 shown that the wing membrane retains a
high degree of polarization in backscattering mode. The

FIGURE 4 De-polarization

images of a bark beetle from

different anatomical planes in

backscattering. The difference

between co- and de-polarized

features is presented in green color,

and the de-polarized features are

represented in red

FIGURE 5 De-polarization

images of a bark beetle from

different anatomical planes in

forward scattering. The difference

between co- and de-polarized

features is presented in green color,

and the de-polarized features are

represented in red
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de-polarized signals in backscatter-roll and backscatter-
pitch diagrams in Figure 6 indicate that light undergoes
multiple scattering in the membrane, which could be
from the thicker sections of the wing, such as the veins.

In the backscattering mode, the backscattered signal
intensity is related to the reflectance of the target and
how much light was collected by the camera. Therefore,
the OCS values in extinction mode are way larger than
the backscattered OCSs. The contribution of wings or ely-
tra to the co- and the de-polarized signal can be observed
in Figure 6 in each diagram by comparing the OCS values
before and after removing wings and elytra. With the
OCS values provided in Figure 6, we can calculate the
DoLP of beetle with Equation (1) from different aspects.

For the frontal aspect, the beetle body+wing+elytra has
a DoLP of 56%, beetle body+elytra has a DoLP of 55%,
and beetle body has a DoLP of 55%, which is in good
agreement with the DoLP visualization result in
Figure 4A. The DoLP was calculated for the dorsal aspect,
where beetle body+wing+elytra has a DoLP of 76%, bee-
tle body+elytra has a DoLP of 65%, and a beetle body has
a DoLP of 55%.

The backscattering OCSs of beetle is parameterized
into a set of spherical harmonics with scaling and axial
flipping [34]. Furthermore, spherical harmonic coeffi-
cients were then obtained through regression. The coeffi-
cients are presented in Table 1, where the unit sphere
has a radius of 1 and center at the coordinate's origin.

FIGURE 6 OCSs of beetles in all anatomical planes for both polarizations. High symmetry in OCS is displayed around anatomical

planes, as the beetle itself is approximately bilaterally symmetrical. Remove wings and elytra from the beetle changes the symmetry and OCS

values
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Spherical harmonics have two indices, where l is the
degree, and m is the order. The values of the real part
of spherical harmonic were stored for all l and
m (degree up to l = 3) and sum up to real cross-
section values (in the unit of mm2), see Figure 7. Such
table values in Table 1 can confirm or disconfirm a
given field observation could be a bark beetle observed
from an arbitrary direction. The ratio between co- and
de-polarized signals from the spherical harmonics in

Table 1 can be used to identify possible angular depen-
dence of DoLP or melanization.

The phase function of a beetle at two observation
aspects was investigated with the goniometer. The scat-
tering pattern was measured by rotating the light source
in a circle and illuminate the beetle from different scat-
tering angle θsc.

When the beetle is facing the camera (Figure 8C), the
angular distribution of scattered light intensity shows a

TABLE 1 Parameterized table values of a set of harmonics bases used to generate the backscattering OCS in 3D. The corresponding

images are presented in Figure 7

Backscattering

Body + elytra + wings Body + elytra Body

Copol. (mm2) Depol. (mm2) Copol. (mm2) Depol. (mm2) Copol. (mm2) Depol. (mm2|)

Y00 0.67 0.71 0.50 0.42 0.24 0.19

Y21 - - 0.27 0.21 0.30 0.26

Y22 −0.35 −0.19 −0.17 −0.14 −0.05 −0.05

Y30 3.11 0.72 0.43 0.13 0.03 0.03

Y31 0.16 0.12 0.33 0.03 - -

FIGURE 7 Backscattering OCS of a beetle from three anatomical planes are parameterized by a set of spherical harmonics. Dots

represent measured values, and lines are projections of harmonic fits. The color coding is blue to purple shading by height
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strong forward scattering feature for co-polarized light at
the given wavelength, where its intensity is roughly
20 times stronger than the de-polarized signal in the
forward direction (Figure 8D). Even when wings and
elytra were removed, the body of the beetle is still
strongly forward scattered, which could be due to the
body size of a beetle is small, so the light undergoes

fewer scattering events. Lidar probe and detect a small
amount of backscattered light from in-flight insects,
other sensors such as E-trap [43] could, in principle,
capture forward scattered light. For insects that are
highly forward scattering, a forward detection configu-
ration will require less probe intensity and still acquire
strong forward scattered signals.

FIGURE 8 Scattering phase function of beetle with and without wings and elytra in both co- and de-polarizations. A, A schematic of

the experimental setup. B, The FWHM of the instrument sensitivity loop is 5�. C, D, Copolarized and de-polarized phase function of the

beetle while the beetle is facing the camera. E-F, Copolarized and de-polarized phase function while the side of the beetle is facing the

camera
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When the side of the beetle is facing the camera
(Figure 8E), it also shows a strong forward scattering fea-
ture in the phase function. However, its scattered light
intensity is 3 times weaker comparing to Figure 8C when
wings and elytra are still attached to the beetle. This mag-
nitude difference is due to changing the observation
aspect of the beetle has changed the size of projection
area from the wings, see the difference in Figure 5B,C,
and this magnitude difference is diminished when the
wings are removed from the beetle, see the difference in
Figure 8C,E. Changing aspects of the beetle do not seem
to have a strong impact on changing the de-polarized sig-
nal magnitude in Figure 8D,F for backscattering. This
could be due mainly to that, the body and elytra are the
main contributors to the de-polarized backscattered sig-
nal, and that there are no big projected area changes
when the beetle is turned around from the front to the
side. The big intensity changes for the de-polarized for-
ward scattering signal when the beetle was turned could
be due to the scattered light from the left-wing were
blocked by the beetle body.

3.4 | Entomological chamber (in-vivo)

Roughly, 200 beetles were released inside the entomolog-
ical flight chamber to study the dynamic properties of
wingbeats of free-flying beetles. However, not all the bee-
tles were flying within the probe volume, and the same
beetle could have entered the probe volume more than
once. We also discarded observations that do not contain
at least three clear wingbeats, as we cannot resolve a
WBF if it is less than three wingbeats in the time series
are available, and we discard signals that contain signifi-
cant changes in body orientation, as we could not apply
our parameterization method when the body signal is not
consistent. Therefore, the amount of observations we
presented does not correspond to the number of beetles
recorded. Their backscattered signals were recorded for
two laser bands in co- and de-polarization. Suppose we
assume all the beetles have a similar flight speed and
mostly fly horizontally. In that case, we expect a long
observation recording from a beetle when it is flying
along the beam and a short observation when it is flying
perpendicularly to the beam. Examples of long and short
transit observations of flying beetles are presented in
Figure 9. A short observation should contain at least
three clear wingbeat signals. In the bark beetle case, a
short observation with at least three clear wingbeats is
roughly 30 to 40 ms long in time. And a long observation
for bark beetle typically contains more than six clear
wingbeats, and its corresponding transit time is roughly
longer than 70 ms.

The backscattered signal rises and drops throughout
many wingbeat cycles, as seen in Figure 9A,C. The oscil-
latory signal components are contributed from the wing
during the wingbeat, and the non-oscillatory component
is contributed from the body elytra. The WBFs of 68 bark
beetle signals were acquired in the entomological flight
chamber, and bark beetles have a median of a WBF of
104 Hz with an IQR of 26 Hz.

A parameterization method [24, 34] was used to pro-
ject the observation data onto a set of discrete harmonics,
which can then estimate in a unit of contributions to the
cross-section (mm2). The strength of the fundamental
tone appears different in respect to the second harmonic
tone for long and short transit observations, which could
relate to the orientation and wing dynamic of the flying
beetle [34, 44]. Brydegaard and collaborators [34]
suggested an insect wing dynamic model, when an insect
is observed from the side with lidar, will result in a strong
first overtone in the power spectrum. When the insect is
observed from the front, or back it yields a strong
fundamental tone.

InGaAs co-polarized signal (at 1550 nm) in Figure 9,
the difference between the fundamental tones to the first
overtone is large in the short transit and small in the long
transit observation is in disagreement with the model
[34]. However, the diffuse signal from Figure 9 is in
agreement with the proposed model. For example, the Si
de-polarized signal (at 808 nm) has a large tone differ-
ence between the fundamental tone to the first overtone
in the long transit, and such difference becomes smaller
for short transit. Jansson and collaborators [44] also pro-
vided several results that argue that the model in [34]
only applies to the diffused signal instead of specular.

3.5 | Lidar (in-vivo, in-situ)

To achieve the most effective management of damage
control of bark beetles, we need to monitor their distribu-
tion to determine the active measures. Bark beetles
release pheromones to attract other beetles for breeding
or initiating an attack on healthy trees [3, 45]. This
released pheromone is invisible to human eyes and can-
not be easily monitored. We employed our entomological
lidar system in a field together with pheromones mixed
with aerosols to illustrate that our lidar can simulta-
neously monitor the pheromone plume and insects
attraction. The measurement result is presented in
Figure 10.

As presented in Figure 10, our lidar system has suc-
cessfully monitored both aerosols smoke and insects
within the same time-range map. Insect observations are
shown as intensity snippets in the map instead of a
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FIGURE 10 An example of

lidar observation. A, Time range

map of insect and smoke release

event. B, A small section of the time

range map is zoomed in and

presented. C, The time series of the

observation in B

FIGURE 9 Dual-band polarimetric modulated signal acquired from the entomological chamber for beetles. A, C, The backscattered

signal in time series from in-flight beetle for long and short transit time observation. B, D, The corresponding power spectrum for each

transit time and time series were parameterized by a set of discrete harmonics weighted with the body contribution
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continuous intensity distribution as the smoke. A pre-
sumed bark beetle observation is highlighted in
Figure 10B,C based on the event distance and release
time. A long and short lidar transit observation are pres-
ented in Figure 11. Both are presumed to be bark beetles
based on the release location and time. Their recorded
WBFs are also within the bark beetle WBFs span mea-
sured from the flight chamber (a median of 104 Hz and
IQR of 26 Hz).

The parameterization method was used to retrieve
the strength of the body and harmonic tones from the
lidar observations. The interpretation of the signals is
important when the body to fundamental tone ratios are
close. The relation between the fundamental tones to the
first overtone of the lidar measurement is similar to what
we observed in the flight chamber in Figure 9. When the
transit is long, the fundamental tone is stronger than the
first overtone. When the transit is short, the difference in
tone strength decreases.

Then we investigated if the ratio between body and
fundamental tone from the lidar measurement in
Figure 11 is comparable to the flight chamber recordings
in Figure 9. Unlike the flight chamber, lidar only had one
laser band at 808 nm, and it records the sum of both co-
and de-polarization. The body to fundamental tone ratio
is calculated for lidar by dividing the body signal strength
by the fundamental tone strength in Figure 11B,D. The
long observation gives a ratio of 3.2, and the short obser-
vation gives a ratio of 5.3. The body to fundamental tone
ratio is calculated for the flight chamber by dividing the
sum of the co- and de-polarized body signal with the sum

of co- and de-polarized fundamental tone signal in
Figure 9B,D for Si measurements only. Six long observa-
tions from the flight chamber within time interval 70 to
100 ms were randomly selected, and they gave a median
value of 10.6 (IQR:4.4) for the body-to-fundamental-tone
ratio, where 6 short observations within time interval
30 to 40 ms gave a median of 5.5 (IQR:1.2). The body to
fundamental tone ratio is nearly the same for both lidar
and flight chamber short transit measurement. However,
their values were fairly different for the long observation,
which could be due to a long transit time means the bee-
tle could have several orientation changes within the
same recording, while for a short transit beetle is most
likely just flying perpendicular through the beam without
big adjustments to its heading. Changes of orientation
within the same recording could lead to erroneous
strength estimations for body and harmonic tones.

We also looked into if the lidar measured OCS values
are comparable to the flight chamber and goniometer
measurements. Our lidar measured OCS value for a pre-
sumed bark beetle is a factor 10 times larger than the lab
measurement. Lidar does face the challenge of calibrating
the signal intensity into absolute OCS precisely. Unlike
the goniometer and flight chamber that allows the place-
ment of calibration targets in the detection path, lidar is
commonly placed in a complex environment and moni-
toring a long distance (>100 m). Most of the time, the
monitoring environment does not allow the placement of
a calibration target. Lidar uses its beam size on the termi-
nation board to mathematically convert the lidar signals
into OCS (mm2). Some of the beam widths are imaged

FIGURE 11 Representative example of insect long and short detection event observed in the field measurement. A, C, Time series of

observations with different transit times. B, D, Observations in time series were parameterized by a set of discrete harmonics weighted with

the body contribution

LI ET AL. 13 of 16

 18640648, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jbio.202000420 by Statens B

eredning, W
iley O

nline L
ibrary on [13/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



outside of the lidar linear array at a short range, leading
to a wrong OCS estimation for observations. The lidar
transect in Nyteboda had a range of 120 m, but the bee-
tles were released halfway, at 60 m, which is considered a
short range for the lidar system.

4 | CONCLUSION AND OUTLOOK

This paper evaluated the feasibility and characterized opti-
cal scattering from bark beetles as lidar target, ex-vivo, in-
vivo, and in-situ. We explored various optical domains
such as imaging of anatomical features, spectral content,
polarization properties, goniometric scatter analysis, mod-
ulation properties, and remote sensing. We applied hyper-
spectral imaging, polarimetric imaging and goniometry,
multiband modulation spectrometry, and laser radar.

The body melanization and thickness across bark bee-
tles wings in the range of 600–1600 nm was measured. It
was showed that wing interference patterns survive spa-
tial integration over the entire wing producing an effec-
tive spectral fringe that can be exploited for remote
sensing. By determining this effective fringe from numer-
ous specimens, we discovered an extraordinary small var-
iance of wing thickness less than one magnitude lower
than the variance of WBFs. This not only raises questions
of fundamental nature in biology, but such small vari-
ance also has great implications for differentiating insect
species remotely should this be a generally occurring fea-
ture across species. Further studies are needed to validate
this feature for remote identification of insects.

Anatomical features responsible for the de-
polarization of backscatter light were pinpointed. Beetle
wings maintain a high degree of co-polarization even
when the wavelength is not in condition for resonant
backscatter. We also demonstrated that both the body
and elytra almost randomizes the polarization entirely.
This is noteworthy because both body and elytra are mel-
anized (a feature normally increasing DoLP) and elytra
are thin, providing a limited optical path length for multi-
ple scattering and de-polarization.

Analyzing forward scattered light, we concluded that
the body is mainly opaque for near-infrared light (in the
tissue window) despite being a small organism of a few
mm size. From the highly co-polarized light transmitted
through both wings and elytra, we concluded that the
transmitted light experiences a shorter interaction path
length compared to the reflected light. This is counter-
intuitive compared to classical medial optics but compati-
ble with similar findings in mosquitoes [30].

Quantitative optical backscatter cross-sections from
all anatomical projections for both co- and de-polarized
laser light are presented as well as extinction coefficients.

These estimated values are useful for designing field
monitoring instrumentation and interpreting entomologi-
cal lidar data, such as determining plausible bark beetle
targets in an ensemble of insects. We concluded that the
DoLP is invariant with heading and observation angle,
and such it could be a feature for identification. This find-
ing is similar to earlier findings for mosquitoes [29, 30].

By repeated scans and relieving the beetles from
wings and elytra, we could attribute different fractions of
the cross-section to different anatomical parts. This is
interesting because entomological lidar is capable of iso-
lating oscillatory scattered light from wings from the
non-oscillatory light scattered of the body and therefore
provides a stronger foundation for remote detection. We
also notice that the angular dependence of cross-sections
and (consequently, the circular and spherical harmonics
required to explain them) are three folded symmetrical
for both the body and wings. However, this is not the
case for the contribution from the elytra, and beetles can
thus be expected to display asymmetric cross-section
depending on the observation aspect.

By identifying symmetries, we provided spherical
functions of cross-sections using a limited set of spherical
harmonics. Thus scattering by an insect target from an
arbitrary observation aspect can be given with quantita-
tive values in a table. This paves the way for establishing
a library for cross-section for insect species of key impor-
tance such as pests, disease vectors, or pollinators.

With goniometric scatter analysis, we demonstrated
dominant co-polarized forward scattering. The scattering
phase function can be understood as a product of the
cross-section from the illumination and observed aspect
in conjunction with an intrinsic Henyey-Greenstein scat-
tering function. The retrieved phase function helps us
understand the light interaction with such small biologi-
cal samples. It could also have implications for field
detection schemes where the strong forward scattering is
exploited to ease laser power requirements.

By polarimetric dual-band modulation spectroscopy
on free-flying bark beetles, we have identified the range
of WBFs. We applied parameterization and demonstrate
quantitative cross sections values for a high number of
overtones. The proposed wing dynamic model from [34]
apply to diffuse signal observation. The DoLP of long
transit observation is in agreement with the goniometry
measurement.

We contributed a solution to monitor an invisible
pheromone released by bark beetle by employing our
lidar system in the field and mixing aerosols with phero-
mones. We successfully observed the bark beetle signals
and pheromones smoke plumes simultaneously. More-
over, they both have distinguishable characters in the
lidar time and range map, so it is easy to tell them apart.
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We compared the lidar observations to the flight
chamber measurements to prove the feasibility of having
the lidar as a tool for monitoring the bark beetles. We had
some challenges with absolute cross-section calibration,
but there are plenty of other features to identify the bee-
tles. Firstly, both lidar and flight chamber measurements
showed the same relative tone strength relation for long
and short transit observations. Secondly, the WBF mea-
sured by lidar is within the WBF span measured by the
flight chamber. Thirdly, the body to fundamental tone
ratio is nearly the same for short transit observation in
both lidar and flight chamber measurements.

With clues provided from this work, we can distin-
guish bark beetle observations from in-situ lidar or other
sensors measurements. Our methodology can be applied
to other key insect species and enable developing a spe-
cific monitoring system. Future studies should focus on
developing an insect outbreak index system to indicate
the risk by employing several lidar systems at various
locations.
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Lidar as a potential tool
for monitoring migratory insects

Hui Chen,1,4,10,* Meng Li,2,10,* Hampus Månefjord,2 Paul Travers,3 Jacobo Salvador,2 Lauro Müller,2

David Dreyer,4 Jamie Alison,6 Toke T. Høye,6,7 Gao Hu,1 Eric Warrant,4 and Mikkel Brydegaard2,5,8,9,11,*

SUMMARY

The seasonal migrations of insects involve a substantial displacement of biomass with significant ecolog-
ical and economic consequences for regions of departure and arrival. Remote sensors have played a
pivotal role in revealing the magnitude and general direction of bioflows above 150 m. Nevertheless,
the takeoff and descent activity of insects below this height is poorly understood. Our lidar observations
elucidate the low-height dusk movements and detailed information of insects in southern Sweden from
May to July, during the yearly northwardmigration period. Importantly, by filtering out moths from other
insects based on optical information and wingbeat frequency, we have introduced a promising new
method to monitor the flight activities of nocturnal moths near the ground, many of which participate
in migration through the area. Lidar thus holds the potential to enhance the scientific understanding of
insect migratory behavior and improve pest control strategies.

INTRODUCTION

Insect migrations displace vast quantities of individuals, biomass, and nutrients across the earth’s surface, with profound implications for both

agriculture and biodiversity.1–3 Transitioning to the nocturnal aspect, the night sky is a less explored avenue in insect migration studies. The

cover of darkness offers a different set of environmental conditions and challenges, prompting distinct behavioral adaptations among

migrating insects. Most of the large nocturnal migrants are moths,4 which commonly migrate at significant heights above the ground (as

high as 1 km), taking advantage of seasonally favorable winds.5 Many migratory moth species provide beneficial ecosystem functions,

such as pollination,6 but many are also economically significant pests or vectors of plant-disease viruses.7–9 The detection, quantification,

and characterization of moth migratory movements are therefore of great value to insect ecologists and ethologists for improving our under-

standing of the drivers and consequences of migration.

A major challenge in insect migration research is to understand where and whenmigrating insects take off and descend.10,11 This is partic-

ularly crucial to aid agriculturists in predicting the timing and location of migration events, helping to mitigate damaging pest outbreaks.12,13

Vertical-looking entomological radar (VLR) has proven pivotal for producing accurate estimates of both the horizontal and vertical compo-

nents of the flight vectors of target insects at heights above roughly 150 m,4,14,15 but its inherent noise interference below 150 m has

prohibited the study of insect migration close to the ground.11,16–19 Scanning radar can detect the targets by adopting different angles

with scanning mode, which has been utilized for monitoring the agricultural pest9; it hardly provides flight detailed information of migratory

insects. While frequency-modulated continuous-wave (FMCW) radar has demonstrated its capability to surmount inherent noise challenges,

thereby presenting itself as a promising tool for monitoring insect migrants,20–22 its practical application in field monitoring of migratory in-

sects has not been realized to date. Furthermore, while harmonic radar can detect low-altitude insect migratory behavior with high-resolution

positional data, the need for tagging renders this method unsuitable for the comprehensive monitoring of migratory insects. Building upon

previous work, entomological lidar (laser radar23), with lower inherent noise interference, can be further employed and is an extra option for

efficient insect monitoring below 150 m for both tagged24 and untagged25 insects, potentially unraveling the remaining mysteries of insect

migration at low heights.25
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Extending existing applications of Lidar, it has been successfully applied in different kinds of insect monitoring with the advantage of

detection sensitivity and specificity.26–28 Such specificity can be achieved with multiband lidars that can quantify molecular absorption by

melanin,29 nanoscopic wing thicknesses,30 or microstructural information such as surface roughness.29 The widely diverse detection distances

and the rapid movements of free-flying insects pose challenges to focusing and classification of insect species.31 However, wing interference

phenomena and wingbeat modulation are unaffected by focus blur and show potential for insect classification based on lidar observa-

tions.26,28,32–34 Lidar may also provide an accurate description of flight parameters, such as flight velocity and speed, which are scarcely docu-

mented for moths. This lack of documentation hinders understanding of moth migration and hampers the development of effective conser-

vation and pest control strategies.

In this study, we further explore the utility of lidar for insect surveillance at low heights by collecting real-time, in situ, spatially profiled

observations during two months of the insect migration season. The study was conducted in a rural area in southern Sweden within a healthy

ecosystem (including pasture, forests, and wetlands) with minimal light pollution. Southern Sweden is positioned along the migratory path

from southern Europe to the Scandinavian Peninsula and serves as a vital stopover for migratory insects.2,35 During the northward migration

period from May to July, nightly migratory insect takeoff and landing behaviors occur in this region.2,35We used lidar to derive flight param-

eters for moths and other insects, such as vertical velocity and height, recorded around dusk when migration activity normally begins. More-

over, through the optical information and wing beat captured by our refined lidar methods, we have demonstrated in this paper the potential

to distinguish moth signals from those of other insects. Our study enhances the methodology for insect surveillance and, by distinguishing

moths, lays the groundwork for deeper analysis of migratory moth activity patterns. Our pioneering research introduces a promising tool for

remote monitoring, poised to significantly contribute to the development of innovative and more effective conservation and pest control

strategies.

RESULTS

Our field campaign was executed at Stensoffa Field Station (55�4104400N 13�2605000E) between 25th May and 21st July, 2022. The operation of

the lidar system was conditional on favorable atmospheric conditions, specifically excluding instances of rain and strong winds. The schedule

for data recording varied. Full-day recording was executed on certain days, whereas, on others, recording was constrained to a time window

from 18:00 to 24:00 (sunset occurred between 20:52 and 21:21 during the measurement period). Our results are later controlled for observa-

tion hours.

The lidar system was oriented northwards (Figures 1A and 1B) and aimed skyward with an elevation angle of 30� (Figure 1C). Although the

Scheimpflug lidar operates to infinity, the furthest insect in this study was detected at roughly 700 m distance, corresponding to a height of

400 m. In our previous study32 the lidar transect was conducted at ground level, closer to vegetation where insects emerge and are more

abundant, achieving a detection range of up to �2 km. However, the lidar’s 30� elevation angle and near limit of 35 m (approximately

18 m in height) restrict observations to above 18 m. The experimental site’s lack of tall trees and average tree height (15–20 m, based on

Global Ecosystem Dynamics Investigation tree height maps) support the assumption that the observed signals are not from plant debris

or plankton. See Figure 1 for an image of the surrounding vegetation.

The lidar system was oriented skyward to observe insect migration at elevated altitudes. Given the anticipated lower insect density at

heights hundreds of meters above the ground, the furthest detection at 400 m elevation is within expectations. The 30� elevation angle

was chosen over a vertical (zenith) configuration for two reasons: firstly, to attempt to prolong the transit time of insects through the lidar

beam, thereby facilitating better data capture, and, secondly, to permit housing the instrument within a protective garage tent

(Figures 1A and 1B), thereby reducing the need for constant supervision. At a 30� elevation, the lidar’s trajectory passed above varied vege-

tation, including an assortment of tree species (Figure 1D). Throughout the campaign, we gathered lidar data for a total of 18 days, yielding

17,254 insect observations.

Our lidar measurements recorded insect activity patterns with high spatial and temporal resolution throughout the day and at various

heights (Figure 2). It is pertinent to note that the alignment of the beam and receiver, which first intersect at a height of 20 m above the

ground, substantially reduces the chances of detecting dispersal flights emanating from the vegetation below. Our observations

demonstrate prominent insect activity during the late afternoon and evening hours (until around just before midnight), in contrast

to a significantly reduced activity observed from then until just after sunrise. Insect activity again peaks around mid-morning before

declining later in the morning and during the early afternoon. The campaign was conducted in the south of Sweden, with short

summer nights close to midsummer, typically experiencing sunrise as early as 04:21 and sunset nearing 21:54, on average (there is

17:30 h of daylight; 19:30 h also include twilight, and light levels exceed astronomical twilight limits throughout the day (https://

www.timeanddate.com/sun/).

Interestingly, despite the lengthy daylight periods, most insect activity at higher heights (over 100 m) was observed during the late after-

noon and evening, with most observations made after 21:00 and before midnight. This might be due to the fact that crepuscular or nocturnal

insects are typically more tolerant to colder temperatures, which are commonly experienced during the night and at higher altitudes. The

notable decrease in activity at altitudes above approximately 50 m just before midnight could be attributed to high-altitude insects, poten-

tially migratory ones, having landed by this time.

By implementing a previously described method36 (see also quantification and statistical analysis), we determined the velocities of

observed insects, as well as their vertical movement directions and speeds (that is, whether they were ascending or descending). This could

be achieved by initially setting the lidar system at a vertical beamline position and then tilting the system to a 30� elevation angle. (Figure 1A).

ll
OPEN ACCESS

2 iScience 27, 109588, May 17, 2024

iScience
Article



The same method was previously employed by another group using a horizontal baseline that yielded lateral east-west movements.36

Ranging uncertainty in Scheimpflug lidar arises from the beam beam width.37 This uncertainty is approximately 3%–5% of the range but

also allows to estimate size26 and coarse assessment of transverse velocity.36

Previous radar studies have demonstrated evening ascents and descents,11 and studies on foraging insects using quadrant photodiodes

concluded thatmovement was predominantly lateral during the day and close to the ground.38 Figure 3A shows the total movement direction

and speed of all detected insects over an entire day or summed across all insect sizes and detectable heights. Insect size was approximated

using apparent size, which is derived from the pixel footprint from the camera and telescope magnification, providing an estimate of the in-

sect’s dimensions (this calculation is presented in the STAR methods section). It is crucial to underscore that the apparent size of an insect is

fundamentally a representation of its projection onto the camera sensor. This measurement can be markedly influenced by the insect’s body

orientation during flight: when an insect is projected sideways compared to a projection from its posterior or anterior onto the camera sensor,

the apparent size is observed to be larger from the sideways projection. The variation in apparent size can be noticeable, depending on the

angle or position of the insect. Therefore, while the apparent size data offer a close estimate, it may not always directly reflect the precise

physical dimensions of an insect.

By sub-sectioning the data into different height intervals (Figures 3A–3D), we noticed a decreasewith height in the number of observations

and a shift in the overall movement direction from predominantly upward (ascending) to equally upward and downward (descending). Similar

patterns were noted in Figures 3E–3H: as for late hours, movement becamemore even in both directions. Moreover, insects with smaller size

estimates, such as those under 10 mm, typically exhibit relatively slower movement speeds, and the central tendency (median) is at zero for

heading direction (Figures 3A and 3I–3L). As the size increases, larger insects seem to trend toward an upward heading and demonstrate

increased flight speeds. When we examine insects of larger proportions, specifically those exceeding 40 mm, these occasionally exhibit

higher speeds, yet their overall heading distribution appears to be evenly divided between ascending and descending individuals. There

Figure 1. The experimental setting at Stensoffa ecological field station, southern Sweden, in 2022

(A–C) The lidar instrument setup with 30� elevation angle, optimized to observe migratory insect patterns.

(D) A satellite image pinpointing the location of the experimental site.
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was a strong tendency for insects to ascend rather than descend (Figure 3A), suggesting that our study area was a strong population source39

for many insect species during data collection.

Additionally, two distinct patterns of change were observed. One pattern indicates that the central tendency shifts from upwards to no

directional change with increasing height and hour after sunset. The other pattern reveals the disappearance of the bimodal distribution.

This latter observation implies that there is an increasing randomness in the directions of the insects as the night progresses and at higher

altitudes, whereas, around dusk and at lower heights, insects predominantly move either up or down. This observation further complements

the findings of the study, reinforcing the notion that the movement patterns of insects vary significantly based on the time of day and their

altitude.

These findings offer the potential for future advancements in monitoring the ascending and descending behaviors of migratory insects, as

well as studies related to predation, such as between birds, bats, and insects. Such studies would significantly benefit from the ability to accu-

rately distinguish migratory moth signals from those of other insects. If such a distinction could be made, we can delve deeper into under-

standing the intricacies of moth behavior and their contribution to overall insect ecology.

Finally, we showcase an instance (Figure 4) where we successfully singled out a moth observation from those of other insects, an accom-

plishment achieved due to a long transit time and wing stroke signal. This observation, however, does not typify the majority of our recorded

data in this study. To increase our chances of such successful identifications, we attempted to extend the transit time by reducing the lidar

beam’s elevation angles. Unfortunately, this approach proved insufficient as most observations remained too short to accurately identify wing

beats and wing strokes. Despite this challenge, we can nonetheless demonstrate, with a clear capture of wing strokes, that we can indeed

distinguish moths from other insects according to moth’s high wing depolarization ratios. In Figure 4A, we offer an illustrative example of

a lidar signal: the flight trajectory of a moth at an elevated height. Here, the distance can be inferred from the absolute pixel numbers

and the heading and sizing can be inferred from the differential pixel numbers. The camera exposures over time represent the passage of

time, and the false color scheme is indicative of light intensity and its polarization state. In the generated false color image, specific light char-

acteristics aremapped to distinct RGB color layers: depolarized light intensity is encoded as red, co-polarized light intensity as green, and the

background is attributed to blue (negligible). This RGB mapping creates a composite visualization where combined intensities lead to

observed colors. Specifically, when both depolarized (red) and co-polarized (green) light intensities are present in a region, their super-

position yields a yellow hue in accordance with the principles of additive color mixing, whereas greenish shades indicate co-polarized

backscatter.

Whereas Figure 4A provides a comprehensive visualization of the lidar signal through sequential camera exposures, Figure 4B displays the

intensity distribution observed at a single exposure, thereby delineating a particular temporal instance within observation. This observation

exhibits a strong signal in co-polarization. It also displays a weaker, albeit significant, depolarized signal. The pixel number covered by a single

insect transit, also known as the pixel footprint in Figure 4A, is calibrated to height and apparent size in Figure 4B, where the apparent size

provides an estimate of the insect’s dimensions, as discussed earlier. The height above ground where the signal was detected was calculated

based on the Scheimpflug configuration. In the case of triangulating lidar, the primary source of range inaccuracy comes from the beamwidth,

which typically yields around 3%–5% variation.37 Figure 4B shows a change in range of 8m at a height of 128m. If the object beingmeasured is

flying at a constant height in an east-west direction, then this translates to a precision of about 6% (D8m/128m). This seems to align well with

the expected precision of the lidar system. For this observation, themoth appeared to have a length of 35 mm and was heading downward at

a speed of �1.1 m/s. Figure 4C illustrates the time series of both polarization bands showing the higher-frequency oscillations of the wings

Figure 2. Diel insect variation over the course of 18 days, all types of insects are included

(A) Insect activity across various heights throughout the day, which was compensated for observation hours for a period of 18 days.

(B) Overall number of detected flights regardless of height. All insect activity data have been post-compensated to correct for biases due to inconsistencies in

observational hours.
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superimposed on a bias envelope arising from the moth’s body. With polarimetric information, we can confidently deduce that this signal is

from a moth due to its high depolarization in the wing signal; such signals are observed in Lepidoptera (butterflies or moths) with diffuse

wings.27 In contrast, clear-winged insects, such as wasps or hoverflies, display negligible wing depolarization effects due to their ultra-thin

wing membranes.40,41 Figure 4D presents the corresponding power spectrum. The fundamental frequency could only be estimated for

the co-polarized signal and was found to be 56 Hz. This low wingbeat frequency is another indicator that this signal originated from a

moth.42–44 Our methodology thus has the potential to allow the differentiation of moths from other insects by leveraging the unique charac-

teristics of wingbeat frequency and polarization. To achieve higher taxonomic precision in our identification process, we foresee the integra-

tion of additional wavelengths into our lidar system.29 Alternatively, the construction of a lookup database with the help of a goniometric

polarimetric system,45 linking specific lidar signals with corresponding moth species, may also prove feasible in the future.

DISCUSSION

Lidar allowed detailed monitoring of the daily activity patterns of insects at low heights (20–200 m) and has also provided robust measures of

flying insect density, size, ascents, and descents at different times, heights, and size intervals. This information could be vital for studies of

insect migratory behavior since migrations are a large-scale phenomenon, and the impacts of migration (e.g., nutrient flows, herbivory, polli-

nation) are felt locally through emigrations and colonization occurring at low heights. For example,many insects initiate takeoff within 1 h after

sunset, exhibiting a nearly equal number of ascents and descents thereafter in our station. This observation suggests that our study area may

serve as a population source or transit zone for migratory insects.39 Moreover, lidar observations, via its successful calculation of apparent size

and wingbeat frequency, could allow a deeper and more efficient examination of the individual category and recognization in the future,

which is greatly helpful for understanding the adaptions and strategies of small migrants at the low heights.

Since the development of VLR-based tracking methods for diurnal and nocturnal flying vectors,17,46 a wealth of fascinating phenomena

related to insect migration above 150 m have been uncovered.1,5,13 These discoveries have greatly deepened our understanding of the intri-

cate behavioral patterns (e.g., flight orientations) exhibited by high-flying migratory insects.1,5 Besides, FMCW radar appears subsequently

Figure 3. Variation in insect flight direction and speed based on height (A–D), time (A, E–H), and insect size (A, I–L) intervals, all types of insects included

AppSize is short for apparent size. Positive values indicate upward (ascending) flights, while negative values indicate downward (descending) flights.

(A) An overview of the overall distribution observed throughout the entire day and over all heights and sizes.

(A–D) The variation in insect speed and heading at different height intervals summed across the entire day.

(A and E–H) The temporal changes in flight speed and heading direction at specific time intervals following sunset (at �22:00), all heights included.

(A and I–L) Variances in flight direction and velocity, for different insect size intervals summed across the entire day.
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with several advancements (lower inherent interference, lower cost,more flexible), to fill the crucial niche of insectmigrationmonitoring below

150 m, which becomes promising remote sensors for tiny migrants nowadays.20–22 However, the potential of lidar as a complementary

technique to VLR or FMCW radar is underappreciated, despite its ability to provide valuable information on horizontal velocities at heights

below 200 m. Integrating all of these remote sensors, light traps, and pheromone traps would significantly enhance our ability to unravel the

complexities of insect migration and could provide a more complete picture of these dynamics.1,5

Although the lidar system has emerged as a complement to radar providing information about the timing, location, size, and wingbeat

frequency of individual moths, species classification has proven elusive due to the limitations imposed by the typical beam widths of lidar

systems. In this study the average moth transit time measured by the lidar was only around 15 ms, and, for successfully identifying slow-flying

moths that have a wingbeat frequency of around 20 Hz, a transit time at least 3 times longer would be required. It is realistic to imagine a

dedicated moth-monitoring lidar with an expander providing a 3-times wider beam, although the beam intensity would thereby be diluted

by a factor of 9. This is achievable given the laser used in this study was relatively weak, and stronger laser diodes are available at little added

cost. In turn, by appropriately changing the beamwidth, we anticipate that the classification of nocturnal moths can becomepossible, even at

greater heights, from lidars pointed vertically. By using an expanded lidar beam to retrieve optical signals from migrating moths, we would

have the potential to classify moth species based on the inherent microstructural differences between them, something that is not possible

with VLR. Moreover, other studies have demonstrated the feasibility of remotely classifying moths, further supporting the potential for suc-

cessful species identification in our research.27,29,41 Additionally, due to the lidar’s near limit, insect activity was not detectable below a range

of 20 m, effectively hiding any insect activity within this range. This problem is only worsened by the lidar’s narrow beam. These factors also

contribute to reducing the likelihood of detectingmoths that choose to fly at varying heights or distances from the lidar beam. Another short-

coming of our study is the relatively brief monitoring period we used (18 days), which might have limited our ability to capture longer-term or

seasonal behavioral patterns ofmigratorymoths. Future studies can address this issue by establishing a stationary setup and implementing an

improved data pipeline, enabling automated and extended collection and analysis of the data.47

While we have observedwing depolarization in Lepidoptera, alternative data sources, such as the smoothwaveforms in the timedomain or

sparse harmonics in the frequency domain, could also yield this information. Therefore, exploring alternative technologies, such as a dual-

wavelength system, like the one used in Ecuador,27 could provide more in-depth information. Such systems might prove beneficial consid-

ering the differing levels of melanization in the body and wings of Lepidoptera,29 potentially leading to more detailed observational

information.

As we plan the future direction of this research, we believe that our study has established initial signal expectations which now allow us to

explore the possibility of developing dedicated systems with increased beam width and power. We are committed to enhancing our under-

standing of the behavior and ecology of these remarkable nocturnal migrants, and we are confident that future advancements in lidar tech-

nology and methodology will continue to play a crucial role in this field.

Figure 4. An example of a single moth observation obtained using polarization lidar technology

(A) A spatiotemporal display demonstrating an observation of a single slow oscillatory insect presented as a false color image.

(B) The echo from a single camera exposure of a moth.

(C) Time series of both polarization bands, featuring an oscillatory part from the wing movements and a bias envelope from the insect’s body.

(D) Corresponding power spectrum where the fundamental frequency emerges as the highest tone in this specific observation.
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Limitations of the study

Even though our lidar methods have successfully recorded the flight behaviors of insects, much still needs to be addressed regarding iden-

tification of these moths at a species’ level. Specifically, our attempts to capture the wing strokes of moths having low wingbeat frequencies

was challengingdue to the relatively narrowwidth of the lidar beam. Furthermore, given the oblique angle of the lidar beam, our calculation of

apparent vertical velocity of insects, based on transverse velocity, assumes that insect movements are unbiased along the north-south axis.

Still, as we plan the future direction of this research, we believe that our study has established initial signal expectations which now allow us to

explore the possibility of developing dedicated systems with increased beam width and power in the future.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Mikkel Brydegaard (mikkel.

brydegaard@fysik.lth.se).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� All data reported in this paper have been deposited at GitHub, and are publicly available as of the date of publication, as detailed in the

key resources table.
� This paper does not report original code.

� Any additional information required to reanalyze the data reported in this paper is available form the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETIALS

Scheimpflug lidar

Our lidar system was based on the Scheimpflug lidar principle,26–28,32,48,49 which allows us to focus on flying insects over varying distances

simultaneously. This lidar system is mounted on an 814 mm long baseline with a transmitting and a receiving telescope, as depicted in Fig-

ure 1A. For stabilization, we utilized a tripod (EQ8, SkyWatcher, China).

The transmitting telescope, integrated with two 3W TE-polarized 980 nm laser diodes, has an aperture of 75 mm and a focal length of

300 mm. The 980 nm wavelength is near-infrared, invisible and do not disturb air traffic. Eye-safe levels were obtained beyond 30 m range

and 15 m altitude. The beam is inaccessible. The polarization from one laser diode is altered by 90� using a wide-angle polymer half-wave

plate and superimposed with the other laser beam via a polarization beam splitter, then transmitted.

The receiving telescope is a Ø200 mm, f800 mm Newton reflector (Quattro, SkyWatcher, China) equipped with a CMOS detector

(OctoPlus, Teledyne e2v, USA) at its eyepiece to collect signal data. This CMOS detector consists of 2048 pixels, each measuring

10 mm 3 200 mm. In line with the Scheimpflug principle and the hinge rule,49,50 the camera is tilted at a 45� angle relative to the optical

axis within the transmitter module.

The lidar system, employing a polarimetric configuration, operated at an 8 kHz sampling rate, with co-polarized, de-polarized, and back-

ground signals being sampled at approximately 2.66 kHz each after de-multiplexing.51,52 Each lidar file contained a 4-s length of observation

data with 30,000 exposure lines. Each file was around 120MB in size, and throughout the campaign,more than 20 TB of raw data was acquired.

In the process of data acquisition, the polarization of the laser light was multiplexed, allowing for the sequential capture of depolarized,

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw data files Meng Li, Mikkel Brydegaard,

Lund University, Sweden

https://lu.box.com/s/c7a1jxneh8owxuyh0r725ocbzi0bjcqh

Analyzed data files This paper Figures 1, 2, 3, and 4

Software and algorithms

LabVIEW 2022 National Instruments https://www.ni.com/en/support/downloads.html

Custom made LabView code for

Scheimpflug Lidar data acquisition

This paper; Hampus Månefjord,

Lund University, Sweden

https://github.com/BioBeamMeng/LidarMoth

MATLAB 2022 MathWorks https://se.mathworks.com/

Custom Matlab-script was used for

data and figure analysis

This paper; Meng Li, Mikkel Brydegaard,

Lund University, Sweden

https://github.com/BioBeamMeng/LidarMoth
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co-polarized, and background light. Subsequent processing steps involved the subtraction of the depolarized, co-polarized, and background

signals from the raw data, and cropping out the insect observation signal following the data processing pipeline.53 As most of the data were

empty, the data size was reduced to less than 1% of the original size. In total, we acquired lidar signals for 18 days. Operating at a fast-sam-

pling rate of 8 kHz (equivalent to a short exposure time of 125 ms), our lidar system efficiently distinguishes insect signals from atmospheric

particles and aerosols with a threshold SNR of 5. Typically, achieving a reliable signal from air particles or aerosols would necessitate longer

exposure times. For example, capturing air signals would require an exposure setting of 620 ms, in addition to doubling the gain and pream-

plification when using our lidar system.

The typical cost for the construction of these lidar systems ranges from 15 to 20 kEuro, which includes travel boxes, and other asso-

ciated expenses. A dozen systems have been assembled within this budget. The timeline for this process involves three months for

ordering components and assembling the system, followed by an additional three months for alignment and mastering the anal-

ysis code.

Laser light multiplexing for polarization data analysis

For a comprehensive view of each measurement day, we generate overview plots (like the example shown in Figure S1). These plots color-

code the maximum depolarized, copolarized, and background values within each file. This visualization reveals temporal and spatial shifts in

maximum values and emphasizes rare events (e.g., insects appear as bright green dots). Cloud echoes are also evident, with higher atmo-

spheric scatter coefficients and humidity causing clouds to descend during evening hours.

To demonstrate how we use a threshold to pick out insect observations, frame 3991 (recorded at 06-Jun-2022 22:46:08 and marked in

Figure S1A) is examined. Figure S1B zooms in on this time frame, highlighting distinct signals (later classified as insects) alongside

persistent aerosol plumes (clouds). Intensity counts for frame 3991, including pixel-wise median and maximum values, are shown in Fig-

ure S1C. A threshold based on each pixel’s intensity distribution isolates insect signals from aerosols (e.g., clouds). This threshold is the

median plus five times the interquartile range (IQR), or SNR = 5. The SNR ratio is configurable; we employed SNR = 5 to visually confirm

the threshold appropriately suppressed cloud/mist signals while preserving insects. Higher or lower SNRs may be suitable depending

on observational conditions (e.g., dense fog). Figure S1D illustrates how the threshold varies with a pixel’s median and IQR; the insect

pixel retains some values above the threshold, while all cloud pixel values are eliminated due to its broader IQR and higher median. This

demonstrates the threshold’s (Figure S1C) effectiveness in selecting rare events (insects, with lower median and IQR) over continuous

aerosol signals.

During the data acquisition process, the laser light wasmultiplexed, enabling it to sequentially illuminate in depolarized, co-polarized, and

background modes. This multiplexing sequence is represented in Figures S2A and S1B, where the strips of signals in the captured data

change as the laser light transitions between its modes. After acquisition, the background signals were subtracted fromboth the co-polarized

and depolarized signals, as depicted in Figures S2C and S1D. To distinguish insect signals from background noise, a threshold was applied,

with Figure S2E showing the use of a detection mask that retains only those signals exceeding an SNR of 5. Further procedures to isolate and

crop the insect signals are described in detail in previous study.53

Compensation for observation hours

As mentioned earlier, the lidar system was not operated continuously, resulting in a bias in the observations. There were more observations

recorded between 18:00 and 24:00 compared to full-day recordings, leading to a false insect activity pattern as shown in Figure S3A. In Fig-

ure S3B, it is evident that there is a higher accumulation of files recorded during the 18:00 to 24:00 time period, indicating the bias caused by

the uneven lidar operation hours. To address this bias, the insect activity pattern was compensated using Figure S3B, resulting in Figure S3C,

which removes the effect of lidar operation hours. With the compensation, a higher insect activity is now reported during the daytime as well,

but overall, there is still a greater insect activity observed during the evening at higher heights.

Signal projections on camera chip and movement direction estimation

Expounding upon the technique of insect signal detection, an extended illustration from Figure 1C is provided in Figure S4A. Initially, the lidar

is set at an elevation angle of 30⁰, with the beam and the receiver’s field of view converging around a distance of 35 m afar (20 m in height).

Given the orientation of the camera chip, pixel number p2048 captures the observational scene at an elevation angle F = 30⁰, whereas pixel

p1 captures at an elevation angle F +4, with 4 = 1.27⁰.

Delving into the dynamics of signal detection, the range is ascertained using Equation 3, considering the absolute center pixel location,

pcent. For instance, in the scenario depicted in Figure S4B, pcentwould be p1641 at time t0 and at time t1, the signal is captured onto pixel p1642.

The traversed distance by the center pixel, denoted as Dp is the signal displacement. By dividing Dp by the time difference Dt, the velocity is

then calculated. Additionally, in Figure S4B, the spread of the signal on the chip is denoted as dp. The apparent size can be calculated utilizing

the magnification from the camera and telescope, which in turn, is employed to approximate the insect size.

With the Lidar system positioned facing north at an elevation angle of 30⁰, a positive velocity value, as derived from Equation 2, denotes

movement either upwards or toward the south. Figure S4B illustrates the relative camera chip positioning in accordance to the north, south,

upward, and downward directions. The differentialDp/Dt, contingent on the value ofDp, registers as positive only when the detected target’s

movement is directed either upwards or southward. Given the configuration of the Lidar system, it exhibits a greater efficacy in capturing

movements directed upwards compared to those directed southward.

ll
OPEN ACCESS

iScience 27, 109588, May 17, 2024 11

iScience
Article



QUANTIFICATION AND STATISTICAL ANALYSIS

Apparent size calculation

To determine the apparent size of the insects, symbolized as dinsect, we implemented a formula based on the methodology from a previous

study which also used the Scheimpflug lidar configuration,32

dinsect ðtÞ = 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logð2Þ

p r cosðqÞ W
Frec

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

mask

Iinsect ðp;tÞ
�
p � pcent:

�2

P

mask

Iinsect ðp;tÞ

vuuuut (Equation 1)

where r is the range to the observed insect,W is pixel pitch, the distance from the center of one pixel to the center of the next on the camera,

whichwas 10 mm/pix, q is the tilt angle of the sensor in the Scheimpflug configuration, set at 45� between the camera and optical axis within the

transmitter module. Frec is the focal length of the receiver, which was 0.8 m. The central pixel in our analysis, symbolized as pcent, is calculated

using the first statistical moment or the Center of Mass (CoM) calculation. I represents the lidar intensity count as a function of pixels, p, and

time, t. The termmask denotes the pixels and exposures that exceed a noise level. The right hand square-root term is the second statistical

moment (standard deviation) of the range echo to gauge the pixel spread. The left hand scalar term 4(2 log(2))½ translates the standard de-

viation into twice the full-with-half-max (FWHM), whereby the value better reflects thewhole physical extension of the insect size. Note that the

FWHM term is not present in our previous study.32 All statistical analysis and graphical plotting were conducted in MATLAB R2021a.

Insect velocity calculation

To measure the vertical heading velocity of the insects observed, we employed a formula derived from a previous study.36 In Scheimpflug

lidar, ranging is accomplished by triangulation and thus the range accuracy is limited by the beam width. This uncertainly can be exploited

for estimating target sizes32 and movements perpendicular to the beam.36 Insect transverse velocity was calculated as

vup = south =
Frec W

Dp

Dt
cos ðqÞ

r
(Equation 2)

where v (m/s) represents the velocity component of the insect as it moves perpendicular to the optical path of the receiving telescope, a pos-

itive value meaning upwards/south (ascending) flight and a negative value meaning downwards (descending) flight. Dp/Dt (pix/s) is the num-

ber of pixels per unit time, which is itself obtained from a linear fit of the insect signal trajectory in a time-pixel map. Finally, Frec and r refer to

the object and image distances, respectively, with the relationship between these two factors specifying the specific magnification for pixel x.

W and q are constants set to 10 mm/pix and 45�, respectively. The estimated range r is calculated by

br
�
pr

�
= lBL cot

�
Gslant + 4pcent

�
(Equation 3)

The normalized pixel positions are represented by pr which range from 0 to 1. [BL denotes the baseline length, set at 0.814 m Gslant is the

angle between the optical axis of the beam expander and the receiver. The receiver’s field of view is given by 4. The center pixel, pcent, is

determined using the center of mass formula, or CoM. All statistical analysis and graphical plotting were conducted in MATLAB R2021a.
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Abstract:  

Lidar technology was utilized to non-destructively explore the diverse insect life in the Taï virgin 

forest of Côte d'Ivoire. This study combined entomological Lidar with traditional insect trapping 

to investigate the composition and spatial-temporal distribution of insects across the forest canopy. 

We detected stratified patterns of insect activity at various canopy heights, revealing differences 

in composition of optical signals reflecting divergent species composition with height and time of 

the day, indicative of high and sampling height dependent insect biodiversity. The optical 

properties of captured insects, including wing specularity and polarimetric response, were 

analyzed and correlated with Lidar signals, revealing distinct insect clusters and activity patterns 

at different canopy heights. These findings show the potential of using Lidar to non-invasively 

assess insect diversity continuously across complex canopies to uncover species composition in 

ecosystems with high species diversity. 
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One-Sentence Summary:   

Lidar profiling revealed that insect community composition varies with sampling time and height 

in canopy in the Taï forest, suggesting Lidar as a promising tool for estimating local- and temporal 

variation in species richness. 

 

 

Introduction 

Tropical virgin forests stand as some of the world's richest reservoirs of biodiversity, yet they also 

rank among the most threatened biomes. To conserve the species richness in these regions, it is 

crucial to understand the distribution and predictors of biodiversity [1-3], especially for insects, 

which are not only the most species-rich taxa but also among the most threatened [4-6]. Recent 

reports have highlighted alarming declines in insect assemblages and biomass, with estimates 

suggesting that terrestrial insects are declining at an average rate of 11% per decade globally [7, 

8]. Despite their significance, our understanding of insect populations in tropical rainforests, in 

particular in sub-Saharan Africa, lags behind that of regions like Europe and North America [9, 

10]. One challenge in identifying the habitats that are key to maintain insect diversity is the non-

uniform distribution of insects within tropical canopies, making vertical stratification a key aspect 

to assess [11, 12]. Understanding and preserving insect biodiversity in tropical forests is key 

component for avoiding insect mass extinction. 

Traditional methods for insect monitoring, incluing malaise- and baited traps[13] and tree-branch 

beating[14] offer limited spatial and temporal resolution (REFS). These methods also have 

inherent biases [15-17] and are weather-dependent species composition in catches[18]. The 

employment, operation and taxonomical [19] or DNA [20] based identification of catches of trap- 

and tree branch beat catches are both time-consuming and costly and require skill and equipment 

that is not accessible to all. Importantly, these methods often require sacrificing captured insects, 

posing ethical concerns, especially in areas harboring endangered species [21].  

The limitations of traditional methods call for innovative, non-invasive approaches to monitor 

insect diversity within complex ecosystems. High spatial and temporal resolution with retained 

ability to differentiate species is key for capturing the true diversity. While techniques such as 

image- and sound recognition [22-24] and digital holography [25] show great potential, their field 

of view is often limited. Radars show promise for monitoring high-altitude insect migration on a 

large scale[26-29] but can generally not be operated within forest canopies due to ground clutter 

noise [30]. Moreover, their capacity to distinguish between species is often restricted [31]. While 

low-altitude insects can be tracked with harmonic radar [32] such methods require a catch-mark 

and release scheme, limiting the scope of species that can be investigated. 

 

In this study, we address the challenge of monitoring insects in stratified environments and 

representing the full composition of species that are active over the day by employing 

entomological Lidar. We have previously demonstrated the potential of Lidar to provide detailed 

information on insect abundance[33], distribution [34], flight characteristics[35, 36], species 

richness [37], powder-tagged monitoring [38, 39] and features such as wing thickness [40], have 

been previously established. We expand on this work by using a near-infrared (NIR) polarization 

Lidar [41] to achieve unprecedented spatial (centimeter-scale) and temporal (millisecond) 
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resolution in mapping insect activity within a virgin rainforest canopy. This study establishes a 

baseline for investigating the intricate patterns of insect distribution within forests, with strong 

potential to improve our understanding of insect diversity in stratified forests. 

 

 

 

Results 

 

  
Figure 1. A 3D-rendered representation of the Taï virgin forest experimental site derived from 

600 drone-acquired images. The illustration delineates Lidar measurements taken at seven distinct 

elevation angles, ranging from 0˚ to 20˚. The locations of the malaise and zipline traps are marked. 

Data of the capture counts for each trap, accumulated over a three-day measurement interval, is 

presented on the right. The 80 m ground Lidar transect was oriented to 34˚N, and the canopy reached 

a height of 25 m at this specific site. 

 

The study was conducted in Taï rainforest (Parc National de Taï), Côte d’Ivoire (5°49’59.5”N 

7°20’32.8”W), from January 12th to 14th 2023, with measurements recorded throughout the day. 

Insect activity was measured through manual trapping techniques and Lidar observations, see Fig. 

1. Manual trapping yielded 290 catches over the three-day measurement period. Our initial 

observations indicate substantial variation in the species caught by the three different trapping 

methods employed; malaise, zipline, and manual sweep netting. The variation was larger between 
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the catching methods compared to the probed height, e.g., the malaise trap positioned 1 m above 

the ground level had similar catches as the 20 m malaise trap. Diptera was the majority of catches 

in all traps. The zipline stood out however, being the only trap to capture Odonata and Orthoptera, 

except for a few manual sweep netting catches. The temporal resolution of all traps was four times 

per 24 hour period. Both malaise traps and the manual sweep netting resulted in higher catches 

during evening hours consistent with higher levels of activity during these hours, while the zipline 

trap instead results in higher catches during morning hours. 

 

Figure 2: Illustration of insect activity at multiple distances and canopy levels. a) Insect scatter 

points are color-coded according to the time of day. b-d) display the laser beam’s position and shaded 

areas at different times of day. 

 

The lidar system detected 19,369 insects over three days, exceeding the approximately 290 catches 

obtained with manual traps with orders of magnitude. For in-depth analysis, we focused on 6,962 

lidar observations with signal durations exceeding 25 milliseconds. This selection criterion 

ensured sufficient wingbeat information within the signal for reliable estimation of modulation 

power spectra. Constraints arose from the slow-moving tripod motor, which necessitated frequent 

pauses for canopy scanning adjustments. As a result, the Lidar was operational for only 12% of 

the total measurement duration, leading to a reduced number of insect observations compared to 

previous studies [34, 42]. 
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Sunlight exposure and canopy stricture significantly affected insect prevalence and species 

composition.. Lidar insect signals are recorded throughout the day, here illustrated with color-

coding indicating the time of observation (Fig. 2a). The shaded and sunlit areas changes across the 

transect during the daily cycle (Fig. 2b-d).  We reveal a higher insect signal density within the 

shade of the large canopy compared to the open area at closer range when interrogating data from 

elevation angles 5 and 6 in Fig. 2a. This difference in density cannot be explained by the lidar 

beam's characteristics, suggesting that factors such as direct sunlight exposure may be influencing 

insect distribution patterns. Additionally, closer-range observations show an increase in activity 

near a vegetation wall around 10 AM (Fig. 2a; indicated by yellow points). This observation adds 

to the evidence that many insects are active in the shade, particularly smaller insect species that 

might be more susceptible to desiccation from direct sunlight. 

 

 

Figure 3: A representation of insect activity across the varied layers of the forest canopy. a) 

The position of the Malaise traps on a tree, differentiating tree heights into the shrub layer (1.5-2.5 

m), the canopy layers (2.5 m - 25 m), and open sky (25 m and above). Note that the depiction is not 

to scale. b) and d) Temperature and humidity measurements from the two Malaise traps over a three-

day period, with lines marking mean values and shaded regions indicating variation over the 3-day 

span. c) Variance in temperature and humidity between the top and bottom traps. e-g) Insect activity 

patterns at the different canopy levels, with lines showing mean values and shaded portions reflecting 

standard deviation variations over the 3-day measurement interval. 

 

We documented insect activity and diversity at three heights: the Shrub layer (1.5 to 2.5m), the 

Canopy layer (2.5 to 25m), and the Open Sky layer (above 25m) to identify variation in species 

composition and activity patterns across these zones. Temperature and humidity were recorded at 
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1m and 20m heights to assess environmental conditions within the Shrub and Canopy layers, 

revealing that the Shrub layer is 2°C warmer during peak hours (12:00-16:00). There is also a 

notable difference in morning humidity, with the Canopy layer having 5 percentage points higher 

humidity than the Shrub layer. 

The Open Sky layer (above 25m) exhibited a prominent activity peak between 18:00-20:00 (38% 

of the observations for the layer). In contrast, the Canopy layer showed both a similar evening 

activity peak (25%) and sustained activity throughout daylight hours (9:00-17:00, 73% of 

observations). There is also some nocturnal activity and an early morning surge in the Canopy 

layer, which thus is the layer showing the most consistent insect activity. The Shrub layer displayed 

an evening peak (18:00 - 20:00, 26% of layer observations), significant nocturnal activity (20:00-

2:00, 32% of layer observations), and morning activity (05:00-9:00, 15% of layer observations), 

with minimal activity during warmer daylight hours (9:00-17:00). 

 

 

Figure 4: A comparative representation of data from two interconnected systems, in-flight 

insect Lidar observation and goniometric insect specimen scan. The upper section provides a 

comprehensive display of Lidar-derived insect signals. Specifically, a, e, and i) and b, f, and j) 

present the time series and power spectra respectively. c, g, and k) depict the near infrared and 

polarization color images of three captured specimens, a Lepidoptera, an Apis and a Diptera, 

measured with an instrument called BIOSPACE (Biophotonics, Imaging, Optical, Spectral, 

Polarimetric, Angular, and Compact Equipment). The lower section, d, h, and l), showcases the 

angular reflection at different angles for flashy, medium flashy, and diffuse wings, also measured 

with BIOSPACE at the jungle field station.  
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The retrieved lidar signals characteristics correlate with the degree of insect wing specularity [30]. 

To illustrate how lidar signal varies depending on characteristics of the observed insect, three 

insect specimens with diffuse, moderately specular, and highly specular were selected for in depth 

signal analysis.  Importantly, these specimens are not the exact individuals detected by the lidar 

but demonstrate the effect of wing specularity on lidar signals. To determine the relationship 

between physical traits, angle and signal, the specimens differing in wing specularity quantified 

through angular reflectance measurements obtained using a separate goniometric instrument, 

BIOSPACE (Biophotonics, Imaging, Optical, Spectral, Polarimetric, Angular, and Compact 

Equipment) [43, 44]. Whereas diffuse wings produce broader peaks (Fig. 4a) compared to sharper 

peaks observed with moderate (Fig. 4e) and high specularity (Fig. 4i). Corresponding differences 

are observed in the power spectra, with higher specularity leading to more pronounced overtones 

(Fig. 4c, 4g, 4k). Sharper dorsal peaks in the polar plots (Fig. 4d, 4h, 4l) indicate increasing 

specularity.  

In addition to specularity, the degree of linear polarization on insect bodies and wings is an optical 

property that can be used to classify insects. Both BIOSPACE and the lidar measure this degree 

of polarization, illustrated across all panels in Fig. 4 for the three BIOSPACE scanned insects and 

the lidar observations. Finally, wingbeat frequency is a well established parameter for insect 

classification [37]. The lidar's high sampling rate independently facilitates the detection of insects' 

wingbeat frequencies, and the variation in wing beat frequency is illustrated in Figures 4b, 4f, and 

4j, representing 80 Hz, 178 Hz, and 208 Hz, respectively. 

Hierarchical clustering was used to analyze modulation power spectra derived from the 6.962 

insect observations. This analysis incorporated both insect wing specularity, the degree of linear 

polarization, and wingbeat frequency. This analysis identified 129 distinct clusters which varied 

in cluster sizes, with the largest cluster containing 153 observations. The distribution the clusters 

differs among the canopy, shrub and open sky layer as visualized in a ternary plot (Fig. 5a). Here, 

dot position indicates relative proportional representation, with dot size corresponding to the 

cluster's observation count. The relative frequency of the different clusters also vary across time, 

as illustrated by a similar ternary plot (Fig. 5b) depicting the temporal distribution (crepuscular, 

diurnal, nocturnal). Six clusters with distinct wing beat frequencies were selected for to be 

highlighted in the paper (Fig. 5), while the remainder are available as supplementary figures (S4-

S6). From each group we show average power spectra (Fig. 5c, f, i, l, o, r), time series data (Fig. 

5d, g, j, m, p, s), and scatterplots depicting observation times and heights (Fig. 5e, h, k, n, q, t). 

Logarithmic frequency binning was used for power spectra calculations to accommodate at least 

25% intraspecific variation in wingbeat frequencies. The number of lidar clusters retrieved has 

been demonstrated to be strongly correlated with observed insect diversity, even if correlating 

clusters to specific species is not possible in general. The 25% variation in wingbeat frequency 

that is known to arise due to variation with temperature, sex and body sizes of insects was 

incorporated into the clustering analysis to mitigate classification errors. 

Our analysis demonstrates the potential to distinguish and group insects based on lidar signal 

characteristics, even when direct species identification is challenging.  We find that power spectra 

composition varies, time series, temporal activity patterns, and vertical distribution along the 

canopy were observed. Moreover, classification to broader taxonomic groups can be made based 

on the extensive studies of group specific characteristics (REFS). The examples in Fig. 5c-k 

suggest a predominance of Diptera species, supported by distinct wingbeat frequencies, specular 

wing signals, and significant linear polarization. Certain clusters have distinct charactersitics that 
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allow for further taxonomic inferences. For instance, Fig. 5l-n likely represent mosquitoes based 

on their higher wingbeat frequencies and dusk, crepuscular, and nocturnal activity. Observations 

in Fig 5o-q could represent Odonata species, based on intense time series signals, specular wing 

signals, and them primarily being observed in the open sky. Fig. 5r-t might represent butterflies 

(Lepidoptera), suggested by their high polarization signals and diurnal activity. 

It is important to note that clusters may contain multiple species with similar characteristics. The 

mosquito cluster in Fig. 5l exhibits predominantly dusk, crepuscular, and nocturnal activity, 

concentrated at the canopy level (see inset pie chart). Comprehensive information for all 129 

clusters is provided in the supplementary material. 
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Figure 5: The spatial and temporal distributions of 129 clusters from Lidar observations, with 6 

specific cases selected for in-depth examination. a) The ternary plot depicts the 129 clusters’ ratios of 

distribution across the tree layers. b) Temporal distribution of cluster activity illustrating the main activity 

time for the cluster dawn and dusk (crepuscular), diurnal, and nocturnal. The scatter dot sizes within 

these plots are proportional to each cluster's observations' square root. The cluster number is indicated 

by the color of the dots. Six clusters were selected to be representative of different insect groups. The 

selected clusters’ modulation spectra and polarization are detailed in panels c, f, i, l, o, and r). 

Accompanying pie charts reveal the frequency distribution of these clusters across various times and tree 

height intervals. Panels d, g, j, m, p, and s) present representative time series Lidar signals for each of the 

highlighted clusters, while panels e, h, k, n, q, t) map out their spatial height and temporal distribution 

across a three-day measurement period. 

 

Cluster counts reflect a representation of biodiversity. Throughout the three-day study, the number 

of observations within the shrub, canopy, and open sky layer remained relatively consistent (Fig. 

6). However, the number of clusters per layer varied more strongly, potentially suggesting that this 

metric is a more sensitive measurement of biodiversity than insect abundance. The canopy layer 

consistently had the highest number of both observations and clusters throughout the study, 

highlighting the importance of height specific insect trapping for estimating diversity.  

 

Figure 6: Biodiversity estimates for distinct tree height intervals, color-coded by date. 

Consistency is depicted across a three-day measurement period. Error bars are derived from 

mean and standard deviation calculations. 
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Discussion 

Our study explores the spatial distribution and activity patterns of insects across vegetation layers, 

revealing significant variation in insect activity and species composition across space and time. 

The lidar technique employed may facilitate future assessment of diversity of flying insects, as we 

have demonstrated that it is possible to retrieve data enabling comparisons, revealing significant 

and consistent differences across sites separated merely by a few height meters. 

We show that the lidar observations outnumber the trapping methods by a factor of ~70, while 

simultaneously being less labor-intensive and less prone to biases. Its ability to provide high-

resolution temporal and spatial data gave us a detailed insight into insect dynamics in ways 

otherwise unattainable. Based on the lidar data, we identified distinct activity patterns across the 

canopy layers. The open sky layer had its major peak during the late afternoon, while the shrub 

and canopy layers both also had significant morning peaks. The activity patterns are greatly 

influenced by microclimatic conditions, with sun exposure, humidity, and temperature differences 

across the canopy influencing insect activity. For example, higher temperatures coincide with a 

significantly reduced insect activity in the shrub layer. Rainforests, known for their intricate 

canopy stratification, are known to host different insect species in the different canopy layers, as 

these layers provide divergent niches. Our findings add to this evidence, highlighting that 

documenting insect diversity across different microhabitats in complex rainforest canopies is 

crucial to assess the full importance of a site for insect diversity. 

Our manual trapping methods, malaise traps, sweep nets, and zipline traps, proved to be labor-

intensive and each came with its limitations. Malaise traps, while effective, missed capturing 

certain species like grasshoppers and dragonflies. Sweep nets were predominantly effective for 

ground-level captures, and zipline traps, designed to mimic the Lidar beam path, had speed 

constraints that affected their overall capture rates. A significant limitation was our inability to 

extend insect identification to the species level due to constraints in resources, time, and 

manpower. The lack of electricity and appropriate conditions for preserving insects limited the 

possibilities to preserve captured specimens for classification to species. 

An interesting approach towards closing the gap between lidar observations and individual species 

is provided by the approach implemented in BIOSPACE. We documented both scatter phase 

functions for wings of different reflectivity types and polarimetric goniometric optical information 

for specimens. This sheds light on the specific dynamics of three distinct types of wings, with  

wings having diffuse, medium specular and specular reflectance, respectively. Although we can 

use this to identify the broader taxonomic groups of the clusters retrieved by the Lidar time series, 

enabling correlation of Lidar data with insect biophotonics characterization, linking individual 

Lidar observation to a specific species characterized by BIOSPACE remains a goal for future 

research. 

In conclusion, our study offers insights into insect temporal activity patterns, spatial distribution 

and vertical stratification in forest canopies. It demonstrates how Lidar technology can overcomes 

many traditional monitoring challenges, offering a comprehensive view of insect diversity patterns 

across space and time. The findings of consistent and significant differences in insect abundance, 

composition and temporal activity on small spatial scales and with factors as subtle as shade regime 

have profound implications for insect monitoring aimed at identifying areas key for conservation 

of insect diversity in face of the threat of mass extinction. In addition, non-invasive nature of lidar 

data collection provides an ethical approach for studying sensitive populations or protected areas. 
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The Scheimpflug lidar techniques hold promise for efficient monitoring in habitats beyond forests, 

including for plantations, farms and urban habitats, and has the potential to revolutionize insect 

monitoring. 

 

 

Materials and methods  

Lidar System and Scanning Procedure 

The Lidar system was deployed at a forest edge in the Taï rainforest (5°49'59.5"N 7°20'32.8"W). 

The transmitter and receiver telescopes were positioned on an 814 mm baseline, supported by a 

tripod (EQ8, SkyWatcher, China). The lidar used the Scheimpflug configuration with an angled 

transmitter, receiving lens, and sensor to measure high-resolution ranging up to 500 meters. 

The transmitter telescope expanded two 3W TE-polarized 808 nm laser diodes. The polarization 

of one of the laser beams was rotated by 90˚ using a wide-angle polymer half-wave plate and was 

combined with the other laser beam using a polarization beam combiner. The transmitter telescope 

had a diameter of Ø 102 mm and a focal length of 500 mm. The receiver module was a Ø150 mm 

diameter and an f600 mm focal Newton reflector (TeleskopService, Germany). Its eyepiece was 

connected to a CMOS line sensor (OctoPlus, Teledyne e2v, USA) comprising 2048 pixels, each 

with dimensions of 10x200 μm2. According to the Scheimpflug condition and the hinge rule, the 

CMOS sensor was tilted at a 37° angle relative to the optical axis of the Newton receiver telescope. 

The system operated at a 10 kHz sampling rate, with a 100 µs line rate and 80 µs exposure time. 

Each data file, capturing 3 seconds of observations, contained approximately 30,000 exposure 

lines, with an average file size of around 120 MB. A custom LabVIEW script was employed for 

continuous Lidar data acquisition and file organization. 

Over a two-week period, various measurements were conducted in the rainforest. The data 

analyzed in this paper originates from a continuous 3-day Lidar measurement. During these 3 days, 

a total of 6 terabytes of raw data was collected. However, after filtering for relevant observations, 

the dataset was reduced to 180 gigabytes, 3% of its original size. 

The Lidar system was programmed to periodically adjust its elevation angles, cycling through 0, 

3, 6, 10, 13, 16, and 20 degrees. At 0 degrees, the beam terminated at the board covered with 

neoprene positioned approximately 80 meters away. At 3, 6, and 10 degrees, it targeted different 

canopy layers. At 13, 16, and 20 degrees, the beam extended beyond the treetops into the sky. Due 

to the necessary pauses and adjustments for canopy scanning, the Lidar was operational for 12% 

of the total measurement duration. 

 

Lidar observation calibration  

Conducting experiments in the jungle presented challenges, primarily due to the lack of a direct 

power supply for the Lidar system. The system was powered by a generator (Champion 

Inverterelverk 2200W, Sweden), which required periodic refueling (~7 minutes, 4 times a day), 

resulting in temporary gaps in data collection when the generator was powered off for refueling. 

The bias in the data collection introduced by refueling breaks was however correctable. 

Importantly, these biases did not significantly impact the overall conclusions, as they were 
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effectively addressed during data analysis and interpretation. The compensation method for 

observation hours was demonstrated in a previous study [45]. 

 

Signal diversity estimation 

Observational data revealed a consistent trend in insect distribution versus transition time across 

all three segmented tree heights on different dates (see Fig. S1 a-d). Longer transition observations 

were more prevalent in the canopy and shrub layers. To analyze the species diversity at different 

heights and days, we implemented a hierarchical clustering analysis on the power spectra derived 

from Lidar signals and environmental noises. The analysis was initiated with a linkage procedure 

to calculate cluster distances, based on the pairwise similarity of observations. To minimize 

potential biases, we processed instrument noise through the same data pipeline as used for the 

Lidar signals, functioning as a negative control. This approach facilitated the calculation of excess 

linkage, which involved dividing the signal linkage by the noise linkage[46], as shown in Fig. S1 

e-g. Importantly, the linkage curve for the noise (illustrated with grey dash lines in the same figure 

panels) was significantly less intense than that for the Lidar signals (illustrated with colored solid 

lines) across time intervals and layers (refer to Figure S1 e-g). 

Based on these findings, an analytical model was formulated to estimate the cluster count 

accurately. This model entailed calculating the median and interquartile range (IQR) of the excess 

linkage curve. Subsequently, a threshold function Z, derived from the median plus the IQR, was 

applied to all excess linkage curves for the three segments and various time intervals: 

𝑍0 =
𝐿insects 

𝐿noise 
       (1) 

𝑍 = 𝑍0̃ + (𝑄3(𝑍0) − 𝑄1(𝑍0))     (2) 

where L denotes the Lidar signal and noise, Z0 denotes the excess linkage, and (Q3(Z0)−Q1(Z0)) 

symbolizes the interquartile range, which is the difference between the third quartile (Q3) and the 

first quartile (Q1) of Z0. The threshold, as illustrated in Fig. S1 h-j, was determined using this 

methodology. This approach revealed that the canopy level exhibited the highest diversity of 

clusters. 

 

Conventional Trapping Configuration 

To manually sample the insect fauna at different locations and canopy heights, various types of 

traps were utilized, each selected based on their advantages and limitations. The traps were emptied 

and cleaned at specified times of the day. 

Malaise Traps: 

Two Malaise traps were employed different altitudes – ground level (~1 m) and canopy top (~20 

m). These traps were emptied four times a day, specifically at 5 am, 10 am, 5 pm, and 10 pm. 

These timings were selected to maximize insect capture before and after their peak activity periods 

(dawn, dusk crepuscular). The Malaise trap, typically exhibiting the least bias compared to bait 

and light traps, aimed to capture a diverse distribution of fauna at both the ground and canopy 

levels. However, it was observed that larger insects such as grasshoppers and dragonflies were 
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often not captured. We used dry collection bottles, potentially enabling some insect groups to 

escape.  

Zipline Traps: 

Zipline traps were utilized and emptied four times a day: at 6:30 am, 7:30 am, 5:30 pm, and 6:30 

pm. The primary objective of the zipline trap was to capture insects that followed a path similar to 

the Lidar beam, representing the insects observed in the Lidar signal. However, due to the system’s 

slow movement (about 1 m/s travel speed), many in-flight insects often evaded the net. This 

limitation indicated the potential benefit of a motorized zipline system with a faster speed, around 

10 m/s for increased catches.  

Active Sweep Netting: 

Parallel to the zip line trapping, active sweep netting was conducted four times a day, at 6:30 am, 

7:30 am, 5:30 pm, and 6:30 pm. This method was executed with care, sweeping only just above 

the grass level to try to avoid provoking grass-dwelling insects into jumping into the net. This 

precaution was taken to prevent the potential overrepresentation of these species in the data. The 

aim was to ensure that the insects captured were in-flight during collection. The selected times 

ensured adequate sunlight for safe movement, given the jungle’s lack of electricity, while also 

targeting insects before and after dusk and dawn.  

 

Insect Handling, Documenting and Selection 

Insect Documenting: Insects were euthanized and placed in individual bags labeled with the time, 

location, and method of capture. Insects were identified to at least the order level, and their counts 

and size classes were recorded. Photographs of all catches were taken using both cellphones and 

microscopes, with a scale marker included for reference (Fig. S8). 

Insect Selection for BIOSPACE Study: Insects that were frequently captured and that fit the size 

criteria for BIOSPACE imaging, typically those with a wingspan of 0.5 to 1.5 cm, were chosen for 

further examination. The wings of these selected insects were spread and photographed using 

higher-quality cameras. Samples with minimal damage and either diffused or clear wings were 

specifically selected for scanning. For beetles, their elytra (wing covers) were carefully opened, 

and their wings were spread to enhance wing signal acquisition. Insect specimens were identified 

to the order level for general taxonomic categorization. 

Scanning with BIOSPACE: The selected insects were mounted in BIOSPACE and scanned with 

different rotation angles. For each angle, images with different spectral (eight wavelength bands 

from 365 nm to 940 nm) and polarization information were captured. The same procedure was 

conducted with the removed wings of the insects, to measure their specularity. The measurements 

were conducted on-site with the portable BIOSPACE, placed in a dark box to minimize the 

ambient signal. 
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Figures and Tables: 

 

Figure S1: a) A schematic representation details the placement of two Malaise traps on a tree, 

segmenting tree heights into the shrub layer (0-2.5 m), the canopy layers (2.5 m - 25 m), and the 

open sky (25 m and above). Note: This depiction is not to scale. b, c, d) Histograms display 

transit time distributions for observations, differentiated by date and height intervals. e, f, g) 

Linkages, based on dissimilarity values, are plotted against the number of pairs. h, i, j) 

Demonstrations of linkages, emphasizing similarity, are related to the number of pairs. 
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Figure S2: This graph illustrates the observation range in relation to the number of observations 

for different beam elevation angles. 
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Figure S3: We clustered 6,962 LIDAR observations into 129 unique clustering groups, and this 

dendrogram illustrates the hierarchical arrangement of these clusters. 
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Figure S4: The modulation spectra of clustering groups numbered from 1 to 50 among the 129 

clusters. Accompanying pie charts provide insights into the frequency distribution of these 

clusters across different times of the day and tree height intervals. 
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Figure S5: The modulation spectra of clustering groups numbered from 51 to 100 among the 

129 clusters. Accompanying pie charts provide insights into the frequency distribution of these 

clusters across different times of the day and tree height intervals. 



24 

 

 

 

Figure S6: The modulation spectra of clustering groups numbered from 101 to 129 among the 

129 clusters. Accompanying pie charts provide insights into the frequency distribution of these 

clusters across different times of the day and tree height intervals. 
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Figure S7: Validation of Biodiversity in Lidar Signals Against Noise - This figure demonstrates 

the analysis conducted to confirm that the biodiversity detected in the Lidar signals is not due to 

random noise. Noise levels were clustered within the shrub, canopy, and open sky layers, 

revealing no significant diversity or difference in clustering between these ecological layers. 
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Figure S8: A comprehensive overview of the field operations conducted in the Tai Virgin Forest to 

enable Lidar measurements and subsequent BIOSPACE scanning. a) Searching for a suitable 

experimental site, b) Setting up the Lidar system with elevation scanning feature, c) Deploying 

ground and canopy malaise traps, d&e) Zipline trap in action, f) Utilizing sweep netting to capture 

insects, g) Meticulous insect sorting, counting, identification, and documentation, h) Insect pinning 

and wing spreading, i) Employing grid paper as a scale reference during insect photography, j) 

Preparing pinned insects with wing spread for BIOSPACE scanning, k&l) Capturing higher 

resolution images of pinned individuals using a better camera setup, m) Repositioning insects for 

different orientation scanning with BIOSPACE, n) Conducting BIOSPACE scanning with the 

collected insects. 
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Abstract  11 

Identification of insects in flight is a particular challenge for ecologists in several settings with no other method 12 

able to count and classify insects at the pace of entomological lidar. Thus, it can play a unique role as a non-13 

intrusive diagnostic tool to assess insect biodiversity, inform planning, and evaluate mitigation efforts aimed at 14 

tackling declines in insect abundance and diversity. While species richness of co-existing insects could reach 15 

tens of thousands, to date, photonic sensors and lidars can differentiate roughly one hundred signal types. This 16 

taxonomic specificity or number of discernible signal types is currently limited by instrumentation and algorithm 17 

sophistication. In this study we report 32,533 observations of wild flying insects along a 500-meter transect. 18 

We report the benefits of lidar polarization bands for differentiating species and compare the performance of 19 

two unsupervised clustering algorithms, namely Hierarchical Cluster Analysis and Gaussian Mixture Model. We 20 

demonstrate that polarimetric properties could be partially predicted even with unpolarized light, thus 21 

polarimetric lidar bands provide only a minor improvement in specificity. Finally, we use physical properties of 22 

the clustered observation, such as wing beat frequency, daily activity patterns, and spatial distribution, to 23 

establish a lower bound for the number of species represented by the differentiated signal types. 24 

  25 
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Introduction 26 

Abundance and diversity of insects is in decline (1–4) especially in regions with industrialized agriculture (5). 27 

This loss of biomass and ecological functions can imply serious consequences for food chains in ecosystems 28 

(6) and pollination services of our crops (7). Rapid changes for conservation require rapid diagnostic tools to 29 

assess insect abundance and diversity. Photonic approaches (8) such as photonic sensors (9,10) and 30 

entomological lidars (11,12) have the potential to count and classify free-flying insects in situ continuously with 31 

close to no running costs. To date, entomological lidar can detect more than 105 insects daily (13) and 32 

differentiate more than a dozen groups (11,12). While the count rate is superior to sweepnetting (14), traps (15) 33 

and robotic analysis (16), the taxonomic specificity is inferior to classification by e.g. machine vision (17) and 34 

genetic approaches (14). The non-intrusive nature of photonic approaches excludes post examination of the 35 

identified specimens. On the other hand, photonic in situ observations of insects provide complementary 36 

information which could not be obtained otherwise. For example, daily activity patterns (12), preferences for 37 

topographic features (18), or information on the species abundance distributions (19). 38 

The number of insect species that can be identified by lidar or photonic sensors may be constrained by: a) the 39 

performance of the data clustering approach, b) the number of spectral (20,21) or polarization (22–24) bands 40 

of the instrument, or, in the ideal case, c) the number of present species in the habitat. The latter can reach 41 

more than tens of thousands co-existing species (25) out of the approximately ten million estimated insect 42 

species worldwide, amounting to an overall higher number of groups constituted by sexes, phenotypic variation, 43 

and appearance changing with the age of the specimens.   44 

Most proposed photonic clustering of insects is based on assessing the wingbeat frequencies (WBF) (9,26). 45 

Insect WBFs range from approximately 10 Hz to 1000 Hz, however, the relative spread for a single species and 46 

sex under constant environmental conditions is generally 25%, which only leaves room for 18 distinct WBFs 47 

within this range. Wingbeat harmonics can provide additional information on wing dynamics (27) and 48 

specularity of the wings (28,29), thus improving specificity. Multiple studies have exploited wingbeat harmonics 49 

to differentiate insect groups (30). Even sexes from a single species can produce distinct harmonic content 50 

depending on observation aspect (22,24,31), with females generally being larger and having slower WBFs (32). 51 

WBFs are also influenced by temperature (32–34). However, in many cases, closely related species could 52 
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produce similar signals indistinguishable for the instrument and setup. Nevertheless, species-rich insect 53 

ensembles will generally produce more diverse ensemble of signals (9). 54 

Multiple studies have highlighted how multiple wavelengths could aid the differentiation of closely related 55 

species (22,28,35,36). In particular, specular flashes can be expected to be highly sensitive to the ratio of laser 56 

wavelength to wing membrane. Also, wing membrane thicknesses are frequently highly species-specific (28).  57 

To what extent polarimetric information could improve specificity is less well-characterized. Generally, light 58 

loses its original polarization by multiple scattering in biological tissue (37). Consequently, near-infrared (NIR) 59 

light depolarizes when interacting with larger probe volumes in insect bodies on the scale of millimeters 60 

(22,31,38), whereas polarization is maintained when light probes thin insect wings on the order of a micron 61 

(28,39). Factors increasing the degree of linear polarization (DoLP) include absorption by melanin and water, 62 

which primarily punish photons with longer interaction path lengths that are more prone to depolarization. 63 

Factors reducing DoLP include wing scales of moth and butterflies (29) and even eggs inside the abdomen (40), 64 

which increase multiple scattering. However, it remains unknown to what extent polarimetrics could aid species 65 

differentiation. 66 

In this paper, therefore, we investigate the benefits of polarimetric information for clustering of free-flying wild 67 

ensembles of insects. We report 32,533 insect polarimetric lidar observations, in a 500 m long transect over a 68 

lake. We use two unsupervised clustering methods to estimate signal diversity with and without polarimetric 69 

information.  We attempt to assess to what extent diverse signals derive from a single species by analyzing the 70 

similarity of daily activity patterns and spatial distributions.   71 
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Data Collection 72 

Field site 73 

Field work was conducted on June 14th, 2020, at Stensoffa ecological field station, Sweden (55°41′44′′N 74 

13°26′50′′E). The field site includes a forest, graze land, pond and a swamp (41), with low level of light pollution 75 

and high species richness. Within this site, we placed the experimental setup over a 500 m long, homogeneous, 76 

artificially created peat pond. A Scheimpflug lidar was positioned on one shore with the termination point on 77 

the opposing shore. Both the lidar and termination point maintained a constant height over the pond throughout 78 

the transect, with mostly the same distance to the shore on both sides of the transect.  79 

By selecting a rectangular pond, we aimed to minimize the influence of topological differences on insects flying 80 

across the laser beam, for example, due to differences in vegetation or flight distance between shores. However, 81 

some parts of the beam were visited by insects more frequently due to the presence of patches of reeds and 82 

floating water plants.  83 

Instrument 84 

The design of the Scheimpflug lidar system is described in (42). It is based on kHz time-multiplexing, comprising 85 

two TE polarized 3W, 980 nm laser diodes (MLD-980-3000, CNI lasers, China). The laser apertures are 95µm 86 

and fast-axis-collimators (FACs) are glued to diodes reducing their divergence to 8° in both axes. A NIR 87 

wavelength was chosen to avoid disturbing the insects, as they are insensitive to this light. Furthermore, 88 

backscattering is increased at this wavelength because insect melanization absorbs less NIR light. 89 

To retrieve polarimetric lidar data, we illuminate the targets with laser beams of alternating orthogonal linear 90 

polarization. To achieve this, we rotate the polarization state of one of the laser sources by 90° using a half-91 

wave plate (WPQ10E-980, Thorlabs, USA), then co-align the two beams using a polarizing cube beam splitter 92 

(PBS203+B4CRP/M, Thorlabs, USA). The radiation is collimated by a Ø75 mm, f = 300 mm achromatic doublet 93 

(#88-597, Edmund Optics, UK) in a focus mechanism (Monorail, Teleskop-Service, Germany). The lidar overlap 94 

is controlled by a tangential mount (Stronghold, Baader planetarium, Germany). The receiving telescope is a 95 

Ø200 mm, f = 800 mm Newton reflector (Quattro, SkyWatcher, China). The received light passes a 10nm FWHM 96 

filter at 980 nm (#65-247, Edmund Optics, UK) and a NIR linear polarizer (LPNIRE200-B, Thorlabs, USA) before 97 



5 
 

it is imaged onto a linear CMOS detector, which is tilted 45° according to the Scheimpflug condition and hinge 98 

rule. The linear array detector (OctoPlus, Teledyne e2v, USA) has 2048 pixels of 10x200 µm each. It can read 99 

out 80 kLines/s at 12 bits, but in this experiment, it was operated at 6 kHz.  100 

Our system achieves kHz-rate separation of co-polarized and de-polarized light components by multiplexing 101 

two orthogonal laser sources (43,44). We sequentially illuminate the target with a three-timeslot cycle: timeslot 102 

1, laser I is ON; timeslot 2, laser II is ON; timeslot 3, both lasers are OFF (used for real time subtraction of the 103 

background from the first two exposures). This effectively provides a 2 kHz sample rate with a maximum 104 

observable modulation frequency of 1 kHz due to the Nyquist criterion (45). The lowest achievable frequency 105 

and resolution depend on the insect's transit time through the laser beam. 106 

Lidar observations 107 

We conducted continuous lidar recordings throughout June 14, 2020, accumulating ~2.5 terabytes of raw data. 108 

To isolate insect observations, we implemented a thresholding technique, selecting data exceeding the median 109 

intensity of backscattered light plus five times the interquartile range (IQR) within each 5-second data file 110 

(~30,000 exposures), see (13,46,47) for detailed accounts of the preprocessing. We further refined the dataset 111 

to include only observations exceeding 40 ms transit time, corresponding to a minimum detectable WBF of 25 112 

Hz. This criterion yielded a total of 32,533 observations. A typical insect observation manifests as a modulation 113 

of backscattered light intensity over both time (exposure number) and space (pixel number), as illustrated in 114 

Fig 1a.  115 

We analyzed the lidar signal in several ways. First, projecting the signal into the spatial domain provides lidar 116 

echo intensity across pixels. This information can be used in two ways: 1) by transforming absolute pixel 117 

numbers to determine the distance to a target (left y-axis in Fig 1b), and 2) by transforming differential pixel 118 

numbers to estimate the apparent insect size (right y-axis in Fig 1b). 119 

 120 
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 121 

Fig 1. Lidar insect observations. (a) Modulation of backscattered light intensity from a single insect across exposures (time 122 

domain) and pixels (space domain). Co-polarized (cyan) and de-polarized (magenta) components shown. (b) Instantaneous 123 

echo in the range domain (@ exposure #148), with range and insect size deduced from absolute and differential pixels 124 

respectively. (c) Signal waveform showing intensity modulation over time. (d) Power spectra. (e) Distribution of 125 

observations by solar time (15-minute bins with bin centers from 00:07 and ending at 23:53) and range (20 logarithmically 126 

spaced bins between 48 m and 427 m). Time is reported in true solar time. (f) Range distribution of insect observations. (g) 127 

Time distribution of insect observations. (h) Distribution of insects' transit times >40 ms. In (b-d), co-polarized components 128 

are in red, de-polarized in blue, see legend in (b). 129 

Second, analyzing the signal from the co-polarized and de-polarized channels in the time domain generates two 130 

waveforms (Fig 1c). Comparing these waveforms, we observe that co-polarized backscatter from glossy wings 131 

manifests as a series of brief, specular flashes. In contrast, the de-polarized backscatter lacks these distinct 132 

flashes and instead presents less intense, smoother waveform with the same periodicity, caused by broader 133 

scattering lobes by the de-polarizing wing features such as the veins and scales. The relative intensities of co-134 

polarized and de-polarized light are also informative. For example, nearly equal intensity in the co-polarized and 135 
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de-polarized waveforms suggests that most of the backscattered light has a randomized polarization state 136 

(thus an equal chance to detect co-pol. and de-pol. signals), while a dominant co-polarized signal indicates a 137 

higher degree of glossiness. 138 

We also explored the temporal and spatial distributions of the observations. Fig 1e visualizes a 2D histogram 139 

illustrating the count distribution, while Figs 1f and 1g show the probability of observations based on range and 140 

solar time. Notably, few observations are detected close to noon, and it is more likely to detect an insect closer 141 

to the detector. Additionally, we present a transit time histogram (Fig 1h) displaying the distribution of transit 142 

times for all observations exceeding the 40 ms threshold. 143 

By combining spatial, temporal, and polarimetric information, we can characterize each insect observation and 144 

identify broader patterns within groups. For example, in the waveforms, periodic bright reflections correspond 145 

to the insect's WBF, while the duration of these flashes can indicate wing specularity. By comparing the intensity 146 

of co-polarized and de-polarized backscatter, we can quantify the DoLP. This combined analysis allows us to 147 

differentiate insects with similar WBF but distinct polarization signatures. Additionally, we can determine the 148 

detection range and time of day for each observation, or analyze these distributions for a group, revealing time 149 

activity patterns and spatial preferences for groups of insects. 150 

Estimation of oscillatory power spectra 151 

Despite waveforms being highly informative, directly comparing them for insect clustering is challenging. 152 

Variations in waveform shape can arise from external factors, such as the insect's time spent within the lidar 153 

beam, and the independent phases of wingbeat and lidar sampling. To address this, we calculate the oscillatory 154 

power spectra for each observation (Fig 1d), which represent the signal in frequency domain as a distribution 155 

of power across normalized frequency bins. The resulting power spectra reveal the insect's fundamental WBF 156 

and its harmonic overtones, providing a more robust basis for clustering and comparison. 157 

To estimate the power spectral density, we use Welch’s method, implemented in MATLAB Signal Processing 158 

Toolbox. We define the observable frequency range spanning between 25 Hz (reciprocal of minimal transit 159 

time) and 1000 Hz (the Nyquist frequency), and the number of linearly spaced frequency bins as 80 (the number 160 

of time samples in 40 ms-long observation at 2000 Hz sampling frequency). We also define a Gaussian time 161 

window with a FWHM of half the number of time samples. We set the number of overlapping samples in the 162 
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sliding Welch power estimate to 79, the maximum possible overlap constituting the heaviest computations 163 

operation. 164 

Power spectra preprocessing 165 

While power spectra capture an insect’s wingbeats in a fundamental peak and wing glossiness as the number 166 

of harmonic overtones, we hypothesize that incorporating polarimetric data may reveal additional distinctions 167 

based on wings’ DoLP. To test this hypothesis, we generated three datasets representing different data 168 

acquisition scenarios: with and without polarimetric data. 169 

Non-polarimetric data acquisition (unpolarized dataset) 170 

This dataset simulates a scenario when a signal is acquired without polarimetry. We achieve this by summing 171 

up both co- and de-polarized power spectra and then normalizing the area under the merged curve to unity (Eq. 172 

1).  173 

𝑃𝑢𝑛𝑝𝑜𝑙(𝑓)  =  
𝑃𝑐𝑜(𝑓)  +  𝑃𝑑𝑒(𝑓)

∑[𝑃𝑐𝑜(𝑓) + 𝑃𝑑𝑒(𝑓)]
 (1) 

Here, 𝑃𝑢𝑛𝑝𝑜𝑙(𝑓)  is the unpolarized power spectrum, 𝑃𝑐𝑜(𝑓) and 𝑃𝑑𝑒(𝑓) are the co-polarized and de-polarized 174 

power spectra, respectively. 175 

We show the resulting power spectrum in Figs 2a (specular case) and 2d (diffuse case). By color-coding the 176 

proportion of the de-polarized signal, we illustrate the similarity between the unpolarized (total) signal and the 177 

de-polarized signal. We observe that in a specular case, de-polarized light improves the certainty of the peak at 178 

~250 Hz, however, and has little influence on other frequency peaks. Whereas, in diffuse case, de-polarized light 179 

is the main contribution to powers. 180 
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 181 

Fig 2. Three datasets with varying polarimetric information for a specular (top row) and a diffuse observation (bottom row) 182 

(a, d) Unpolarized data is shown as black solid line, whereas blue shade shows contribution from the co-polarized channel, 183 

and orange – from de-polarized; (b, e) Co-polarized dataset. (c, f) DoLP dataset. 184 

Coherently backscattered light acquisition (co-pol. dataset) 185 

To obtain the co-polarized dataset, we take only the co-polarized component and normalize it to unity (Eq. 2). 186 

This represents an acquisition scenario, when targets are illuminated using linearly polarized light, and 187 

measurements made in the same polarization state (Figs 2b, 2e).  188 

𝑃𝑐𝑜
∗ (𝑓)  =  

𝑃𝑐𝑜(𝑓) 

∑ 𝑃𝑐𝑜(𝑓)
 (2) 

Polarimetric data acquisition with Degree of Linear polarization (DoLP dataset) 189 

The DoLP dataset (Figs 2c, 2f) is a scaled version of the co-polarized dataset. In this dataset, the area under 190 

the co-polarized power spectrum represents the DoLP information for the oscillatory part of the signal, 191 

excluding the 0-25 Hz range (Eq. 3). 192 

𝑃𝐷𝑜𝐿𝑃(𝑓)  =  
𝑃𝑐𝑜(𝑓)

∑[𝑃𝑐𝑜(𝑓) + 𝑃𝑑𝑒(𝑓)]
 (3) 
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Importantly, when normalizing the areas under all power spectra, we ensured that the relative strength of 193 

frequency components within each spectrum remains consistent regardless of the distance at which the insect 194 

was observed. This approach addresses a potential source of bias in our analysis—namely, the signal intensity 195 

attenuation with distance. 196 

Results and discussion 197 

Cluster count and agreement analysis: HCA vs. GMM 198 

Unsupervised clustering is a valuable tool for rapidly assessing insect diversity from lidar observations. Unlike 199 

classification, which requires labeled data that is often scarce and costly to obtain, clustering groups insect 200 

observations based on inherent similarities in their characteristics. This study focuses on characteristics 201 

embedded into power spectra of observations, specifically the frequency content (WBF and harmonic 202 

overtones) and the DoLP (when using the DoLP dataset). 203 

However, these features may not sufficiently distinguish among insect species, as WBF can be common across 204 

multiple species and exhibit significant variability even within the same species. This feature overlap can cause 205 

multiple species to merge into clusters or a single species to split into multiple clusters, affecting our 206 

conclusions on insect diversity estimates. Additionally, diversity estimates could be biased due to different 207 

clustering algorithms producing different solutions, that vary in the number and size of identified clusters. 208 

In this section, we explore the differences between clustering solutions by employing two contrasting methods. 209 

One is Hierarchical Clustering Analysis (HCA), a deterministic approach previously employed to group 210 

observations from photonic sensors and lidar (9,11,12,19) (see Methods: HCA), and Gaussian Mixture Model 211 

(GMM), a stochastic approach (see Methods: GMM). Comparing HCA and GMM clustering results, we observed 212 

that these methods clustered lidar observations with varying granularity. HCA yielded 803 (unpolarized), 245 213 

(co-polarized), and 256 (DoLP) clusters, while GMM produced fewer: 80 (unpolarized), 86 (co-polarized), and 89 214 

(DoLP). 215 

To determine if these methods produce consistent results despite the varying granularity, with HCA offering a 216 

more fine-grained view, we assessed the agreement between their clusterings using two metrics: Adjusted 217 

Mutual Information (AMI) and Homogeneity score. AMI ranges from 0 to 1, with higher values indicating that 218 
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the same observations are grouped into the same clusters across both methods, after adjusting for chance. 219 

The Homogeneity score, also ranging from 0 to 1, evaluates whether each cluster from one method contains 220 

observations primary from a single cluster in the other method. A high Homogeneity score indicates that one 221 

method’s clusters are subsets of the other’s. We explain both metrics in detail in Section Methods: Evaluating 222 

clustering agreement. 223 

We observed moderate agreement between the methods, with AMI scores ranging from 0.47 to 0.55 (S1a Fig). 224 

However, the Homogeneity score was higher, ranging from 0.66 to 0.74 (S1b Fig, the upper triangle). This result 225 

suggests that there is a difference in the underlying composition of clusters, and that the methods did not 226 

merely identify the same clusters at different resolutions. Despite these differences in the number and 227 

composition of clusters, most clusters in both solutions exhibited discernible frequency content (see median 228 

power spectra for clusters in S2-S3 Figs). In the absence of ground truth for optimal partitioning, we then 229 

evaluated clustering results based on DoLP homogeneity, distinction in activity time patterns, and spatial 230 

distribution. 231 

Degree of linear polarization for clusters 232 

In this section, we investigate whether wings’ polarimetric characteristics (from glossy to diffuse) can be 233 

predicted using unpolarized data alone, and how this prediction is improved by including polarimetric data. To 234 

quantify the differences between datasets, we measure the clusters’ DoLP homogeneity as detailed in Methods: 235 

Bootstrapping to evaluate confidence intervals. We report the clusters’ homogeneity as the mean DoLP and its 236 

95% confidence interval (CI) (2.5th and 97.5th percentiles). To determine the significance of the observed results, 237 

we compared the CIs of a mean DoLP for found clusters against those derived from randomly assembled 238 

clusters of the same size. We also divided clusters into four groups based on DoLP quartiles (from Q1, most 239 

glossy, to Q4, most diffuse). 240 

We find that most of clusters from the glossy group (Q1) and some from the diffuse group (Q4) are significantly 241 

different from random ones (CIs of found and random clusters do not overlap), see Fig 3 (DoLP dataset) and 242 

S4-S5 Figs (unpol. and co-pol. datasets). The clusters’ DoLP uncertainty is largest for the HCA applied to the 243 

unpolarized dataset (S4a Fig), however, this dataset returns smaller clusters. The major difference between the 244 

three datasets is that including polarimetric information improves isolation of low-DoLP observations into 245 

distinct clusters. Notably, HCA shows greater sensitivity in finding clusters with lower DoLP compared to GMM.  246 



12 
 

Intriguingly, both methods identified clusters with anomalously low DoLP (~1-2%), suggesting a less than 247 

random polarization state for the backscattered light. Potential explanations include scattering from extremely 248 

small, fluffy insects where polarized light escapes on the backside before having the chance to scatter 180°. It 249 

could also be measurement outliers due to imperfect beam overlap. 250 

 251 

Fig 3. DoLP characterization of clustering results. (a) HCA and (b) GMM show comparisons of cluster DoLP distributions 252 

for found clusters (black error bars) and randomly generated clusters of the same size (gray error bars). Error bars represent 253 

the bootstrapped mean DoLP and its 95% CI for each cluster. Found clusters are ranked by decreasing mean DoLP (x-axis). 254 

Vertical lines denote DoLP quartile boundaries (Q1-Q4). 255 
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To further examine the impact of polarimetric information on clustering results, we visualized the 256 

rearrangement of observations across different DoLP quartiles (Fig 4). We aggregated observations based on 257 

the DoLP of their assigned cluster and represented these rearrangements using flow lines. Our analysis shows 258 

that the Q1 quartile produces the most consistent results, with 26% of Q1 observations being shared across the 259 

three datasets in HCA and 37% in GMM. Significant rearrangements between unpol. and DoLP datasets 260 

predominantly occur between adjacent quartiles, though 9% (HCA) or 12% (GMM) observations are reassigned 261 

across non-adjacent quartiles (e.g., from Q1 to Q4). We conclude that even without polarimetric information, 262 

clustering algorithms can identify highly glossy wings. However, polarimetric data is particularly beneficial for 263 

co-clustering together low-DoLP observations. 264 

 265 

Fig 4. Rearrangement of observations between cluster’s DoLP quartiles. (a) HCA clusters. (b) GMM clusters. Left panels 266 

show rearrangements between the unpolarized and the DoLP datasets, and right panels illustrate differences between co-267 

polarized and DoLP datasets. Each quartile (Q1—Q4) is labeled with the number of observations. The flows (lines) between 268 

quartiles indicate the fraction of observations, with line width proportional to the number of observations. To plot the alluvial 269 

diagrams we use RAWGraphs (48). 270 

To evaluate if HCA and GMM agree on the content of the top five glossy clusters, we next compare their median 271 

power spectra (DoLP dataset, S6-S7 Figs). Despite both returning similar power spectra for rank 1 and 2 272 

clusters, GMM aggregates more observations per cluster (e.g., rank 1: 123 observations in GMM vs. 23 in HCA). 273 

This indicates that GMM generalizes power spectral patterns more broadly, leading to larger clusters, while 274 
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HCA maintains a stricter similarity criterion. The conclusion is thus the same when based on similarity of top 275 

two glossy clusters as when based on the homogeneity score. 276 

Time and range communities 277 

Distinct species are likely to exploit distinct niches in time and space. This could be a matter of crepuscular 278 

species adapted to a certain ambient light level or bumble bees adapted to forage earlier in the colder mornings. 279 

In terms of range, preferences for topographic features such as vegetation or reeds along the transect could 280 

differ. It could also be biased by the resolution of the instrument since larger, brighter, or glossier species could 281 

be detected over further ranges. 282 

To further assess the biological relevance of clustering, we investigated whether distinct daily activity patterns 283 

and range profiles could define communities – groups of clusters that are more similar within a group than 284 

between (see Section Methods: Time and range communities). Comparing two clustering approaches, we find 285 

that GMM method most clearly recovers community structure, whereas HCA performs worse. We quantify it 286 

using a modularity metric (M). It ranges from 0 (random structure), to 1 (well-defined structure), or to -1 (less 287 

optimal than random). In HCA, modularity increased with the addition of polarimetric information (unpol. < co-288 

pol. < DoLP). This trend was evident in both time communities (Munpol. = 0.07, Mco-pol. = 0.15, MDoLP = 0.16) and 289 

range communities (Munpol. = 0.08, Mco-pol. = 0.13, MDoLP = 0.14). In contrast, clusters identified by GMM show 290 

relatively strong community structure across all datasets, with modularity remaining consistent for both time 291 

(Munpol. = 0.26, Mco-pol. = 0.27, MDoLP = 0.25) and range communities (Munpol. = 0.12, Mco-pol. = 0.09, MDoLP = 0.11). The 292 

presence of community structure indicates that the time and range profiles of the clusters diverge from the 293 

average pattern, suggesting ecologically distinct groups. However, the moderate modularity scores imply these 294 

patterns are not discrete but rather overlapping, with some clusters exhibiting similarity to multiple 295 

communities. This is visualized in Fig 5, a heatmap of cluster-to-cluster similarity, where communities appear 296 

as bright squares along the diagonal, but some clusters show high similarity across communities. 297 
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 298 

Fig 5. Community structure analysis for HCA and GMM clustering results based on time and range profiles. Each 299 

symmetric matrix displays similarity of time (top panels) and range (bottom panels) profiles across cluster pairs, with darker 300 

pixels indicating greater dissimilarity. The heatmaps are organized to place rows/columns adjacently if clusters are from 301 

the same community, thus making communities to appear as bright squares along the matrix diagonal manifesting greater 302 

similarity within a community then between them (see the bottom-right schematic). 303 

Next, we characterized both time and range communities by plotting communities’ probability distributions 304 

across time and range bins (Figs 6 and S8). To illustrate clusters’ variability, we employed bootstrapping (see 305 

Methods: Bootstrapping to evaluate confidence intervals). We observe that time communities primary 306 

differentiate based on variation in evening activity patterns (Fig 6 I-III), whereas range communities are 307 

characterized by a decaying probability of an observation with a different detectability cut-off: with some 308 

clusters detected at mid-ranges, <160 m (Fig 6A) and others primarily at long ranges, <255 m (Fig 6B). 309 
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 310 

Fig 6. Characterization of time and range communities. CIs of observation probability for (A, B) range and (I-II-III) time 311 

communities (see legend). At the top of each panel, we show the size of a community.  Heatmaps at the AB and I-III 312 

intersection display median power spectra for a corresponding time-range community. The y-axis segments heatmaps into 313 

stripes, one for each cluster. Variation of colors within a stipe indicates power magnitude at corresponding frequencies (x-314 

axis). The powers are shown after normalization, logarithmic transformation, and detrending. The color-bar encompasses 315 

5th to 95th percentiles of all range of power values. 316 

We hypothesize, the variation in spatiotemporal profiles may be related to the frequency content of the lidar 317 

signal. To visualize this, we plot clusters’ median power spectra after detrending (see Methods: Detrending of 318 

power spectra) showing them as heatmaps at the intersection of (A, B) and (I-II-III) probability plots (Fig 6B). 319 
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Here, we observe that insects detected at long ranges (group B) tend to have a first peak in their frequency 320 

spectrum below 250 Hz. This peak could correspond to the fundamental frequency of a wingbeat, suggesting 321 

that larger insects, which have lower WBFs, are more likely to be detected at greater distances (for example, 322 

predating dragonflies with up to 14 cm wingspan). 323 

Range dependence of co-polarized backscatter 324 

To further explore the factors influencing long-range detectability, we investigated the impact of wing 325 

glossiness. We hypothesize that insects with glossy and clear wings scatter laser light coherently, with a narrow 326 

lobe and rapid angular speeds, resulting in improved transmission over distances. To test this hypothesis, we 327 

subdivided insects from the range communities (A: mid; B: far) into four quartiles based on their DoLP (Q1-Q4, 328 

representing decreasing glossiness, see Fig 3). Creating these subsets of clusters allows us to compare range 329 

profiles of, for example, highly glossy insects detectable at far ranges (Q1-B subset of clusters) with diffusive 330 

insects detectable at the mid-range (Q4-A). Next, for each subset, we calculated the mean probability of 331 

detection at each range bin, along with the 2.5th and 97.5th percentiles (CIs), as described in section Methods: 332 

Bootstrapping to evaluate confidence intervals. 333 

Comparing range profiles for different DoLP groups, we observe a striking feature in the far-range community: 334 

a peak at ~120m in an otherwise decaying with distance probability of observation (Fig 7 and S9 Fig). This peak 335 

is most prominent for glossy insects (Q2).  Visualizing the laser beam path over the pond (Fig 7, bottom), we 336 

note that this peak coincides with the proximity of a landmass, marked with a red dot. This suggests differences 337 

in insect communities based on proximity to land. Acknowledging the noise introduced by assuming that 338 

observations from all DoLP groups (Q1-Q4) have an equal probability of being present at this landmass, we 339 

hypothesize that the lack of a peak at 120 m in the low-DoLP distributions (particularly Q4) implies that 340 

glossiness significantly affects detectability at this distance. 341 
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 342 

Fig 7. Range dependence of co-polarized backscatter. CIs of probability distributions show the likelihood of observing an 343 

insect within a DoLP quartile (Q1-Q4: glossy to diffuse) and range community (A: mid-range, B: far-range). In the top-right 344 

corner of probability distributions, we show the number of observations. In B-plots, we show with the red dot the spike in 345 

the probability of observing an insect, potentially linked to a nearby landmass (see bottom panel). Heatmaps depict median 346 

power spectra for clusters within corresponding DoLP-range subsets (as in Fig 6). 347 

These findings indicate that the clusters reflect spatial preferences of insects and thus could be seen as a 348 

meaningful coarse-grained representation of lidar observations. This representation can be further employed 349 

to describe insects' activity patterns and spatial preferences, for example, due to changes in vegetation over 350 

seasons, or to provide a means for evaluating the attraction range of conventional insect traps.  351 

Our findings also highlight some limitations of the current lidar setup in assessing biodiversity. Specifically, 352 

there are biases in determining the abundance and richness of insects. For example, some morphological 353 
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features make certain insects easier to detect, leading to overestimation of their presence. These features could 354 

be size, brightness, and glossiness, and depend on how wing thickness resonates with the lidar wavelength. 355 

This observation suggests a direction for improving lidar technology by using longer wavelengths to enhance 356 

specularity and detection range. Longer (infrared) wavelength have proven efficient in clustering moths (29,49). 357 

Lidar based diversity indices 358 

We hypothesized that integrating polarimetric information into lidar signals would enhance discrimination 359 

between insect taxa, leading to a rearrangement of observations into clusters based on both the frequency 360 

content of power spectra and the similarity of polarimetric properties of insect wings and bodies towards low 361 

frequencies. However, clusters’ count and composition depend not only on the instrument but also on the 362 

choice of clustering algorithm, influencing conclusions about the diversity at the monitored site. To evaluate 363 

the impact of clustering approaches on diversity estimates, we compared the results of HCA and GMM 364 

clustering, focusing on the number and relative size of the identified clusters. 365 

To illustrate cluster count and their relative size, we plotted the Ranked Abundance Distribution (RAD), depicting 366 

cluster sizes in descending order (Fig 8). We further characterized clustering results using Hill numbers, a family 367 

of diversity metrics (see Methods: Lidar based diversity indices). Specifically, 𝐻0 represents the total cluster 368 

count, providing an overall estimate of diversity; 𝐻1 represents the effective number of clusters, accounting for 369 

relative abundance; and 𝐻2 represents the dominant number of clusters, highlighting the most prevalent 370 

clusters. 371 
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 372 

Fig 8. Clusters’ size distribution. (a—c) HCA clustering on three datasets; (d—f) GMM clustering on three datasets. The solid 373 

line shows the number of observations per cluster for clusters sorted from largest to smallest. Vertical lines mark Hill 374 

numbers. 375 

Our analysis revealed a consistent trend of HCA producing a higher number of clusters compared to GMM 376 

(~250 vs. ~85), particularly evident in the unpolarized dataset (~800 vs. ~80) as illustrated in Fig 8 and Table 377 

1. This suggests that HCA clusters are generally more diverse than GMM clusters. However, the high 378 

homogeneity score (~0.7, S1b Fig) between the two clustering solutions indicates that larger GMM clusters are 379 

often fragmented into smaller HCA clusters. Thus, the higher diversity estimates obtained through HCA likely 380 

reflect a finer resolution level at which the data is partitioned. 381 

Table 1. Characterization of clustering results with Hill numbers. NoC is a number of clusters. 382 

 Dataset 
𝐻0 

(NoC) 

𝐻′ 

(Shannon Index) 

𝐻1 

(Effective NoC) 

𝐻2 

(Dominant NoC) 

HCA 

unpol. 803 6.58 724 662 

co-pol. 245 5.40 222 204 

DoLP 256 5.45 232 213 
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GMM 

unpol. 80 4.14 63 54 

co-pol. 86 4.23 68 59 

DoLP 89 4.24 69 58 

To address the potential disproportionate influence of rare clusters on cluster richness (𝐻0), we further 383 

evaluated the cluster size distribution using the effective number of clusters (𝐻1).  HCA consistently yielded a 384 

larger effective number of clusters than GMM relative to the total number of clusters, suggesting a more 385 

balanced distribution of cluster sizes. Moreover, HCA identified a substantially larger proportion of dominant 386 

clusters (𝐻2) compared to GMM (~90% vs. ~65%) (Fig 8), indicating that our diversity estimates were not 387 

significantly inflated by rare clusters. 388 

Hill numbers reveal that each method can lead to distinct conclusions, particularly regarding the proportion of 389 

dominant clusters within the total cluster count. These discrepancies are largely due to HCA and GMM 390 

exhibiting different levels of tolerance for variation within clusters. HCA favors similarly sized, spherical clusters 391 

because of the Ward linkage criterion, which defines a "good" cluster as one where all observations are relatively 392 

close to the cluster centroid. In contrast, GMM identifies clusters based on the probability of an observation 393 

belonging to a specific Gaussian distribution, allowing for the identification of elliptical clusters. Consequently, 394 

these differences impact the number and size distribution of clusters, and subsequently, the estimated diversity 395 

indices. Therefore, when interpreting insect diversity estimates derived from lidar data, it's crucial to carefully 396 

consider the inherent biases and assumptions of different clustering algorithms. 397 

To move beyond the limitations of single clustering solutions and ensure more robust lidar-based diversity 398 

assessments, future research would benefit from evaluating the robustness of these indices through a more 399 

comprehensive approach. One promising avenue involves using stochastic algorithms to analyze an ensemble 400 

of clustering solutions, rather than relying on a single outcome (50,51). This would allow us to report a range of 401 

values for each Hill number, gaining valuable insights into the sensitivity of these metrics in detecting changes 402 

within the monitored site (see additional analysis for GMM results in S1 Text). Additionally, focusing on 403 

observations that consistently co-cluster together across multiple solutions could provide a more reliable basis 404 

for diversity estimates, as these observations represent a stronger signal compared to those that are grouped 405 

inconsistently and may introduce unpredictable variability. 406 
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Conclusions 407 

Estimating insect diversity has traditionally been labor-intensive, relying on manual capture and classification 408 

(52). However, researchers have sought to automate this process (53) using technologies like radar (54) and 409 

lidar. In this study, we use polarimetric lidar to detect free-flying insects and investigate whether polarimetry 410 

improves diversity estimates. We hypothesized that diversity estimates would vary depending on the amount 411 

of polarimetric information included in lidar observations. 412 

We initially focused on the total cluster count produced by each clustering method. We observed a distinct 413 

difference in resolution, with GMM yielding ~85 clusters and HCA ~250. However, when interpreting this value 414 

as an estimate of insect diversity, it's important to recognize that neither algorithm intrinsically determines the 415 

optimal number of clusters. In HCA, increasing the significance threshold for compensated linkage would lower 416 

the cluster count, while in GMM, minimizing the AIC instead of the BIC would increase it, yielding ~300 clusters 417 

per dataset. Therefore, this value should be seen as a lidar-based diversity index rather than a direct measure 418 

of insect diversity. 419 

Regardless of clustering resolution, we aimed to determine which lidar signal (unpolarized, co-polarized, or 420 

DoLP) results in greater diversity estimates when comparing results within the same clustering approach. This 421 

analysis yielded conflicting results. GMM yielded fewer clusters for the unpolarized dataset than for DoLP (80 422 

vs. 89), while HCA produced a significantly higher number (803 vs. 256). 423 

To investigate whether HCA's higher cluster count in the unpolarized dataset truly indicates greater insect 424 

diversity, we analyzed the time/range community structure. Our hypothesis was that higher species specificity 425 

would correspond to a richer time/range community structure. However, our findings revealed that the HCA-426 

derived community structure was weaker, particularly in the time dimension (Fig 5). This suggests that HCA's 427 

additional clusters may not correspond to distinct insect species but rather to over-sensitivity to variations in 428 

power spectra.  429 

This over-sensitivity likely arises from the inherent differences in how HCA and GMM generalize power spectra 430 

patterns. HCA, being sensitive to variations in the relative powers of frequency peaks (55), may focus on 431 

differences between the powers of the fundamental frequency and its overtones. These differences can be due 432 
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to varying observation aspects and could be accentuated for the fundamental peaks and a few harmonic 433 

overtones after averaging co-polarized and de-polarized signals. 434 

In contrast, the GMM approach was applied not to the power spectra directly but to their UMAP-reduced 435 

representations. This transformed the 81-dimensional power spectra into a three-dimensional representation 436 

that aims to preserve the global structure and relationships between observations rather than focusing on 437 

specific frequencies and powers. Consequently, this makes GMM clustering less prone to overfitting and 438 

reduces sensitivity to individual spectral components. 439 

Despite observing different granularity at which datasets are partitioned, we argue that the total cluster count 440 

remains a valid proxy for diversity, provided that the same approach is consistently used in comparative studies 441 

and reliably scales the number of clusters with actual insect diversity. This has been demonstrated in previous 442 

research using photonic sensors coupled with HCA clustering (9). Therefore, to evaluate the performance of 443 

polarimetric lidar, we shift our focus from analyzing cluster count to analyzing clusters’ polarimetric properties. 444 

Our comparative analysis of clusters retrieved from unpolarized and DoLP datasets reveals that the unpolarized 445 

approach struggles to co-cluster observations with low DoLP values. However, its clusters exhibit significant 446 

DoLP differentiation from random ones within the glossiest (Q1) and most diffuse (Q4) DoLP quartiles (compare 447 

Figs 3 and S4). Moreover, incorporating polarimetric information only minimally rearranges observations 448 

(~10%) across non-adjacent DoLP quartiles (Fig 4). This suggests that unpolarized backscatter retains 449 

sufficient information on wing glossiness to effectively co-cluster the majority of DoLP-similar observations. 450 

Furthermore, our comparison of results from co-polarized and DoLP datasets indicates that they yield similar 451 

diversity estimates. Also, both HCA and GMM produce DoLP-homogeneous clusters (Fig 3 and S4-5 Figs), with 452 

the strongest agreement observed within the top glossy clusters (Q1 group) (Fig 4). This suggests that most 453 

information on wing glossiness is derived from the harmonic content of co-polarized power spectra, while DoLP 454 

quantification remains valuable for identifying rare low-DoLP cases. 455 

Our findings underscore the interplay between instrument sensitivity to insect morphology and the chosen 456 

clustering methodology. We find that while polarimetric lidar provides additional information, much of the 457 

relevant information is also present in unpolarized data, suggesting a need to balance instrument complexity 458 

with research goals. Furthermore, our findings highlight the importance of understanding the biases inherent to 459 

different clustering algorithms, as these can significantly influence diversity estimates. 460 
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Methods 461 

HCA 462 

We conducted Hierarchical Cluster Analysis (HCA) on area-normalized, log-transformed power spectra using 463 

MATLAB's linkage function, with 'ward' specified as the method and 'euclidean' as the metric. This method 464 

employs Euclidean distance to cluster power spectra based on similarity, accommodating minor variations in 465 

Wing Beat Frequencies (WBFs), a phenomenon frequently observed within the same species (9). Furthermore, 466 

this metric is sensitive to changes in the Degree of Linear Polarization (DoLP), including variations in the number 467 

of harmonic overtones and how power spectra scale with DoLP. We selected Ward's linkage criterion (56) to 468 

minimize the variance within newly formed clusters, thereby ensuring that observations within each cluster 469 

closely resemble the cluster's centroid. 470 

To determine the optimal number of clusters, we analyze the changes in linkage rates, identifying significant 471 

deviations from the expected values due to random variations in power spectra. Fig 9 illustrates our method. 472 

Panel a presents the linkage values in reverse order (from largest to smallest). By displaying these values on a 473 

logarithmic scale, we linearize the decrease in linkage values. From this plot, we calculate the linkage rates 474 

(slopes) at each step of the HCA and determine the median slope (𝛾 =  −0.357), which is depicted in Fig 9a as 475 

a solid line. This slope represents the expected decrease in linkage under conditions of random spectral 476 

variation. 477 

 478 

Fig 9.  Identifying optimal cluster numbers in hierarchical cluster analysis.  (a) Reverse-ordered linkage values on a 479 

logarithmic scale. The median slope (γ, solid line) represents the expected linkage decrease. (b) Compensated linkage 480 
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values. Shaded area highlights the expected linkage. (c) Distribution of compensated linkage values with median (red line) 481 

and outlier boundaries (𝑄1 −  1.5 ⋅ 𝐼𝑄𝑅, 𝑄3  +  1.5 ⋅ 𝐼𝑄𝑅, blue shaded area). 482 

Next, to identify significant linkages, we calculate compensated linkage values using the formula 𝑳𝒊
∗  =  (𝒊/𝑵)𝜸 ⋅483 

𝑳𝒊, where 𝑳𝒊
∗ represents the compensated linkage, 𝑳𝒊 is the reversed linkage (from largest to smallest), 𝛾 is the 484 

median slope, and 𝒊 ranges from 1 to the total number of steps, 𝑵. This transformation effectively modifies the 485 

linkage plot from Fig 9a to Fig 9b. Subsequently, we analyze the distribution of these compensated linkage 486 

values (Fig 9c) and identify significant linkages (outliers) using the 1.5xIQR rule (57). Specifically, we select 487 

those linkage values that exceed 𝑄3  +  1.5 ⋅ 𝐼𝑄𝑅. The optimal number of clusters is then determined by the 488 

count of these outliers, as illustrated above the shaded area in Fig 9b. 489 

GMM 490 

Prior to clustering lidar observations using GMM, we reduced the dimensionality of area-normalized, log-491 

transformed power spectra using Uniform Manifold Approximation and Projection (UMAP) (58), MATLAB 492 

implementation (59). UMAP parameters were n_components = 3, dmin = 0.01, n_neighbours = 199, and metric= 493 

'euclidean'. The dmin parameter is chosen to achieve tighter grouping of similar observations, while 494 

n_neighbours balanced algorithm between focusing on local and global structure of the data. We chose the 495 

maximal n_neighbours value allowed by the UMAP library. Reducing the data from 81 features (frequencies) to 496 

three (UMAP-coordinates) increased data point density, aiding a density-based GMM algorithm to identify 497 

clusters. 498 

Next, we fit a Gaussian mixture distribution (60) to the UMAP-embedded data using MATLAB's fitgmdist 499 

function (Statistics and Machine Learning Toolbox). To determine the optimal number of clusters, we scanned 500 

the n_components parameter (range: 55 – 555) and selected the solution minimizing the Bayesian Information 501 

Criterion (BIC). BIC is calculated as 𝐵𝐼𝐶 =  𝑙𝑛(𝑛)𝑘 −  2𝑙𝑛(𝐿), where 𝑛 is the number of observations, 𝑘 is the 502 

number of estimated parameters, and 𝐿 is the maximum value of the likelihood function for the model. Other 503 

fitgmdist parameters were: RegularizationValue = 1e-6, CovarianceType = 'full', SharedCovariance = 'false', 504 

Replicates = 1, and Options= statset (MaxIter = 100, TolFun = 1e-3). 505 

Another approach to finding the optimal number of clusters would be to use Akaike Information Criterion (AIC) 506 

calculated as 𝐴𝐼𝐶 =  2𝑘 −  2𝑙𝑛(𝐿). Both AIC and BIC criteria favor models that fit data well (large 𝐿) and have 507 
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fewer parameters (small 𝑘), however BIC tends to impose a stronger penalty on the number of parameters, 508 

resulting in favoring simpler models than AIC.  509 

Evaluating clustering agreement 510 

Next, we evaluate how well clustering algorithms agree about the optimal partitioning of the data. To compare 511 

solutions, we leverage two metrics from the scikit-learn library in Python (61): Adjusted Mutual Information 512 

Score (AMI) and Homogeneity Score. AMI (62) is a variation of Mutual Information (MI) that accounts for a 513 

chance for two solutions to agree, especially when we compare clusterings of different sizes or with different 514 

numbers of clusters. AMI scores range from 0 to 1, with 1 indicating perfect agreement and score of 0 indicating 515 

agreement no better than random chance. 516 

We also employ a Homogeneity score (63), a metric that reflects the internal consistency of solutions, for 517 

example, if larger clusters in one solution are split into many in another. A homogeneity score of 0 indicates 518 

that clusters of one solution have random observations compared to another solution. A score of 1 indicates 519 

perfect homogeneity, with each cluster in one solution containing observations of the same cluster in another. 520 

 521 

  522 
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Time and range communities 523 

We analyze the time and range profiles associated with clusters by extracting the time and range stamps of 524 

assigned observations. For each cluster, we calculate the probability of observing a member at specific time 525 

and range bins (as in Figs 1f and 1g). To compare clusters’ time and range distributions, we employ the two-526 

sample Kolmogorov-Smirnov (K-S) test (64), implemented in MATLAB, Statistics and Machine Learning 527 

Toolbox. The K-S test assesses whether two empirical distributions originated from the same parent 528 

distribution, providing a distance metric and p-value. Using K-S p-values measured between cluster pairs, we 529 

construct two similarity matrices: one for time and another for range.  530 

We construct similarity matrices to understand how clusters naturally group into communities. These 531 

communities are characterized by greater internal similarity compared to their similarity with clusters outside 532 

the group. To identify these communities, we first calculate a modularity matrix (65) using modularity_f(A, 533 

gamma), implemented in an external MATLAB library (66), where: 534 

1. A: The similarity matrix (K-S p-values) that contains K-S p-values between all cluster pairs. 535 

2. gamma (γ): The resolution parameter controlling the granularity of the community structure. Lower 536 

values (γ < 1) tend to produce fewer communities, while higher values (γ > 1) result in more 537 

communities. In our analysis, we use the default value of γ = 1. 538 

GenLouvain algorithm (66), with deterministic output and default parameters, is then applied to the modularity 539 

matrix. This yields a community assignment for each cluster, effectively partitioning the clusters into time and 540 

range communities. 541 

Additionally, based on this cluster-to-community mapping, we calculate a modularity score (M), which quantifies 542 

the strength of the identified community structure. Modularity values range from 0 (indicating a random 543 

structure) to 1 (signifying a well-defined structure), or even -1 (suggesting a structure less optimal than 544 

random). 545 

 546 

 547 
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Lidar based diversity indices 548 

To quantify and compare clustering results across experiments, we employed Hill numbers (67), a family of 549 

diversity metrics that allows us to emphasize different aspects of diversity by adjusting a single parameter, 𝛼 550 

(68). Hill numbers are expressed by the following equation (Eq. 4): 551 

𝐻𝛼  =  [∑ 𝑝𝑗
𝛼

𝑆

𝑗=1

]

1
1−𝛼

 (4) 

, where 𝑆 is a set of all clusters,  𝑝𝑗 is a relative size of cluster 𝑗 (cluster 𝑗 ∈ 𝑆) calculated as the number of 552 

observations in cluster 𝑗 divided by the total observations, and 𝛼 is an integer value ranging from ±∞. 553 

Varying 𝛼, we land at three diversity indices: 554 

Total number of clusters. The 𝐻0 metric (𝛼 =  0) reflects the total number of clusters (species) 𝑆, giving a high 555 

importance to rare clusters (eq. 5): 556 

𝐻0  =  ∑ 𝑝𝑖
0

𝑆

𝑖=1

 =  𝑆 (5) 

Effective number of clusters. The 𝐻1 (𝛼 =  1), also known as Shannon diversity of order 1, weighs both rare 557 

and abundant clusters (69), providing an estimate of how many equally-sized clusters would yield the same 558 

Shannon Entropy (Eq. 6, 7). This is analogous to the number of effective choices in a prediction model. 559 

𝐻1  =  𝑒𝑥𝑝(𝐻′) (6) 

𝐻′ =  − ∑ 𝑝𝑖𝑙𝑛(𝑝𝑖)

𝑆

𝑖=1

 (7) 

The number of dominant clusters. The 𝐻2 metric (𝛼 =  2) emphasizes dominant clusters, indicating a more 560 

even spread of diversity across clusters (Eq. 8). 561 

𝐻2  =  1/ ∑ 𝑝𝑖
2

𝑆

𝑖=1

 (8) 
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Detrending of power spectra 562 

For visualization purposes, we detrended the power spectra by fitting a line (trend) to area-normalized and log-563 

transformed power spectra and then subtracting it. The resulting positive and negative values indicate power 564 

above and below the trend. This approach, applied for heatmap visualization with a diverging colormap, allows 565 

us to highlight even subtle oscillations. However, it is important to note that we do not use the detrended power 566 

spectra in any analysis. 567 

Bootstrapping to evaluate confidence intervals 568 

To assess the variability of our metrics, we employed a bootstrapping technique (70), a resampling-based 569 

method well-suited for scenarios with limited day-to-day data. This approach involves generating N = 1000 570 

synthetic datasets by randomly sampling observations with replacement from the original dataset. Each 571 

original observation has an equal probability of being included in a synthetic dataset, and some may be included 572 

multiple times. The original dataset can be observations from the same cluster, community, or any other 573 

relevant subset. 574 

For each synthetic sample, we calculate the metric of interest, resulting in N = 1000 variants depending on the 575 

drawn observations. From this distribution, we empirically estimate the mean of the metric and its 95% 576 

confidence intervals (CIs) using the 2.5th and 97.5th percentiles. This provides a range within which we are 95% 577 

confident that the true value of the metric lies, accounting for sampling variability. 578 

In our study, we applied bootstrapping to estimate confidence intervals (CIs) for several key metrics: 579 

1. Clusters’ mean DoLP: To assess the DoLP for both found and random clusters, we generated N = 1000 580 

synthetic samples for each cluster by randomly drawing observations with replacement from the 581 

evaluated cluster. For each synthetic sample, we calculated the mean DoLP. By retrieving N values of 582 

mean DoLP, we then evaluated this distribution to obtain the mean and CIs for the cluster’s DoLP. 583 

2. Time and Range Profiles: For each time/range community or range-DoLP subset, we generated N = 584 

1000 synthetic samples by randomly drawing observations with replacement. For each synthetic 585 

sample, we determined the probability of an observation in time (or range). To quantify the variability 586 

of these probabilities, we analyzed the N values obtained at each time (or range) bin, reporting the mean 587 

probability and its 95% CIs. 588 
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S3 Fig. 35 largest clusters (GMM, DoLP dataset) 766 
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S1 Text. Diversity indices variability due to random UMAP/GMM initialization 768 

We also investigated the impact of random initialization of the UMAP and GMM algorithms on clustering results. 769 

Given they are stochastic, each algorithms’ execution can yield different labeling solutions, potentially affecting 770 

the consistency of derived diversity indices. 771 

To quantify variability of diversity indices, we perform 100 runs of UMAP embedding followed by GMM 772 

clustering. Each run, we change the random seed for both algorithms, while maintaining other parameters as 773 

described in Section Methods: GMM. Specifically, we keep the same value for the number of components, as 774 

was found to be optimal when using BIC score (see S1 Table). We summarize the results of these 100 775 

UMAP/GMM runs in S2 Table, presenting the mean diversity indices in bold, along with their corresponding 776 

confidence intervals in italics (2.5th and 97.5th percentiles). 777 

S1 Table. Optimal solutions from UMAP and GMM algorithms initialized with ‘random seed’ = 42 (result 778 

reported in the main text).  779 

 Dataset 
Number of components 

(GMM model) 

Number of clusters found, 

NoC, (H0) 

BIC 

(for optimal solution) 

GMM 

un-pol 80 80 2.091e+05 

co-pol 87 86 2.040e+05 

DoLP 89 89 2.020e+05 

 780 

S2 Table. Variations in diversity indices resulting from 100 random initializations of UMAP and GMM. 781 

 Dataset H0, Ncl H’ H1 H2 BIC 

GMM 

un-pol 
79.34 

77...80 

4.13 

4.05...4.19 

62 

57.17…66.02 

54.25 

47.85...59.22 

2.108e+05  

2.082e+05...2.136e+05 

co-pol 
85.44 

82...87 

4.18 

4.10...4.24 

65.16 

60.14…69.29 

56.51 

50.24...61.63 

2.059e+05 

2.034+05...2.088e+05 

DoLP 
87.34 

84...89 

4.19 

4.11...4.27 

66.02 

60.81...71.51 

56.43 

51.22...62.21 

2.050e+05 

2.023e+05...2.081e+05 

We observed that the number of found clusters (𝐻0) varied by up to ±2 across all three datasets, with 782 

significantly fewer clusters found in the unpolarized dataset compared to the co-polarized and DoLP datasets. 783 

Despite these minor fluctuations in 𝐻0, random initialization introduced variability of approximately ±5 cluster 784 

for the effective (𝐻1) and dominant (𝐻2) cluster numbers. These results show that the unpolarized and DoLP 785 

datasets differ significantly in the number of clusters (𝐻0), and therefore, the DoLP dataset shows a higher 786 

richness of signal. However, the variability of other indices is too high to confidently determine if these diversity 787 

estimates are significantly different between datasets. 788 

By considering both optimal and suboptimal clustering solutions (as indicated by the BIC variability in S2 Table), 789 

this analysis provided insights into the stability and robustness of diversity indices in the presence of stochastic 790 

algorithms. Furthermore, it allowed us to assess whether the three datasets exhibited distinct diversity profiles, 791 

irrespective of the specific clustering solution obtained in each run. 792 

 793 
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 794 

795 

S4 Fig.  DoLP characterization of clustering results (HCA, un-pol. and co-pol. datasets). Comparison of HCA 796 

clustering results (black) with random clustering (gray). 797 

 798 
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 799 

S5 Fig.  DoLP characterization of clustering results (GMM, un-pol. and co-pol. datasets). Comparison of DoLP 800 

clustering results (black) with random clustering (gray). 801 

 802 
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 803 

S6 Fig.  Median power spectra of clusters that belong to various DoLP ranks (HCA, DoLP dataset). 804 

 805 
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 806 

S7 Fig.  Median power spectra of clusters that belong to various DoLP ranks (GMM, DoLP dataset). 807 

 808 
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 809 

S8 Fig. Characterization of time and range communities.  Probability distributions for range (ABC) and time (I-810 

II-III) communities. Heatmaps at the ABC and I-II-III intersection display median power spectra for each time-811 

range community. 812 



47 
 

 813 

S9 Fig. Range dependence of co-polarized backscatter. Probability distributions show the likelihood of 814 

observations within range communities (A, B, C) and DoLP quartiles (Q1-Q4), with heatmaps of corresponding 815 

power spectra. Note the probability spike in C-plots (red dot) co-occurred with the land piece left of the laser 816 

beam over the pond. 817 
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Summary 

Insects are fundamentally important for every terrestrial food web. They constitute a major 

food source for numerous animal groups and perform as indispensable pollinators and nutrient 

recyclers. Many terrestrial ecosystems and freshwater ecosystems will collapse without 

insects (Goulson 2019). On the other hand, certain insect species spread diseases in both 

humans and livestock, ravage crops and food stocks, damage forests and destroy 

infrastructures (e.g., termites). In a world with a warming climate, phenomena such as the 

overall decline of insect biodiversity and biomass, the turnover in species composition or 

seasonal mass infestations of pest-insects could cause a serious long-term threat to human 

well-being (Outhwaite et al., 2022). This is why affordable, precise, non-invasive and 

unadministered long term in situ observation techniques are needed to monitor changes in 

insect activity and species composition as a part of insect biodiversity monitoring (Van Klink 

et al., 2024). To this day, insect monitoring is often done using work-intensive methods 

including nets or insect traps. Other concepts, such as entomological radar systems (Noskov et 

al., 2021) are heavy, large (trailer and vehicle needed), produced in small numbers and 

relatively expensive. Promising new results have been reported using simple camera 

techniques in combination with machine learning analysis as well (Wallace et al., 2023). The 

Entomological Scheimpflug-Lidar (ESL) technique has been tested in several countries and 

habitats as varied as Swedish forests (Li et al., 2020), African rainforests (Kouakou et al., 

2020) or the Australian alpine regions. It is a well-established technique, which allows the 

detection of high and low flying insects alike, featuring a superb temporal and spatial 

resolution, in terrestrial as well as aquatic environments (Brydegaard & Svanberg, 2018; 

Brydegaard & Jansson, 2019). In the past, automated monitoring systems have targeted 

particularly the wing beat frequency of individual insects in flight as diagnostic tool for 

species identification (Rydhmer et al., 2022; Wallace et al., 2023). However, most insect 

species feature context and sex specific ranges of wing beat frequencies (Gibson & Russell 



2006; Tercel et al., 2018) which can in addition be relatively similar from species to species. 

Additional information for species detection is needed.  

Here, we showcase ecologically relevant information utilizing basic statistical moments for 

species selection which can be extracted from recorded ESL-datasets, based on a full 

observation report of insects detected in the Taï National Park (Parc National de Taï, Côte 

d'Ivoire, a primary rainforest in West Africa) using a dual-band Lidar system (DB-ESL; 

Santos et al., 2023).  

 

Introduction 

Insect flight activity is the driver of various ecological processes like predator-prey dynamics, 

plant-insect interactions, or organic matter decomposition, which influence ecosystem 

stability and resilience (Crespo-Pérez et al., 2020). Especially many nocturnal insects play 

crucial roles in ecosystem functioning, including pollination (Macgregor & Scott-Brown 

2020). Moths and nocturnal bees are common nocturnal fliers of the tropics, facilitating the 

reproduction of flowering plants, including many crops (Buxton et al., 2022).  

 

Monitoring the abundance and diversity of insect communities in different habitats has been 

established as a measure for the status of a habitat’s overall biodiversity (Landmann et al., 

2023). It has been shown that agriculture and global warming have negative effects on the 

species richness and abundance on certain insect communities (Outhwaite et al., 2022). To 

validate conservational measures and to quantify anthropogenic impact on the biodiversity of 

a respective habitat, field surveys with respect to the abundance and diversity of insect 

species, therefore seems an excellent tool. To establish the first steps of baseline 

measurements of insect biodiversity in the Tai National Park, we deployed a dual-band ESL 

(DB-ESL, 808 and 980 nm lasers) within the boundaries of the national park.  

 

The Tai National Park hosts a 3,300 km^2 patch of pristine tropical, moist broadleaf forest, 

which is part of the Upper Guinean Forest system of Western Africa. Over the last decades, 

logging and extensive agriculture have threatened the existence of this “biodiversity hotspot” 

(Arcilla et al., 2015), creating a pattern of secluded patches of woodland.  

 

Insect abundance and species diversity exhibits seasonal patterns in tropical environments, 

which are linked to climatic changes such as rainfall, temperature, and humidity (Wolda, 

1978; Denlinger, 1980). The rainfalls during wet seasons may stimulate increased insect 

activity due to breeding opportunities and resource availability (Grøtan et al., 2012), peaking 

at the beginning of dry season followed by a decline at the end of dry season and the 

beginning of the following wet season (Valtonen et al., 2013). The dry season in Ivory Coast 

usually begins around November as the Inter-Tropical Convergence Zone (ITCZ) shifts 

southward, taking the rain-bearing weather systems away from the region. Rainfall decreases 

significantly during this period, marking the transition from the wet season to the dry season. 

The peak of the dry season is typically experienced between December and February. During 

these months, Ivory Coast experiences its driest and hottest weather conditions. Rainfall is 

minimal, if any, and humidity levels decrease. Clear skies and sunny weather are common 

during the day, with cool temperatures at night in some areas. The dry season persists 

throughout December, January, and February, with little rainfall recorded in most parts of the 

country (Le Houérou 2009).  

 

Besides the relatively light equipment, ELS offers cost-efficient long-term monitoring of 

insect activity featuring the capacity of hundreds of thousands insect observations per day and 

a temporal (multi-kHz sampling rates) and spatial resolution (ranging precision < 1m) which 



is unachieved by classic monitoring techniques using e.g. malaise traps. Even though the 

setup, calibration and operation of an ELS system requires some technical expertise and 

experience, ELS systems, with their 2 main components, a laser unit, and a receiving unit, 

stand out when it comes to conceptual simplicity. The ELS method was extensively described 

elsewhere (Brydegaard & Jansson, 2019). In very simplistic terms, the concept is based on a 

collimated Laser beam (multiband or single band, up to several hundred meters long, 50-

70mm in diameter) which is usually pointed at a termination target (a black neoprene surface) 

for calibration purposes. The beam can be oriented horizontally, parallel to the ground or 

vertically, pointing at the sky, as well as any desired angle in between. Once an insect enters 

the cross section of the laser beam while in flight, light will be scattered from the body and/or 

the wings of the insect, which is then collected by the receiving unit (usually a Newton 

telescope) and focused on a CMOS sensor. The Scheimpflug configuration (Brydegaard et al., 

2017) of the detector allows to record optically sharp images of these backscattered light 

events, or observations, over several hundred meters simultaneously, since signals from 

different ranges are focused on different pixels of the sensor.  

 

Hence the receiving unit can operate at sampling frequencies up to several kHz, hundreds or 

thousands of exposures of the same insect can be recorded before the respective insect leaves 

the beam. A typical insect observation lasts several milliseconds and contains hundreds of 

exposures, featuring oscillatory modulations of the wings and non-oscillatory information of 

the body. This allows us to reliably determine the wing beat frequency, as well as body- and 

wing-size ratios, which are relevant for target classification. Naturally, the gathered wing beat 

frequencies can be further analyzed in e.g. un-administered clustering procedures (Bernenko 

et al., in preparation) in combination with machine learning (Wallace et al., 2023), which in 

turn bears the potential for automated detection of individual species. 

 

The motivation to deploy a dual-band system is that by comparison of the light-signal, which 

is backscattered by the insects’ body, predictions about the degree of the corresponding 

melanization of the respective insect can be made. The darkish or brownish body coloration of 

insects is strongly influenced by the interaction of certain regulatory and effector genes, 

concerting the production of the pigment melanin all over the insects’ body (Popadić & 

Tsitlakidou, 2021), which can be remarkably diverse, even between closely related species 

(True et al., 2003). The expectation is that a higher degree of melanization means a higher 

diffuse reflectance of the longer wavelength (980nm) in comparison to the lower wavelength 

(808nm), and that the resulting ratio of the backscattered signal’s intensity can be used for 

species identification (Gebru et al., 2017). The recorded datasets include ecologically relevant 

information which allows us to determine overall insect activity patterns in time and space, 

insect species abundance and thereby insect biodiversity.  

 

 

 Materials and methods: 

 

Deployment and Configuration of the LiDAR System 

 

A dual-band entomological laser system (ELS) was established at the edge of the Tai 

rainforest to investigate insect diversity and abundance. The ELS system was designed 

according to the Scheimpflug principle, which ensures high-resolution imaging over extended 

distances. This was achieved by precisely aligning the transmitter and receiver telescopes, 

mounted on a tripod (EQ8, SkyWatcher, China), with a baseline separation of 814 mm. The 

transmitter telescope, a Ø 102 mm instrument with a 500 mm focal length, housed the core of 



the ELS system – a module containing two 3W TE-polarized laser diodes, one emitting at 808 

nm and the other at 980 nm. The 808 nm laser beam was combined with the second 980 nm 

beam using a beam combiner to achieve the system's dual-band capability. The receiver 

module comprised a Newton reflector telescope (TeleskopService, Germany) with a Ø 150 

mm diameter and 600 mm focal length. A CMOS camera (OctoPlus, Teledyne e2v, USA), 

featuring 2048 pixels (10x200 μm² each), was attached to the eyepiece of the receiver.  The 

angles between the instruments and slit orientation were meticulously adjusted to adhere to 

the Scheimpflug condition, further enhancing image quality. Importantly, the CMOS sensor 

was tilted at 37° relative to the optical axis of the Newton telescope to ensure optimal 

alignment with the Scheimpflug principle and facilitate smooth hinge dynamics. 

 

The LiDAR beam, emitted from the transmitter, was directed across the top of the rainforest 

edge canopy at an elevation angle of 13 degrees. Due to pauses required for canopy scanning 

and elevation adjustments, the LiDAR actively recorded data for 12% of the total flight 

duration. During operation, the system maintained a 10 kHz pulse repetition frequency, 100 

µs scan line rate, and 80 µs pulse duration. Each 3-second data file, composed of 

approximately 30,000 scan lines, averaged 120 MB in size. A custom LabVIEW script 

continuously logged the LiDAR observations and structured the data into organized files for 

subsequent analysis and interpretation. Over the night of the measurement, a total of 1.1 TB of 

raw data was acquired. After excluding irrelevant data (e.g., background noise, non-insect 

echoes), the dataset was reduced to approximately 300 MB, which is less than 30% of its 

original size. 

 

 

Results:  

 

General observations: 

During the night of the 7th to the 8th of January 2023, our system recorded over 14310 

observations of insects at various heights. The rate of observations peaked at 21:00 and began 

to gradually decline from around 23:00 onwards until it fell below the mean observation rate 

(255 observations /15min. bin) at around 4:00. This pattern was interrupted by a narrow peak 

after sunrise between 7:00 and 8:00 in the morning. 

The mean flight altitude of the detected insects was 19.2m (SD: 8.7), while the highest 

detected observation was at an altitude of about 405 m. The peak flight activity took place 

right under the canopy (~25m) at an altitude between 20-25m during the first half of the night.  

 

 



 
Fig 1.: (A) The scheme shows the general setup and principle of our dual band LiDAR system. The overlapping region of the laser 

beam and of the field of view of the receiver form the probe volume. Any insect which crosses the beam in flight will generate a 

signal of backscattered light which is detected by the receiver. In this example an insect crosses the probe volume of the LiDAR and 

is registered in 6 samples or exposures with the timestamps t1 to t6. The signal is focused on different pixels of the CMOS-sensor, 

allowing us to determine the range of the respective signal. The Pixel number can be plotted as a function of the respective exposure, 

revealing the dual-band signal. Note that the samples t3 and t4 leave a weaker signal than t1, t2 and t5 and t6 since the signal was 

captured while the wings of the insect and the body were at the same line of sight of the receiver, resulting in a smaller signal. This 

repetitive pattern allows the analysis of the wingbeat frequency of a respective insect observation. (B) A false color coded 2D map of 

a single insect observation. The signal strength is encoded at 12-bit resolution as overlay of the dual-band signal (green: 808nm, 

magenta: 980nm). The dashed lines encode the time of the calculated center of mass of the signal (t0) for both signal bands. (C) The 

plot displays some statistical moments which can be extracted from a respective exposure (data only shown for every 20th exposure). 

The filled circles encode the center of mass of the intensity distribution of the respective exposure (left y-axis) over the respective 

pixels, including the spread of the intensity (vertical error bars). The crosses and triangles depict the corresponding skewness 

(crosses) and kurtosis (triangles) of the respective intensity distribution. D: The plot shows the number of observations plotted as a 

function of time (15min. bins). The vertical dashed lines indicate the beginning of Astronomical twilight and the time of sunrise. Note 

the negative trend of detections as night progresses. All relevant graphs: green: 808nm, magenta: 980nm. E: 2D histogram depicting 

the flight altitude of the observations vs the time of night. The vertical dashed lines indicate the beginning of Astronomical twilight 

and the time of sunrise. The horizontal dashed lines indicate the height of the canopy (25m) and the mean flight altitude (19.2m). F-J: 

The flight altitude was binned (2m bin) on the y-axis and plotted as a function of the mean apparent size (F), the mean body (G) and 

wing (H) cross-sections, the mean mass (I) and number of observations, per respective bin from 0 to 50m. Note that the LiDAR was 

set up with the beam pointing in the sky at an angle of 10° relative to ground level, which is why we could not recorded insects flying 

lower than 7m. Insects in B; Observation #: 1975. Time: 21:18:47. Apparent size: 2.53mm. Flight altitude: 10m. Wing beat 

frequency: 148 Hz.    



Cross-sections: 

Using the sum of the calculated body cross-sections (~0.23m2), we utilized coefficients 

suggested by Genoud et al., (2023) to estimate the total mass of detected insects of ~ 0.58 kg.  

As expected, the cross-sections in the 980nm are larger than the cross-sections of the 808nm 

signal-band in most recordings. The opposite is the case for only ~20% of observations for the 

body cross-sections and ~30% for the wing cross-sections (see Fig 3.I). Our recordings 

suggest that our observations show a mean body cross-section of 16.3 (SD: 70.2; 808nm) and 

18.2mm2 (SD: 89.7; 980nm). The mean wing cross-sections are 3.9 (SD: 14.3; 808nm) and 

6.12mm2 (SD: 27.1; 980nm).  

    

 
Fig 2.: Comparison of insect cross-sections of body and wings using both signal-bands. A, B: Time-range maps of two insects 

recorded (time and height). C, F: The schemes illustrate the concept underlying the cross-section comparison. In C, a given insect 

creates a LiDAR signal by flying through the probe volume of the beam. While the diffuse reflection of the insect is stronger for the 

980nm band (illustrated by thick lines in magenta) as it is the case in (G), the signal of the 808nm is considerably weaker (illustrated 



by thin green lines). In F, due to the spectral characteristics of the given insect, an entire body part leaves little to no signature within 

the signal of one of the respective bands, as it is the case for (H).  G, H: The cross section of the recorded signal plotted as a function 

of time. The filled circles represent the bias (mean of the cross section within deltat, horizontal error bars), while the vertical error 

bars depict the standard deviation of the cross section (within deltat). We used the standard deviation to determine the cross section 

of the wings (oscillatory part and the mean of the bias for the cross section of the insect’s body (envelope) for the body to wing-ratio. 

Note that the 808nm signal (green) is considerably weaker in G, but higher than the 980nm signal in H. I: The bar diagram 

illustrates the composition of observations featuring a bigger cross section of the body and the wings in the two different bands. J, M: 

The 2D histograms show the cross sections of the bodies of all observations plotted as a function of the corresponding apparent sizes 

for both bands, 808nm in J and 980nm in M. Note that the signal in M is about double as strong as in J, reporting a higher degree of 

diffuse reflectance within the signal of the 980nm band. K, N: Same as in J and M but for the cross section of the wings. L, O: Direct 

comparison of the body cross sections of both bands in L and the cross sections of the wings in O. Insects in A and B; observations #: 

219, 4189. Times: 20:29:28, 22:31:55. Apparent sizes: 5, 6 mm. Flight altitudes: 18, 21m. Wing beat frequencies: 166, 64 Hz. 

 

Size: 

There seems to be a weak trend that larger insects may fly at higher altitudes (compare Fig.1, 

F; Fig.3, H). We did not detect any obvious trends regarding the time of flight and the 

apparent size of the insects. (Fig.3, G). The mean apparent size of our observations is 3.12mm 

(SD: 3.7) for the 808nm and 3.19 (SD: 8.2) for the 980nm signal-band.   

  

 

 
Fig 3.: Apparent size and range. A, D: Time-range map of the dual-band signal with both respective signal bands plotted in false 

colors (green: 808nm, magenta: 980nm). The dashed lines encode the exposure number which is closest to the calculated center of 

mass of the signal (t0) for both signals.  B, E: The apparent size and range of the same insects as in (A), (D). The curves show the 

intensity distributions of both signals plotted over the respective range of the signal. The open circles on the left y-axes show the 

mean range of the respective observation (between 67 and 68m for B and about 170m for E). The apparent size can be calculated 

using two different calculations (see methods). The conventional method (method 1, size depicted as distance of respective error bars 

on the right y-axis) utilizes the spread over the respective pixels over all exposures, while the other method (method 2) basically 

thresholds the pixels which contain signal at t0 and projects the apparent size on a previously calculated scale (distance between 

stippled lines on right y-axis). While method 1 seems to deliver a more conservative impression of the estimated apparent sizes, it 

tends to underestimate the apparent size of the individual observations. (C) Mean apparent sizes calculated for all observations for 

boths bands using both methods (method 1 on the left, method 2 on the right). The error bars encode the standard deviation.  F, I: 

Apparent sizes calculated using both methods plotted as histograms for both bands (F, for 808nm and I, for 980nm). Note that the 

distribution of method 2 is shifted towards a larger apparent size, in both bands.  G: To check for possible trends in size distribution 

over the course of the night, the apparent size (method 1) was plotted vs the Time of night in a 2D histogram. H: 2D histogram 

depicting the flight altitude vs the apparent size. Bigger insects seem to fly at higher altitudes in general (compare Fig.1 F). Insects in 

A and D; observations #: 13, 1581. Times: 20:22:25, 21:06:28. Apparent sizes: 3, 8 mm. Flight altitudes: 11, 29m. Wing beat 

frequencies: 225, 75 Hz. 

 

 

 

 



Skewness: 

In some insect species, the ventral side of the wings (Fig.4, A, B) seemingly shows a higher 

degree of reflection and vice versa (Fig.4, D, E). The result is that the individual exposures 

show the animals’ signal during the downstroke (Fig.4, L, left) or the upstroke (Fig.4, L, 

right) of the wingbeat cycle. Since the signal from the body of an insect is usually stronger 

than the signal from its wings, the distribution of the signal’s intensity usually shows some 

degree of skewness in both signal bands, which can be negative (Fig.4, C; skewness808:-0.6, 

skewness980: -0.6), positive (Fig.4, F; skewness808: 0.6, skewness980: 0.6) or in some cases 

even both (Fig.4, I; skewness808: 0.1, skewness980: -0.02). The signal’s skewness in our 

observations is positive on average and slightly lower for the 808nm band (mean: 0.2, SD: 

2.7) as the 980nm band (mean: 0.3, SD: 3.4).  

 

 
 
Fig 4.: A comparison of the Skewness. A, D, G: Time-range maps of two insects recorded (time and height). B, E, H: Time-range 

map of the dual-band signal of the same observations as in A, D and G but respective signal bands plotted separately (green: 808nm, 

magenta: 980nm). The filled circles encode the center of mass of the intensity distribution of the respective exposure (left y-axis) over 

the respective pixels, including the spread of the intensity (vertical error bars). C, F, I: The intensity distribution (normalized) of the 

corresponding insects signal in B, E and H for both bands. Note that the detected signal is considerably skewed negatively in both 

bands (green: 808nm and magenta: 980nm) in C, while the distribution shows a positive skewness in F. I shows both, a positive 

skewness for the 808nm band and a positive skewness for the 980nm band. The filled circles and the stipulated lines indicate the 

mode (dark green, dark purple) and the mean (bright green, bright purple) of the respective curves, indicating a negative or positive 

skewness respectively. J: The 2D histogram shows the skewness of the 808 vs the 980-band intensity distribution of all observations. 

K: The diagram displays the composition of skewness combinations of the intensity distribution of the two bands. L: The scheme 

depicts how the signal-skewness can be used to make assumptions of the characteristics of the insect-species, particularly of the 

reflectiveness of the wings of a respective species: The body of an insect usually shows a higher degree of diffuse reflection if 

compared to the wings. This leads to a negatively skewed distribution of the intensity distribution if the wings do reflect light during 

the downstroke (left) or a positively skewed distribution during the upstroke (right) of the wings. Insects in A, D and G; observations 

#: 2882, 5109, 36. Times: 21:49:40, 22:57:55, 20:22:58. Apparent sizes: 1, 4, 4 mm. Flight altitudes: 8, 19, 15m. Wing beat 

frequencies: 188, 161, 122 Hz. 

 

Kurtosis: 

Some insect species have a larger reflective body surface relative to their overall mass than 

others. Mosquitos for instance spread out their legs while in flight, which makes their cross-

section much larger relative to the actual diameter of thorax and abdomen (Fig 5. I, right). 

Moths on the other hand tuck their legs close to their abdomen while in flight, creating a 

smaller cross-section relative to the mass of the insect. This leads to varying kurtosis values of 

the intensity distribution of the signal (Fig 5. C, F). Interestingly, the kurtosis value of the 



respective signal bands can vary considerably as it is the case for the observations in Fig. 5, C 

(kurtosis808: 2.1, kurtosis980: -35.3) and Fig. 5, F (kurtosis808: 0.6, kurtosis980: 2.3).  
 

 

 
 
Fig 5.: A comparison of the signal kurtosis. A, D: Time-range maps of two insects recorded (time and height). B, E: Time-range map 

of the dual-band signal of the same observations as in A, D and G but respective signal bands plotted separately (green: 808nm, 

magenta: 980nm). The filled circles encode the center of mass of the intensity distribution of the respective exposure (left y-axis) over 

the respective pixels, including the spread of the intensity (vertical error bars). C, F: The intensity distribution (normalized) of the 

corresponding insects signal in B and E for both bands. Note that the intensity distribution of the detected signals of both bands 

(green: 808nm and magenta: 980nm) show considerably different forms of kurtosis. While the distribution of the 980 band shows a 

more compressed, low kurtosis in C, the distribution of the same band seems high in F. The intensity distribution of the 808 signal 

shows the opposite configuration. I shows both, a positive skewness for the 808nm band and a positive skewness for the 980nm band. 

The filled circles and the stipulated lines indicate the mode (dark green, dark purple) and the mean (bright green, bright purple) of 

the respective curves, indicating a negative or positive skewness respectively. G: The 2D histogram shows the kurtosis of the 808 vs 

the 980-band intensity distribution of all observations. H: The diagram displays the composition of kurtosis combinations of the 

intensity distribution of the two bands. I: The scheme illustrates how the signal-kurtosis can be used to make assumptions of the 

characteristics of the insect-species, particularly of the different reflectiveness of the entire insect: The body of an insect usually 

shows a higher degree of diffuse reflection if compared to the wings or legs. This leads to a high kurtosis of the intensity distribution 

of the overall signal, if the thorax and abdomen of an insect are small if compared to the overall less melanized surface (like in a 

mosquito on the right) or if thorax and abdomen are big and highly melanized like in e.g. a beetle (left).  Insects in A and D; 

observations #: 226, 2857. Times: 20:29:47, 21:48:43. Apparent sizes: 5, 5 mm. Flight altitudes: 15, 20 m. Wing beat frequencies: 212, 

137 Hz. 

 

 

Discussion:  

This report is complementary to previous measurements conducted in Ecuador (Santos et al., 

2023), which aimed to monitor insects in a coastal rainforest and dense fog under natural 

conditions. Due to technical difficulties, the start of the measurement was delayed to around 

20:00 after sunset (07. January 2023, 18:20 local time) which was well within astronomical 

darkness at the recording site. Our laser beam did penetrate the canopy, pointing at the nightly 

sky, enabling us to detect insects flying beyond and above the canopy. Interestingly, most 

observations were recorded at a flight altitude less than 25m, directly beneath the canopy. At 

this stage, we cannot make any assumptions about the exact species of insects that we have 

recorded, but we noticed a remarkable abundance of epiphytes in the trees next to the camp. 

Many epiphyte orchids native to Western Africa are members of the genus Angraecum and 

Bulbophyllum. These orchids are known to be visited by nocturnally pollinating insects, such 

as moths, nocturnal bees and even crickets, but also usually diurnal and crepuscular active 



species such as flies (Raguso, 2020; Micheneau et al., 2010). At least in Thailand, members of 

the group Phoridae are known Bulbophyllum pollinators (Pakum et al., 2019), and certain 

Phoridae are known to exhibit distinct nocturnal activity (Bostock et al., 2017). It might be 

the case that a considerable proportion of the insects which were detected by our system were 

visiting epiphytes and were therefore flying just below the canopy.  

 

The benefit of a dual-band LiDAR configuration is that the gathered complementary 

information of both bands can be used for species discrimination if the wing beat frequency, 

or other features do not deliver enough certainty for a precise species identification. Let’s 

assume two individuals of two closely related insect species, or male and female of the same 

species are detected by a LiDAR system: The wing beat frequencies or the apparent size and 

cross-sections of body and wings of both species (or both sexes of the same species) are 

nearly identical, except the coloration, as it is the case for e.g. certain members of the families 

Coccinellidae, Acrididae or Libellulidae (and many more). A different coloration, especially a 

difference in darkish/brownish color patterns would naturally mean a difference in the 

absorption/diffuse reflection characteristics in the two signal bands at 808nm and 980nm. A 

difference in the ratio of both bands would mean that both observations mentioned above 

would be in fact members of different species (or members of the same species but different 

sex). Observation number 4189 (see Fig. 2, B, E, H) represents an extraordinarily interesting 

specimen when it comes to the comparison of both signal bands. In this case, the 808nm 

signal (green) is considerably stronger than the 980nm signal. Moreover, due to the shifted 

pattern of the 2 signals (Fig. 2, H), we can deduce that the observation was an insect with 2 

pairs of wings. The 808nm band in Fig. 2, H features about double as many peaks as the 

980nm band. Most interestingly, the missing peak in the 980nm band of Fig. 2, H allows us to 

deduce further that the ventral side of one pair of the wings has different reflective 

characteristics than the ventral side of the other pair of wings. An alternative explanation 

would be that the single peak in Fig. 2, H represents the signal of a beetle’s elytron which did 

not perform the full upstroke/downstroke amplitude during the wingbeat cycle 

(https://youtu.be/1Wnd6c42w7w?si=JSQzbA6Tk3Pe8f8n 3:56)  

 

As already mentioned in the results, there is a weak trend of larger insects being recorded at 

higher altitudes. This might be simply since the system naturally is prone to detect larger 

insects at higher distances at a higher rate due to the stronger signal they create in contrast to 

smaller insects. In this report, we demonstrate that the dual-band LiDAR method in 

combination with a few simple calculations of e.g. the skewness and the kurtosis offer an 

addition to the toolkit of species identification. In addition, insect group specific cross-section 

ratios of the 808nm and the 980nm signal will make it easy to perform rough insect group 

analysis to determine insect group compositions even without time and labor-intensive 

machine learning procedures. The simple comparison of features like the cross-sections, 

skewness and kurtosis of both signal-bands in combination with e.g. the calculation of the 

apparent size might even lead to family or even species specific signal signatures which can 

be filtered for in the recorded datasets.  
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3D-Printed Fluorescence Hyperspectral Lidar
for Monitoring Tagged Insects

Hampus Månefjord , Lauro Müller , Meng Li , Jacobo Salvador, Sofia Blomqvist, Anna Runemark,
Carsten Kirkeby, Rickard Ignell , Joakim Bood, and Mikkel Brydegaard

Abstract—Insects play crucial roles in ecosystems, and how they
disperse within their habitat has significant implications for our
daily life. Examples include foraging ranges for pollinators, as well
as the spread of disease vectors and pests. Despite technological
advances with radio tags, isotopes, and genetic sequencing, insect
dispersal and migration range remain challenging to study. The
gold standard method of mark-recapture is tedious and ineffi-
cient. This paper demonstrates the construction of a compact,
inexpensive hyperspectral fluorescence lidar. The system is based
on off-the-shelf components and 3D printing. After evaluating the
performance of the instrument in the laboratory, we demonstrate
its efficient range-resolved fluorescence spectra in situ. We present
daytime remote ranging and fluorescent identification of auto-
powder-tagged honey bees. We also showcase range-, temporally-
and spectrally-resolved free-flying mosquitoes, which were tagged
through feeding on fluorescent-dyed sugar water. We conclude
that violet light can efficiently excite administered sugar meals
imbibed by flying insects. Our field experiences provide realistic
expectations of signal-to-noise levels, which can be used in future
studies. The technique is generally applicable and can efficiently
monitor several tagged insect groups in parallel for comparative
ecological analysis. This technique opens up a range of ecological
experiments, which were previously unfeasible.

Index Terms—Laser radar, fluorescence, hyperspectral sensors,
remote sensing, environmental monitoring, instrumentation,
ecology, pollination, disease vectors.

I. INTRODUCTION AND MOTIVATION

POWDER tagging can be what ring marking is for ornithol-
ogy, what staining is for microscopy, or what isotopic

labelling is for tomography, but for ecological entomology. The
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ability to mark insects significantly increases detection certainty
and specificity compared to classification by intrinsic proper-
ties[1], [2], such as cross sections, spectral- or polarimetric prop-
erties, and wing beat modulation. In addition, marking allows
for the detection of specific individuals, enabling assessment
of insect lifetimes[3], population densities[4], and dispersal in
the landscape[5], approaches, which have been the cornerstones
in numerous entomological studies. Moreover, marking and
detecting insects is crucial for monitoring the dispersal and
survival of biological control agents in different habitats. In
particular, marking and detecting insects have been used to
investigate the interaction between predators and parasitoids,
as understanding their movement is important for crop manage-
ment[6]. Powder tagging also enables interaction experiments,
involving cross contaminations between, e.g., pollinators and
flowers, or as indicators of mating[7]. Except for a few larger
species[8], [9], most insects are too small to carry harmonic tags,
GPS, or radio devices. Remote sensing, such as radar[10], [11]
and lidar[12], [13], can potentially measure insect fluxes in the
landscape, but specificity is limited, and flux assessment does
not provide information on the migration or dispersal range, or
tracking of individuals. Lastly, marking and detection proce-
dures may be used to estimate the population size of insects in a
given area.

Lidar is a particularly interesting and efficient active approach
to monitor insects[14]. As opposed to sonar, atmospheric atten-
uation, µatt., of light can be less than a km−1, and as opposed to
radar, the outgoing lidar beam can be collimated. The collimated
lidar beam implies that signal loss is dominated by the omnidi-
rectional backscattering, and the attenuation is dependent on the
squared return distance, whereas radar typically attenuates by
the distance to the fourth power (round trip). The simultaneous
ranging and intensity measures of lidar allow the estimation
of the fraction of light reaching the aperture and, thus, enable
quantification of scattering and fluorescence to some extent[15].

The collimated beam and tunnel vision of lidar systems allow
illumination and high detection sensitivity of large probe vol-
umes, even with limited laser power. This is due to the fact that
the same light transverses the probed air transect and, thus, light
is recycled meter by meter, unless attenuated by an object in
the transect. Consequently, entomological lidar[16] yields more
observations over time compared to, e.g., sensors or E-traps[17],
[18] with a limited probe volume.

Early work demonstrated fluorescence detection of marked
insects using lidar [19], but the instrumentation was inefficient
in terms of observation counts, and the system was exces-
sively bulky, preventing widespread replication and usage. Over
the last decade, topographical lidar technology has undergone

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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tremendous development and miniaturization. This has offered
many novel ecological applications for profiling vegetation
structure[20], which affects the abundance and composition of
the fauna[21], and can now be used to assess insect defolia-
tion[22]. The depth information gained from airborne lidars
yields complementary information to hyperspectral imaging,
discriminating molecular compositions. Examples are today
well-established on satellites, airplanes, and drones[23], [24].

The need for improved specificity has spurred the develop-
ment of multiband lidar[e.g., 25, 26], and extensive efforts for
combining data from vegetation lidar and hyperspectral imaging
have been conducted[e.g., 27]. The method of fusing lidar and
hyperspectral imaging signals is challenging, since the harmonic
pulses of the lidar at distinct ranges are difficult to match to in-
dividual pixels of the hyperspectral image. Advanced multiband
lidar concepts, including fluorescence lidar have been presented
over the last two decades[28]–[32]. These time-of-flight systems
are based on pulsed solid-state lasers and ultraviolet harmon-
ics through gated-imagers, spectrometers, or multi-anode PMT
arrays. None of these concepts provide at the same time: a)
full-waveforms range echo, b) hyperspectral signatures, and c)
continuous time series.

Full waveform hyperspectral short-range time-of-flight lidars
have been reported based on super-continuum sources[33], [34].
Such fiber lasers are, however, limited to low peak powers and
high repetition rates, and the approach can therefore not be scaled
up to long-range remote sensing, because the maximum unam-
biguous range is the speed of light over twice the repetition rate.
This limitation does not exist for continuous-wave Scheimpflug
lidars[35]. Scheimpflug lidars can be rescaled to cover both
short[36] and long ranges[37]. The Scheimpflug method can be
extended to full waveform real-time hyperspectral lidar based on
image sensors and laser diode devices[38], [39]. Applications
have included aquatic profiling[40] and vegetation profiling
from drones[41].

In this work, we further develop the design principles of
fluorescence hyperspectral Scheimpflug lidar, and demonstrate
a compact, low-cost instrument built with off-the-shelf compo-
nents and 3D printing. Compared to previous aquatic work based
on blue 445 nm lasers and shorter ranges, this instrument is based
on violet laser at 401 nm and working distance up to 100 m in
air. We show that fluorescence can simultaneously be resolved
in range, time, and photon energy (wavelength) from free-flying
tagged insects in full sunlight. Furthermore, we demonstrate
the feasibility of detecting insects fed by a fluorescent sugar
solution.

II. INSTRUMENT DESIGN

Here, we present the initial design considerations, raytracing
optimization, and the fabrication with 3D printed parts. The
complete system overview is provided in Table I.

A. First-Order Design

The fluorescence hyperspectral lidar derives from earlier
projects of Scheimpflug lidar[36], [42], [43], and its hyperspec-
tral variety[44], [45], as well as the geometry and design details
have been thoroughly revised[35], [46], [47]. Hyperspectral
Scheimpflug lidar is based on the combination of Scheimpflug
lidar and hyperspectral push-broom imaging[48].

TABLE I
SYSTEM SPECIFICATIONS OF THE FLUORESCENCE HYPERSPECTRAL LIDAR

Briefly, the Scheimpflug principle[49] allows sharp focusing
across wide ranges despite using a large aperture. This is ac-
complished by letting the object plane, the lens plane, and the
image plane intersect. For a Scheimpflug lidar, the object plane
is comprised of an air transect illuminated by a laser beam (see
Fig. 1a). In addition to the Scheimpflug condition, which does
not consider focal lengths, the so-called hinge rule relates the
focal plane of the optics to the object- and image planes (see
Fig. 1a).

As a rule of thumb, a larger tilt of the detector (here slit) -plane
implies a decreased triangulation resolution. A benefit, however,
is a shorter lidar baseline, and, thus, a more compact system. We
designed our lidar to cover a range from 5 m to 100 m, which
was accomplished by an f300 mm, ø75 mm receiver achromat, a
transmitter-receiver baseline separation, D, of 32.4 mm, a slit tilt
angle, α, of 39.5°, and a slant angle, ϕ, of 2° (the angle between
the optical axis of the transmitter and receiver).

Spectral dispersion of received light is accomplished per-
pendicularly to the ranging axis (see spectral analyzer sketch
in Fig. 1b). We employed the prism-grating-prism (PGP)
method[48], with an ensemble of an f100 mm achromat, a
6° wedge, a 300 groove/mm transmission grating, a 4° wedge,
and an f50 mm achromat. The purpose of the two wedges is
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Fig. 1. a) First-order design approach to hyperspectral lidar using two con-
secutive sets of Scheimpflug conditions and hinge rules. The first Scheimpflug
condition relates the violet laser beam to the receiver lens- and slit-plane, whereas
the second Scheimpflug condition relates the slit-plane to the spectrometer- and
detector-plane. Note that the angle between the receiver and the laser axes is
exaggerated in this drawing. In reality, it is approximately 2˚, which elongates the
probe volume. b) Orthogonal sketch showing the dispersion of photon energies
by a prism-grating-prism method (PGP).

to get the optimal incidence angle of the light onto the blazed
grating, while keeping the optical path coaxial.

The f-number of the spectrometer optics needs to be smaller
than the f-number of the collecting optics to capture the light
cone across the slit efficiently. Systems covering one octave
(e.g., 400-800 nm), such as the one presented here, require
gratings with the lowest available groove per millimeter. In order
to fit the entire spectral range onto our imager (Sony IMX174
CMOS in a Basler acA1920-155 um camera), the setup required
a slit-to-imager magnification of 2:1. This suggests a detector
tilt of 39.5°/2 ≈ 20°. Since the area of the imager is 11.3 mm
x 7.1 mm, the magnification implies that 22.6 mm of the slit is
imaged onto the imager. To accomplish a decent signal strength
at fast sample rates, we chose a moderate spectral resolution
with a slit width of 200 µm. Considering the magnification of
the spectral analyzer, this potentially provides 2·7.1 mm/200 µm
= 71 effective spectral bands across the imager.

B. Raytracing

The Scheimpflug condition and hinge rule are similar to
the first order reciprocal truncation, the thin lens formula. In
practice, the achromats, wedges, and grating account for several
cm of glass with different refractive indices. Consequently, the
optimal design deviates substantially from thin lens approxi-
mations. Raytracing was implemented in OpticStudio (Zemax,
USA) to model the light through the spectral analyzer. The
initial setup was based on the Scheimpflug- and hinge rules,
as described in the previous section. The raytracing used three
F/4 light cones sources from the near, middle, and far end of
the slit as sources. Each source consisted of five wavelengths,
400, 480, 560, 640, 720, and 800 nm. In total 15 ray bundles
impinged on the imager, three along the ranging axis, and five
along the spectral axis (Fig. 2).

The distance and the tilt of the imager were adjusted to
minimize the point spread function of all 15 ray bundles (Δλ
andΔr in Fig. 2b). In practice, the point solutions are convoluted
by the imaged slit width (100 µm). Thus, the spot size should

Fig. 2. Screenshots from raytracing simulation and optimizations of the spec-
tral analyzer. a) From left; polychromatic light-cone point sources at three po-
sitions along the tilted slit propagate through the prism-grating-prism assembly
and form a range-photon energy image on the imager. The colors of the rays
represent the different source points along the slit b) Point spread functions of
the ray bundles across the imager. c) Close-up of beam waists or ray bundles,
the focus for closer ranges was down-prioritized since the triangulation principle
of bistatic lidars counteract this effect. The colors of the bundles represent [as
opposed to in (a)] the wavelength of the light.

ideally match this size in the spectral domain. Since Scheimpflug
lidar is based on the triangulation principle, range resolution de-
teriorates with range. Therefore, focusing in the ranging domain
should be prioritized for the far end of the imager (Fig. 2b and
2c). Stray light, ghost reflections, and the 0th diffraction order
from the grating could also be traced. This was, however, not
pursued in this initial test.

C. 3D Printed Spectral Analyzer

The spectral analyzer is comprised of five optical elements
of various shapes, with minimal spacing. Mounting them with
conventional photonic lab supplies would be both challenging
and costly. Furthermore, precise alignment of the pieces would
not be guaranteed. Instead, we proceeded with the optimized pa-
rameters from the raytracing and designed a sandwich structure
for additive filament 3D printing. The sandwich concept implies
cutting the envisioned optical design into two similar blocks, in
which the optical path and slots for the optical components were
removed.

3D printing offers numerous simplifications over conven-
tional optical design approaches, such as CNC milling. Con-
siderations, such as the effects of the size of the milling tool,
and the problem of milling right-angle corners are not present in
the additive manufacturing. Precise baffles, matching the light
cones, were added along the optical path in order to prevent
forward scattered light.

The sandwich structure was printed in black PLA (PLA-
DF02, Dremel, USA), with a fill factor of 100% on a commercial
3D printer (Dremel 3D45, USA) with 200 µm layer height. The
used filament was opaque but glossy. We learned that a limited
number of baffles, spaced along the light pipe, was optimal for
suppressing stray light. In addition, maximal internal fill factor
was not required. The structural integrity was ensured by steel
rods through the assembly, see Fig. 3. Carbonized and antistatic
alternative filaments, which could reduce the glossiness are
available at a higher cost.

After the initial 3D-printing trials, dimensions for screw- and
rod holes, and the slots for optical elements, had to be adjusted
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Fig. 3. CAD drawing and photograph of the complete hyperspectral lidar,
partly made from a commercial optical cage system, with precision kinetic
mechanisms for aligning beam field of view overlap and divergence, as well
as slit positioning. The 3D-printed sandwich structure (seen in the two insets)
had its top part removed to reveal the lenses L1 and L2, wedge prisms W1 and
W2 and the transmission grating G. .

with a margin for the nozzle width of the 3D printer. The pre-
cision, structural stability, and rigidness of the spectral analyzer
sandwich structure were satisfactory. Long-term degradation
seems unlikely because a steel rod cage system was embedded
along the optical path, and steel bolts clamped the two sandwich
parts together. Fig. 3 displays the 3D model, and the prototype of
the entire lidar, including the bottom part of the spectral analyzer,
revealing the internal optical elements.

III. CALIBRATION AND PERFORMANCE

The hyperspectral lidar acquires backscattering and fluores-
cence intensity counts (12 bit), as a function of time, distance,
and photon energy (see Fig. 4). The spectral range covers the
excitation wavelength, the fluorescence spectra of different pow-
der dyes, and the entire visible range. The spectral range also in-
cludes the second-order diffraction of the excitation wavelength,
which may be used as spectral calibration. The time-domain
information is acquired as a sequence of images, and the frame
rate is limited by the exposure time and the USB3 transfer speed.

Our customized acquisition program was made in LabVIEW
(National Instruments, USA). The program acquires a sequence
of images, with parameters, such as the number of images, their
binning, exposure time, and gain, being real-time customizable.
The collected sequence of images, in the form of a data cube (see
Fig. 4), is visualized in the interface of the program. The mean
image, averaged over time, the lidar echo (intensity vs. range) of
selected spectral bands, the average spectrum of a selected range
region, and a time-range map are all visualized, while the system

Fig. 4. The data acquired by the hyperspectral lidar contains information about
range and wavelength, which are imaged onto the horizontal and vertical direc-
tion of the imager. Time is resolved by stacking camera exposures. The resolution
and range in the three dimensions are indicated in the figure. Specific system
values are indicated, such as the wavelength of the laser and the fluorescent
powders used, the near limit, the range of complete overlap, and the position of
the termination board.

acquires the lidar signal. The image cubes are then continuously
saved as raw files, with time-stamped filenames.

A. Spectral Calibration

A spectral calibration procedure investigated the mapping
from pixel number to wavelength, in nanometer, along the
spectral dimension. The spectral analyzer was removed from
the lidar system, and the slit was directed towards an ø200
mm integration sphere coated with BaSO4 (Oriel, USA). Light
from a spectral cadmium (Cd) lamp, with known spectral lines,
was injected into the sphere through another port. The sphere
provides a homogenous Lambertian light field. The resulting
intensity image on the imager can be seen in Fig. 5a. Four atomic
cadmium spectral lines are observed with wavelengths of 467.8,
480.0, 508.6, and 643.8 nm (Fig. 5d). The full width at half
maximum (FWHM) of the 5s5p-5s6s transition (508.6 nm) was
measured satisfactory at the far- and mid-range of the slit to 5.5
and 7.6 nm. However, in the near range, the spectral resolution
deteriorated to 30 nm.

For the same atomic line, the shift of the spectral registration
along the range axis was studied, by finding the center of mass
(CoM) and the standard deviation (SD) of the signal (Fig. 5c).
The CoM and SD account for the first two statistical moments,
and are used to quantify spectral misregistration effects, such as
keystone and smile[50]. The pixel-to-wavelength mapping could
best be described by first-order polynomials. The first coefficient
varied from 348 to 338 nm from the near to the far end of the
imager, and the second polynomial coefficient varied from 0.369
to 0.385 nm/pixel. This change in the polynomial coefficients
quantifies the keystone effect. The coefficients varied linearly
across the range, thus, no smile was detected. Correcting the
artifact by image transformation, and wrapping, induces interpo-
lation errors. Another approach would be to use range-dependent
spectral calibration.

In situ, the lidar provided an auto-calibration feature; both
the elastic (401 nm) backscattering from the atmosphere, and its
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Fig. 5. Laboratory calibration and performance tests. a) Light distribution
on the CMOS image chip when the spectral analyzer was presented with a
homogeneous light-field of a cadmium (Cd) spectral lamp. b) The mean intensity
along the ranging direction of the hyperspectral lidar was obtained by averaging
over the complete spectral range. The intensity goes down in the extreme ends
of the range, and its shape changes slightly with the positioning of the spectral
analyzer relative to the integrating sphere port. c) The spectral registration of
light from the 508.6 nm atomic line (the Cd 5s5p-5s6s transition) is described
with the center of mass (CoM) and standard deviation (SD) of intensity on the
imager. d) The spectrum of the spectral cadmium lamp is shown for the far,
mid, and near range as indicated in (a). A shift in the peak wavelength and
the smearing of the 467.8 and 480.0 nm lines can be seen for the near range,
and smearing increases further at the extreme near range. e) The experimental
configuration included a Cd spectral lamp illuminating an integrating sphere,
and the spectral analyzer was directed toward another port of the sphere.

second-order diffraction (fake 802 nm light), was observable as
two narrowband signals. Spectral calibration was thus always
available as an interpolation between these lines.

B. White Calibration

The spectral response of the instrument is primarily governed
by the spectral sensitivity of the CMOS imager, and the ef-
ficiency curve of the grating. Light from a halogen tungsten
filament was injected into the integrating sphere. The source
spectrum was assumed to be a 3000 K Planck black body
distribution. The measured peak response was identified in the
500-600 nm region, but sensitivity extended over the full spectral
range. The response was∼25% of the peak value in the extremes
at 400 nm and 800 nm. This suppression was somewhat benefi-
cial, since no suppression filter for the elastic excitation light was
used, which is desirable when capturing elastic and fluorescence
light within the same dynamic range. A steep spectral response
will have the effect of shifting observed fluorescence features
towards the center if not compensated for. In our case, however,
this effect was minimal.

C. Flat Field Calibration, Lidar Form Factor, and
Cross-Sections

The homogeneous light field from the integrating sphere
measurements provides the intensity along the slit (Fig. 5b).
A partial shielding of the light cones, at the extremes of the
slit, resulted in an attenuation of the response at the outermost
near and far ends. The effect could be addressed by lowering the
f-number of the spectral analyzer or by reducing the slit-detector

Fig. 6. a) Elastic backscattering lidar signal from the air. The lidar transect is
terminated at a board 166 m away. The analytical function (1) is fitted to the air
signal with r0 = 11 m and γ= 7. b) Remotely retrieved spectrum for the powder
plume containing elastic backscattering, and fluorescence from released plume
of all three powders; the axis indicates lidar intensity counts. The individual
spectra of the laser, and each powder, as measured with a compact spectrometer
in the lab. c) The average intensity of the recorded fluorescence of each powder
over time near the release point of the plume.

magnification. We noted from Fig. 5b that at least 85% of the
imager could be used in the ranging domain.

The actual range response of the lidar in the field was a com-
bined effect of the aforementioned flat-field calibration and the
beam-FoV overlap. The curve can be expressed analytically[51],
although the gold standard[52] is to use the tabulated Raman
cross-section of a bulk signal of, e.g., N2, O2 (or H2O in aquatic
lidar). Instead, we used a previously described analytical model
for Scheimpflug lidars[53],

Goverlap(r) =
1

1 +
(
r0
r

)γ (1)

Here, r0 is the range of half overlap, and γ is a shape factor. In
the field, the lidar provides an intrinsic form-factor calibration,
since the homogenous and static air signal will continuously
report the system-range sensitivity curve. We used this elastic
air signal from the field experiment (see Fig. 6a), and identified
r0 = 11 m and γ = 7. The intensity counts of the measured air
signal at 50 m range averaged 21 counts, while the noise (SD
over time) was 0.96 counts. This gives a signal-to-noise ratio
(SNR) of 22.

Whereas the air signal can be flat beyond complete overlap
(as seen in Fig. 6a), fluorescent echoes from solid targets will
decrease by r2. It is possible to compensate for the r2 decrease to
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some extent by the increasing slope of Eq. 1. However, the field
of quantitative fluorescence cross-sections is poorly developed,
possibly due to the scarce availability of fluorescence lidars.
More details on elastic lidar cross-sections can be found in[53].

D. Range Calibration

The Scheimpflug range calibration relies on precise geometric
information about the system. A position along the slit is con-
verted into an observation angle with the receiver lens as a pivot.
The range can then be estimated by triangulation, given that the
baseline separation and the observation angle are known. The
range for each pixel, rpix, is described by

rpix(n) = D
Frec + nM�pix (sinα− cosα cotϕ)

Frec cotϕ+ nM�pix (sinα cotϕ+ cosα)
(2)

in which D, Frec, M, �pix, α, and ϕ are system parameters found
in Table I, and n is a running index from 1 to Npix. The details
and derivation of Eq. 2 are found in[47]. The pixel-to-range
mapping can, however, also accurately be approximated by a
squared relation[46]. The ranging accuracy deteriorates with
range. However, ranging precision can be improved at far ranges,
at the expense of range precision in the short range, by choosing
an adequate beam expander aperture and a convergent beam[35],
[54]. Consequently, the range resolution can deteriorate linearly.
We estimate the ranging accuracy to approximately 6% for the
present system.

IV. EXAMPLES OF FIELD APPLICATIONS

Several field applications were investigated at Stensoffa Field
Station located in southern Sweden. The fluorescence hyper-
spectral lidar was mounted on an astronomical tripod (EQ8,
SkyWatcher, Canada) placed in a carport tent for weather pro-
tection.

A. Powder Plume Releases

Plume-release experiments are often performed within dif-
ferent variations of lidar research. Such experiments can have
several different purposes, e.g., characterizing a lidar system
or examining the measurement possibilities for a specific lidar.
Other possibilities include fundamental research, e.g., in studies
of biological aerosols or to detect biological warfare agents [see,
e.g., 31 and references therein]. Measurements in plumes of
different particles and smoke have also been performed with
Scheimpflug lidar to investigate the potential for particle classi-
fication and sizing[55], [56].

In the present work, as an initial proof-of-concept study,
released plumes of mixed fluorescent powders were investigated
with the Scheimpflug-lidar system. An equal mixture of red,
green, and blue fluorescent powder (UV Holi powder, Paint-
Glow, U.K.) was released in the vicinity of the lidar transect.
The imager was set to 100 ms exposure time, a gain of 24 and
2x4 binning (4 along the spectral axis). The spectral intensity
profile of the powder mixture was captured at the range of release
50 m from the lidar at a single exposure (Fig. 6b). The intensity
variation at the release point over time was recorded (Fig. 6c).

B. Powder Tagged Bees for Foraging Range Assessment

Pollination is an ecosystem service, which is crucial for food
production[57]. By marking bees from known hives and tracking

Fig. 7 a) The lidar transect over a meadow at Stensoffa field station. The beam
was terminated 100 m from the lidar. Forest surrounds the transect, but no trees
are in the vicinity of the beam. A beehive with a fluorescent marking tray was
located at 55 m from the lidar at the ground, 1 m below the beam. b) The beehive
with the attached powder tray and a broom. c) Several powdered bees are flying
around the hive. d) The signal acquired by the hyperspectral lidar shown as an
echo for a time during which a bee is in the beam, and a static time during which
nothing is obstructing the beam before the termination. For both instances, the
elastic signal (397-406 nm) and the red fluorescent signal (585-615 nm) are
shown in violet and red, respectively. The SNR of the fluorescent signal was
177 compared to 20 of the elastic. e,f) Two selected occurrences of marked bees
entering the beam during full daylight. The intensities of the red and elastic
spectral band are shown as the red and blue channels of the RGB image, in
which the axes represent time and range. A reduction of the elastic termination
signal is seen at the same time of the bee occurrence in e), which is caused by
the extinction cross-section of the bee in the beam.

them over fields, we can gain fundamental insights into their
ecology, facilitating the use of beehives as pollination services.
Moreover, in the face of insect decline[58]–[61], a solid under-
standing of how honey bees impact wild pollinators is crucial
for maintaining pollination services from wild insects. Powder
tagging provides a powerful tool to study interactions between
bees from specific hives and untagged wild insects. Several hives
could also be distinguished by tagging with spectrally distinct
fluorescent powder to study how spatial distributions from hives
perturb each other. This approach, hence opens up novel research
questions on species interactions.

In this work, a powder-marked bee monitoring experiment
was conducted. The lidar transect spanned a meadow of varying
vegetation, before reaching a laser beam termination screen 100
m away. A beehive was situated at 55 m along the lidar transect
(Fig. 7a).

Auto-marking of the bees was accomplished by attaching
a tray with red dye powder under the entrance of a beehive;
similar methods have been applied in previous work[62]. In
our implementation, a powdered broom was mounted above the
entrance to ensure automatic marking of bees as they departed
from the hive (Fig. 7b and 7c).

The experiment was conducted over three days, and the pow-
der tray was refilled each morning at 7:30 am. Subsequently, the
hyperspectral lidar was started. The lidar collected data during
the day until 8 pm, at which time no more honey bees were active.
Several marked bees were observed with the lidar, corresponding
to registered occurrences in time-range plots (Fig. 7e and 7f), or
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Fig. 8. a) Insects collected from a CO2 trap were moved to a cage with a dyed
sugar solution. b) A mosquito fed with fluorescent sugar water, lit by a violet
torch. c) A released marked mosquito entered the lidar beam. The resulting
signal is presented as colored iso-surfaces in time, range and wavelength, which
is the full data cube collected by the lidar (compare to Fig. 4).

echoes in range-intensity diagrams (Fig. 7d). The imager was
set to 124 Hz framerate, 7 ms exposures, 24 gain, and 4x4
binning. The fluorescence signal from the bee corresponding
to the echo shown in Fig. 7d peaked at 595 intensity counts,
averaged over a red spectral window from 585 nm to 615 nm.
The noise (SD) of this window was 3.4 counts, which gives an
SNR of 177. From the insignificant reduction of the termination
echo, we understand that this individual bee intersects the beam
peripherally.

C. Sugar Feeding With Fluorescence Dyes

Previous studies have used sugar feeding to mark insects,
e.g., to monitor the proportion of released sterile mosquitoes,
both with radioactive isotopes[63], fluorescent markers[64], of
which some can even mark the seminal fluid of males, facilitating
monitoring of mosquito mating behavior, and non-fluorescent
markers[65]. Sugar feeding has also been used to kill insects
with toxic baits[66].

One of the most valuable aspects of marking insects alive,
and then releasing and detecting them again, is to estimate the
population size in a habitat[6]. This method can provide insight
into the effectiveness of control measures, such as bed nets and
the removal of breeding sites for specific species of mosquitoes.

In our work, a combined light- and CO2-trap (Model 1212,
John W. Hock Company, USA) was operated near a lakeshore
inside the forest at Stensoffa, approximately 100 m from the lidar
beam, shielded by trees. The trap was baited with CO2, from dry
ice, and set overnight 6:00 pm, 9th August 2021. The live catch
was emptied into a cage the following day at 8:00 am. The catch
contained predominantly mosquito species, but also moths and
blackflies (Fig. 8a). The species were kept in the cage over the
day along with a vial of 10% sugar solution with a dissolved
green fluorescence marker pen (Q-connect, Belgium), and a
coffee filter, allowing the insects to land and feed on the solution
(Fig. 8a). Using a violet (405 nm) LED torch, we could verify
that both mosquitoes and moths had fed from the sugar solution,
by the green fluorescence in their abdomen (see Fig. 8b).

At 11:00 pm the fluorescent sugar-fed specimens were care-
fully released one by one under the beam at 15 m distance
from the lidar. The specimens were detected directly upon their
release, and at later instances when transiting the beam again.
Fig. 8c displays one case of a free-flying sugar-fed mosquito
entering the beam. The visualization displays registered light
intensity as a function of time, range, and wavelength (photon

energy). Semi-transparent iso-surfaces at 500, 1000, 1500, and
2000 counts encircles the green fluorescence at 12 m, the elastic
backscattering from the mosquito, the elastic air scatter, and the
termination at 100 m distance. The imager was operated at 124
Hz frame rate, 7 ms exposures, 24 gain, 4x2 binning (4 in the
spectral axis). The fluorescence peak signal was at 3794 intensity
counts in a single spectral band, and the noise amplitude with the
same settings was 1.3 counts. Thus, the SNR was 3015 at 12 m
distance. Considering the form factor, and the 1/r2 attenuation,
we estimate that we could detect such signals at 458 m with an
SNR of 2:1. This is, however, beyond the design range of our
system.

V. CONCLUSION AND OUTLOOK

In this work, a hyperspectral lidar has been presented with
a detailed discussion on its design and assembly. The material
costs amounted to ∼2715 € and the weight ∼3 kg (excluding
acquisition computer and tripod). For comparison, fluorescence
lidars reported a decade ago had material costs of more than
a million euros and weights of several tons[19], [31]. Since
then, smaller systems were reported[30], still with a solid-state
laser of around one hundred kg. A previously reported pulsed
lidar[19] operated at 10 Hz (100 ms between pulses), and since
insect transit times can be expected to be less than 10 ms the
insect count was low. The low price of the present system
opens up possibilities for, e.g., larger-scale future comparative
studies using multiple lidar systems or in situ implementation
in low-income countries. The portability of the system enables
not only placement on astronomical tripods, but also mounting
on drones[45], vehicles, or in hiking backpacks could be envi-
sioned.

The performance of the hyperspectral lidar was tested in the
field for multiple fluorescence applications with excellent SNR
even during full daylight, which is generally a challenge even for
pulsed fluorescence lidars. Usage of our lidar in ecological stud-
ies has the potential to reduce the labor-intensive mark-recapture
studies of insects. We have demonstrated that multiple methods
of fluorescent marking (exterior-powder-tagging and ingestion)
are feasible with the lidar, which could yield complementary
ecological information. Possible biases of this technique include
affecting the behavior of the studied insects by the tagging
powder. This also applies in non-lidar-based marking studies.
Still, a higher amount of powder yields a stronger lidar echo
but could affect the insects more severely. The mass powder
tagging lifetime of bees was previously estimated to 4 days [67],
compared to our study bees retag themselves multiple times
per day and laser induced fluorescence is expected to be more
sensitive than the naked eye. Another challenge is that the violet
401 nm light from the laser is visible to most insects and could
imply a bias in nocturnal monitoring.

Other inelastic applications such as autofluorescence of
chlorophyll in vegetation or Raman scattering for various uses
could be envisioned for the instrument without modifications.
CAD drawings, a component list, driver circuit, and acquisition
software can be provided upon request from the corresponding
author.
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ABSTRACT
Advanced instrumentation and versatile setups are needed for understanding light interaction with biological targets. Such instru-
ments include (1) microscopes and 3D scanners for detailed spatial analysis, (2) spectral instruments for deducing molecular com-
position, (3) polarimeters for assessing structural properties, and (4) goniometers probing the scattering phase function of, e.g., tis-
sue slabs. While a large selection of commercial biophotonic instruments and laboratory equipment are available, they are often
bulky and expensive. Therefore, they remain inaccessible for secondary education, hobbyists, and research groups in low-income
countries. This lack of equipment impedes hands-on proficiency with basic biophotonic principles and the ability to solve local
problems with applied physics. We have designed, prototyped, and evaluated the low-cost Biophotonics, Imaging, Optical, Spec-
tral, Polarimetric, Angular, and Compact Equipment (BIOSPACE) for high-quality quantitative analysis. BIOSPACE uses multi-
plexed light-emitting diodes with emission wavelengths from ultraviolet to near-infrared, captured by a synchronized camera. The
angles of the light source, the target, and the polarization filters are automated by low-cost mechanics and a microcomputer.
This enables multi-dimensional scatter analysis of centimeter-sized biological targets. We present the construction, calibration, and
evaluation of BIOSPACE. The diverse functions of BIOSPACE include small animal spectral imaging, measuring the nanometer
thickness of a bark-beetle wing, acquiring the scattering phase function of a blood smear and estimating the anisotropic scatter-
ing and the extinction coefficients, and contrasting muscle fibers using polarization. We provide blueprints, component list, and
software for replication by enthusiasts and educators to simplify the hands-on investigation of fundamental optical properties in
biological samples.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0095133
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I. INTRODUCTION
Biophotonics is the discipline of using light for the diagno-

sis and treatment of biological tissue.1–3 The field of biophotonics
has developed rapidly since the emergence of optoelectronics half a
century ago. In particular, thanks to devices such as the light emit-
ting diode (LED), semiconductor lasers, and image sensors. Over
the decades, a myriad of approaches, specialized instruments, and
applications have emerged within, e.g., medicine,4 environmental
monitoring,5,6 and organic products.7–10 In the following sections,
we discuss how biophotonic approaches can address these disci-
plines in various domains covered by our Biophotonics, Imaging,
Optical, Spectral, Polarimetric, Angular, and Compact Equipment
(BIOSPACE).

A. Spatial domain
Biological insights have been gained by analyzing the spatial

features in tissue through optical imaging11 on macroscopic and
microscopic scales.12,13 The latest advances allow the study of subcel-
lular structures.14 Imaging concepts have also been extended to three
dimensions with techniques such as photoacoustics,15,16 optical
coherence tomography,17 structured illumination and light-sheets
microscopy,18 diffuse optical tomography,19 and optical projection
tomography.20,21

B. Spectral domain
Although molecules are too tiny to be resolved spatially,

spectroscopy provides the means to quantify the chemical com-
position of tissues; such techniques are known as molecular
imaging or tissue spectroscopy.22,23 The strategies to acquire mul-
tispectral images range from red-green-blue (RGB) imaging, filter
wheels, and tunable liquid crystal filters,24 which all collect a lim-
ited number of spectral bands. In contrast, hyperspectral imaging
by push-broom imaging8,25 or interferometry26–28 captures hun-
dreds of bands. Multispectral imaging can also be accomplished
by controlling and multiplexing the light source.29–33 Such multi-
plexing can be implemented inexpensively and efficiently uses the
produced light.

C. Polarimetric domain
Polarimetry is a viable technique for acquiring molecular con-

trast that also has the benefit of assessing microstructural features.
In polarimetry, coherently scattered photons recalling their initial
propagation, phase, and polarization state can be distinguished from
incoherent photons resulting from multiple scattering and photon
migration in the tissue.34,35 Polarimetric imaging can be accom-
plished by arranging a linear polarizer on the illumination and a
rotating analyzer on the collecting optics. Approaches for snapshot
polarization imaging have also been developed.36,37

D. Goniometric domain
The most common microscopy and imaging geometries com-

prise reflectance and transmittance. In fact, these geometries assess
different light scattering angles. The imaging contrast can differ
significantly between geometries depending on the type of sam-
ple.38 This concept can be extended to include modes such as total
transmittance, ballistic transmittance,39 total diffuse reflectance, and

specular reflectance. In particular, dark-field forward scattering can
improve contrast in microscopy.40 In analogy to extending a handful
of bands in multispectral imaging to hundreds of bands in hyper-
spectral imaging, the angular scattering modes can be extended
from a few modes such as reflectance, transmittance, and dark-
field31 to cover a continuous angular range from zero to π. In
the specular domain, as well as the angular domain, this dramati-
cally increases the gathered information and conclusions that one
can draw. For angular analysis, such an extended measurement is
called goniometry.41,42 Although uncommon, goniometry can also
be implemented in imaging mode.43,44

E. Optical properties
As understood, there are multiple types of both reflectance

and transmittance modes, e.g., co- and de-polarized, and ballistic
and diffuse. In general, the quantities reported from such studies
are subject to the specific measurement geometry, e.g., the numer-
ical apertures of illumination and objectives. Therefore, results
are challenging to relate across different studies, laboratories, and
instruments. The proposed solution is to convert such measur-
ands into quantitative optical properties. Optical properties include
the absorption-, scatter- and de-polarization coefficients—μa, μs,
and μLP, respectively—in units of cm−1. Also, the dimensionless
refractive index n and the scatter anisotropic factor g govern
the radiative transport. The use of optical properties permits the
inter-comparison of values between research groups.45

The task of disentangling optical properties from measurands is
not trivial,46 and it constitutes a long-standing fundamental problem
in biophotonics. For example, reflectance and transmittance from a
blood sample are governed by μa, μs, n, and g for any wavelength.
Furthermore, n is coupled to μa via the Kramer–Kronig relations,
and in turn, μs and g are determined by deviations of n from the
surrounding medium.47

In general, the solution to the disentangling challenge is to
acquire more measurands than the number of optical properties
varying within the study. An early approach measures multiple
angular scatter lobes by using integrating spheres in total trans-
mittance, total reflectance, ballistic transmittance, and specular
reflectance modes.39 A modern approach acquires multiple mea-
surands as a function of time-of-flight using mode-locked lasers
and single-photon counting.48–50 Similar results can also be accom-
plished by frequency sweeps.51 For steady-state solutions, the num-
ber of measurands can instead be increased in the spatial domain
by multiple injection or detection points, which yield a plurality
of interrogation path lengths.9,52,53 Such concepts constitute the
cornerstones in diffuse optical tomography.54

F. Biophotonic instrumentation
While the ideas, instruments, and insights of modern bio-

photonics are fascinating, the aforementioned implementations
are inaccessible for research groups in lower-income regions, sec-
ondary education students, and hobbyists. This fact limits hands-on
learning opportunities for light–tissue interaction at early stages
and prevents applied research teams from tackling local issues,
for instance, in the tropics. Several initiatives for realistic or
low-cost instrumentation have emerged. Such concepts include
an ultra-low-cost microscope based on a cardboard origami
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structure;55 accessible optical instruments such as 3D-printed
holographic microscopes,56 smartphone-based spectrometers,57,58

LEGO®-based fluorometers;59 and advanced instruments such as
Raman spectrometers,60 Brewster angle microscopes,61 and Michel-
son interferometers.62 In particular, recent progress in widely
available 3D printers has facilitated projects in open-source
hardware,63,64 biophotonic objects impossible to produce conven-
tionally,65 and general-purpose toolboxes for 3D-printed optome-
chanical components.66,67 While these advances report on low-
cost and more adaptive photonic instrumentation, in general, they
are also considered inferior in quality as compared to milled
counterparts or commercial photonic lab supplies.

In contrast, here, we report a low-cost biophotonic platform
of such complexity and modularity beyond what is available com-
mercially. Furthermore, the multiaxis mechanisms would be highly
challenging to design with conventional off-the-shelf photonic lab-
oratory components. The structure of BIOSPACE is made of LEGO
technic and 3D-printed adaptors for optical elements, making it
modular and adaptive for studies of diverse samples. The instru-
ment captures multispectral images with polarization and light
scatter angle information of a biological target, rotated around
two axes. This yields measurands of high dimensionality, allowing
disentanglement of quantitative optical properties.

II. INSTRUMENT DESIGN AND CONFIGURATION
The biophotonic instrument BIOSPACE is inspired by simpler

earlier work31,44 but now covers more measurement domains. The
structure is made with LEGO-technic, which significantly reduces
the cost. The instrument consists of three modules: an illumina-
tor, a target rotation stage, and a receiver unit. Four servomotors
control the angles of the parts: the illuminator can rotate around
the target to achieve a goniometric scan; the target can rotate
around two axes to project it from all viewing angles; and a linear
polarizer on the receiver unit can be rotated to yield polarimet-
ric information. In Fig. 1, the optical arrangement of BIOSPACE’s
illuminator and receiver unit are illustrated, along with the dimen-
sions of the placement of components. The schematic in Fig. 1 is
drawn for a goniometric scatter angle of zero (ballistic transmittance

mode). The rotation axes of the motors and the data flows are also
indicated.

A. Optical arrangement
The optical arrangement of BIOSPACE is illustrated in Fig. 1

for ballistic transmittance, and the specific optical components are
listed in supplementary material Table S1. The illuminator is seen
as an exploded-view drawing in Fig. 2(a), and its mounting on
BIOSPACE is shown in Fig. 2(b). It has eight LEDs with individ-
ual emission wavelengths ranging from 365 to 940 nm, mounted
on a multiplexing printed circuit board (PCB). The LEDs are lit
sequentially and synchronized with a strobe input. The LED light
is injected into a white diffuse cavity and guided out through a
homogenizing light pipe. The light is polarized by a linear polar-
ization filter and collimated by a lens before it impinges on the
biological target. The scattered light is collected by an achromatic
objective lens. A motorized polarization analyzer can select, e.g., co-
or de-polarized light. After this, the scattered light is imaged onto
a camera.

B. Mechanics and materials
The BIOSPACE mechanical construction is made of LEGO-

technic plastic parts as shown in Fig. 2(b). The necessary parts can
be acquired from a single LEGO-technic kit (Bucket Wheel Exca-
vator, LEGO, Denmark). The target rotation stage consists of three
motorized axes inside each other, where the inner controls the roll-
and yaw-angle of the sample and the outer supports the illumina-
tor and controls the scatter angle. The roll- and yaw-axes of rotation
are tilted 45○ with respect to each other, allowing full goniometric
scans without obscuration. The rotation axes are shown in Fig. 2(b).
These axes are controlled by servo motors (EV3 Medium Servo
Motors, LEGO, Denmark). The size of the BIOSPACE is 300 × 500
× 300 mm3 and the weight is 1 kg. The detailed assembly instructions
of BIOSPACE are provided as supplementary material (S2).

The 3D-printed parts connect the illuminator, the optical com-
ponents, and the camera to the LEGO structure. Individual lenses
are secured with O-rings. The 3D-printing material used for con-
necting optical components and shielding for glare and stray light

FIG. 1. BIOSPACE’s components, optical arrangement, and diagram of the data flow of a measurement. The orange M-circles indicate rotating motors, while the orange
arrows imply the control signals for the motors. The black arrows indicate other data communication such as image data. The green boxes are circuit boards. The red cone
represents the light produced by the illuminator, and the blue cone represents the field of view (FoV) of the camera. The placement of optical components is indicated in
mm on the z axis.
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FIG. 2. (a): Exploded view of the illuminator. The components of the illuminator include an LED-multiplexer PCB, a white diffusive cavity, and a connector piece compatible
with LEGO-technic. The arrows illustrate the light path of the different LEDs of the illuminator. (b) Photograph of the mechanical construction of BIOSPACE. The placement
of different parts is indicated with arrows. The motorized degrees of freedom include scatter-, polarization-, roll- and yaw-angle.

is black ABS (acrylonitrile butadiene styrene) plastic. The LEGO-
optical adaptor CAD (computer-aided design) files are available as
supplementary material (S3).

The white diffuse cavity, an integral part of the illuminator, is
3D printed with white ABS filament with 100% infill and coated
with Barium Sulfate (BaSO4) applied with a brush. Common fil-
ament types for 3D printing were evaluated [see Fig. 3(a)]. The
ABS material was selected as it exhibits maximal scattering, minimal
absorption, and no fluorescence for the relevant wavelength range
(365–940 nm). Each of the evaluated 3D-printed materials suffered
from low reflectance in the UV region, and thus, the highly reflective
BaSO4 coating was applied.

If milling or hot-wire subtractive methods remained viable
options, materials such as PTFE (polytetrafluoroethylene) or
polystyrene foam would be well-suited options due to their broad
high reflectance. The evaluation was performed using spectroscopy

with a bifurcated fiber connected to a tungsten deuterium lamp
(SLS204, Thorlabs, USA) and a compact spectrometer (USB4000,
OceanOptics, USA). A SpectralonTM white standard (Labsphere,
Inc., North Sutton, USA) with specified 99% reflectance was used
as a reference.

Further investigation of the materials’ quantitative scatter-
ing coefficients was made by photon time-of-flight spectroscopy
(PToFS).48 The absorption and reduced scattering coefficients of
ABS for wavelengths of 630, 810, and 940 nm were found to be
μa = 0.014, 0.0090, and 0.015 cm−1, and the reduced scattering coef-
ficients μs

′
= 46, 47, and 48 cm−1

, respectively. The mean photon
path length within the coated cavity (3 cm diameter) with a time-
correlated single-photon counting (TCSPC) instrument was found
to be 27 cm for 630 nm [see Fig. 3(b)]. The TCSPC setup48 measures
the time delay of light traveling between two fiber probes. Slabs of 5,
10, and 15 mm thickness of the different materials were placed in the

FIG. 3. (a) Diffuse reflectance from candidate materials for manufacturing a white diffuse cavity, a high diffuse reflection from 365 to 940 is desired. A strong UV and violet
absorption is clearly seen for all 3D-printing filaments (PLA, ABS, and nylon). The PTFE, polystyrene foam, and BaSO4 all show excellent reflectance over the relevant
range, and the latters’ reflectance exceeding 100% is explained by their scatter coefficient being greater than the Spectralon standard. A fluorescence peak can be observed
at 470 nm for PLA, which makes it unsuitable for LED spectroscopy. The downward slope from 500 nm and onward is explained by photon escape as a consequence of the
measurement geometry rather than absorption in the material. (b) The PToFS histogram of 630 nm light inside the cavity shows a histogram of the times each photon takes
before leaving the cavity. From this, the material with the highest scattering can be found. The path length of the single reflected peak is 7.6 cm, which corresponds to the
shortest path the light can take within the cavity, i.e., a single reflection. The mean path length for all light leaving the cavity is 27 cm.
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setup. The absorption and reduced scattering coefficients of the dif-
ferent materials were found by solving the inverse diffusion equation
for the slabs.65

C. Electronics and data flow
BIOSPACE uses several components for performing and con-

trolling a measurement, including parts for data acquisition, motor
control, and user input/output. BIOSPACE is controlled by an
open-source single-board computer (Raspberry Pi 4, Raspberry Pi
Foundation, Cambridge, UK). The computer runs the Linux oper-
ating system and has ports for connecting the display, mouse, and
keyboard for user input and output, as well as a USB3 port for
connecting an external hard drive for storing the acquired measure-
ment data. The computer communicates with the motors through an
add-on board (BrickPi3, Dexter Industries, Washington DC, United
States). The add-on board has four Ethernet ports for setting and
reading positions of the servo motors. The measurement images
are captured with an industrial camera (acA1920-155um, Basler
AG, Ahrensburg, Germany), with a silicon CMOS chip. It records
2-megapixel images with a 12-bit dynamic range; it has a global shut-
ter and can be binned up to four times on both rows and columns.
Important for our implementation is that it has a strobe out-port,
which gives a high value when there is an active exposure of the
camera. Finally, for multiplexing the light, a custom-designed and
manufactured LED-multiplexing printed circuit board (PCB) is used
(see Fig. 4).

The multiplexing PCB consists of a coaxial input (BNC), which
is connected to a strobe-out from the camera. The strobe signal
is amplified and connected to a (not-)enable port of a decimal
counter. A transistor array drives one of the eight LEDs sequentially.
There is also one dark time slot used for background subtraction.
All LEDs are driven with currents of 100 mA except for the 365
and 940 nm LEDs, which have a current of 500 mA. This equal-
izes the spectral response of the silicon image chip and allows all

bands to be captured within the dynamical range using the same
exposure time.31

D. Data acquisition and user interface
BIOSPACE has an open-source application that is available for

download.68 The program is built in the free-to-use programming
language, Python (Python Software Foundation, Delaware, United
States), and uses various open-source software libraries. The graph-
ical user interface is built with a library called Tkinter (Python
Software Foundation, Delaware, United States).69 Tkinter is the
standard Python binding of an open-source, cross-platform wid-
get toolkit called Tk. Camera communication is implemented with
a library called PyPylon.70 PyPylon is the official Python wrapper
for the Basler Pylon Camera Software Suite (Basler AG, Ahrensburg,
Germany). For controlling the servo motors, the BrickPi3 (Dexter
Industries, Washington DC, United States) repository is used.71

The application controls the standard camera parameters such
as exposure time and gain. A calibration view is presented before
a measurement is started with the press of a button. A complete
measurement is then performed according to a spreadsheet mea-
surement protocol file, where the relevant scatter-, roll-, yaw, and
polarization-angles are listed. These angles can then be associ-
ated with every multispectral image. The motors of BIOSPACE
are moved to the relevant positions and a non-compressed .tiff
image is captured for each spectral band. Each image is background-
subtracted with an ambient image, ensuring that measurements can
be run regardless of the light in the room. However, a minimization
of ambient light is recommended to maximize the dynamic range of
the measurement.

Image analysis can be performed in any suitable software since
the source images are saved as non-compressed image files. Mat-
lab (Mathworks) was used for the image analysis in this paper, and
scripts for importing and calibrating images to a white reference are
available for download.68

FIG. 4. Circuit diagram of the LED multi-
plexing PCB. Here, the LEDs are fed with
constant-current sources of 500 and 100
mA, respectively. Each LED is lit sequen-
tially and synchronized with the camera
strobe connected to the coaxial input.
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III. SYSTEM PERFORMANCE AND CALIBRATION
A BIOSPACE measurement results in a seven-dimensional

intensity tensor, I(x, y, b, scatter, roll, yaw, pol), where x, y, b, scatter,
roll, yaw, and pol are integer indices of the vectors ℓx, ℓy, λb, θscatter ,
θroll, θyaw, and θpol, respectively. The coordinates ℓx and ℓy [mm] are
the horizontal and vertical distances from the optical axis on the
camera sensor, respectively, and the imaging information is found in
these vectors. Spectroscopy information is found in λb [nm], which
denotes the wavelength bands of the LEDs. The goniometric infor-
mation consists of the scatter lobes in θscatter [deg], while the 3D
aspect angle information of the sample is denoted in θroll and θyaw
[deg]. Polarimetry is explored in the polarization-angles θpol [deg].
The performance and calibration procedures are described for each
of these measurement domains in Secs. III A–III F. The range and
resolution in each domain are also specified in Table I.

A. Quantitative measurement—Intensity domain
A calibrated reflectance (∣θscatter ∣ > 90○) measurement can be

accomplished according to

Rsample =
Isample − Idark

Iref − Idark
Rref , (1)

where Isample is the intensity measurement of the sample, Idark is the
dark exposure, and Iref is a reference standard. Rref is a traceable table
value for the diffuse reflectance standard; in our case, Spectralon was
used. Specular reflectance (where the illumination is folded into the
receiver) can be calibrated with a metallic mirror instead of the dif-
fuse standard used in Eq. (1). Forward scatter (5○ < ∣θscatter ∣ < 90○)
can similarly be calibrated by opal diffusers with known Lambertian
transmission lobes. Finally, a measurement with a ballistic config-
uration (∣θscatter ∣ < 5○) of a transparent sample can be calibrated by
an empty sample holder. Specular and ballistic measurements are
generally more intense than diffuse reflectance and forward scat-
ter. Multiple exposures may be stitched together to acquire a high
dynamical range (HDR) measurement for multi-scatter angle or
goniometric analysis. The dynamic range of the camera is 12-bit,
which defines the full well capacity (FWC) to 212–1 counts. The
FWC per second (FWC/s) will be used throughout the paper as the

intensity unit of the measurements. The level of dark exposure is
highly dependent on the ambient light. It was measured in a dark
room to be 10−3 FWC/s, which can be compared to a ballistic mea-
surement of 800 FWC/s and a backscatter measurement of a diffuse
white target of 40 FWC/s. These values indicate the appropriate
exposure time for specific measurement configurations, e.g., a dif-
fuse backscatter measurement should have an exposure time of less
than 25 ms to avoid saturation. The dynamic resolution is given by
the standard deviation of multiple acquisitions of a reference stan-
dard; it resulted in a signal-to-noise ratio of 42 dB on average over
the spectral bands.

B. Imaging—Spatial domain
The intensity measurement is extended in the spatial domain

with the positional information provided by the camera config-
uration, which maps the object plane, ℓx

′, ℓy
′ (mm), onto the

(11.3 × 7.1 mm2) sensor of the camera according to

⎡
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, (2)

where M is the magnification of the system at the plane of the sen-
sor. The magnification was calculated to be M = 0.57 by acquiring
an image of a target with a known size while knowing the size of
the imaging sensor. The image is spatially discretized by the pixel
pitch of the camera sensor (5.86 × 5.86 μm2) into the discrete
horizontal and vertical pixels (x, y). How the object maps to the
sensor is described by the convolution of the light from the object,
Iobj(ℓx′ , ℓy′ ), and the point spread function (PSF) of the system,

I(x, y) =∬ Iobj(ℓx − ℓx′ , ℓy − ℓy′)PSFx,y(ℓx′ , ℓy′)dℓx′dℓy′ , (3)

expressed in integral form.72 This assumes that the complete FoV is
illuminated.

To evaluate both the spatial resolution and the depth of field
(DoF) of BIOSPACE, we imaged a Siemens star target at locations
−5 mm < z < +5 mm from the focus plane of the instrument. The
resolution was also evaluated for the various spectral bands to find

TABLE I. The measurement domains probed by BIOSPACE along with the corresponding examined features. The range and the discretization are provided for each domain.
The number of measurands is reported for the relevant domains. The temporal domain could, in theory, provide an infinite number of measurands; however, this is not relevant
in the samples studied, which are stationary in time. Similarly, the spatial domain has not been used for increasing the number of measurands but rather to isolate a spatial
feature to study. Here, the number of sample viewing angle measurands is defined as the possible lobes in θroll and θyaw. The resolution reported is the framerate in the temporal
domain and the average spectral FWHM in the spectral domain.

Subject/domain Examined feature Range Resolution Measurands

Intensity/dynamic ⋅ ⋅ ⋅ 0→ 4095 12 bit ⋅ ⋅ ⋅

Time/temporal ⋅ ⋅ ⋅ 1 μs→ 10 s 164 Hz ⋅ ⋅ ⋅

Space/spatial Morphology, spatial features 19.8 × 12.5 mm2 20 μm 960 × 600 effective pix
Photon energy/spectral Molecular composition 365→ 940 nm 25 nm 8 bands
Propagation angle/goniometric n, g, μs

′
−165○ → 165○ 5○ 67 lobes

Polarization/polarimetric Surface structure 0○ → 180○ 2○ 4 parameters
Sample viewing angle/angular Iridescence, morphology 45○ → 135○ × 0○ → 360○ 2○ 45 yaw lobes

180 roll lobes
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FIG. 5. The resolution of the imaging system for the spectral bands of BIOSPACE.
The focus displacement is evident when comparing the NIR 940 nm band to the
visible bands. The DoF is different for the bands and the focus displacement further
reduces the combined DoF of all spectral bands. In the case of resolving a 50 μm
feature in all bands, the DoF is 6 mm.

the chromatic aberrations (see Fig. 5). The full width half maximum
(FWHM) of the PSF was calculated for the axial positions, and the
parabolic functions were fitted to the values. The resolution, depth of
field, and focus displacement for each spectral band are seen in Fig. 5.
The PSF FWHM represents the resolvable spot size measured at
(17–23) μm for each spectral band. Our magnification and pixel size
imply that the smallest resolvable features are sampled by two pixels,
proving a good matching of lens and sensor resolutions according
to the Nyquist–Shannon sampling theorem. However, pixel binning
could be used to increase the dynamic resolution (signal-to-noise
ratio).

Flat field calibration was accomplished by evaluating the spa-
tial variation in the intensity of image I(x, y, b) by acquiring images
of the Spectralon standard for each spectral band. The entire image
field 20 × 13 mm2 was illuminated by more than 80% of the highest
recorded signal (see Fig. 6).

C. Spectroscopy—Spectral domain
The spectral intensity measurement is determined by

I(b) = ∫ Eλb(λ)Iobj(λ)S(λ)dλ, (4)

where Eλb(λ) is the emitted light in the specific spectral band, Iobj(λ)
is the intensity of the reflected light from the object, and S(λ) is
the spectral sensitivity of the camera. White intensity calibration is
accomplished according to Eq. (1). The resulting spectral shape of
Eλb(λ) and S(λ) was measured with the compact spectrometer (see
Fig. 7), assuming similar sensitivity to the camera sensor.

FIG. 6. The spatial flatness of image I(x, y, b). (a) Horizontal direction. (b) Verti-
cal direction. The signal is normalized to the highest recorded signal. All spectral
bands have a high signal over the whole image; the UV 365 nm band sticks out
with a slightly lower signal at some vertical positions, possibly due to contamination
of the homogenizing hex rod or the reflectance standard.

FIG. 7. Spectral measurement of the reference standard. The dots indicate the
recorded intensity for each LED and are positioned at the peak emission wave-
length according to their datasheets. The spectral shape, Eλb (λ), of the LEDs is
recorded by the compact spectrometer. There is a minor overlap of the 405 and
430 nm as well as the 490 and 525 nm LEDs, but considerably less than for human
color vision bands. The FWHM of the measured spectral bands ranged from 9 to
59 nm with an average of 25 nm. The bands are slightly red-shifted; however, this
was deduced to be a spectrometer misalignment.
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D. Goniometry, sample rotation, and polarization
state—Angular domains

The goniometric measurement I(θscatter) is determined by the
scatter angle between the optical axis of the illuminator and the
receiver module (set by a LEGO motor). The accuracy and repeata-
bility when performing a complete scan from −165○ to 165○ were
measured to have a deviation of up to 2○. Potential backlash in the
gears is avoided by keeping the same rotation direction throughout
a measurement. The goniometric resolution of an I(θscatter) mea-
surement is limited by the angular width of the illuminator light
cone convoluted with the received light cone (i.e., the goniomet-
ric instrument function). The FWHM of the goniometric resolution
can be measured by scanning the scatter angle in the vicinity of bal-
listic mode (θscatter ≈ 0○), a 2D instrument scatter lobe can also be
measured using side scatter mode (θscatter ≈ 90○), and a flat mirror
in the sample holder, scanning both θroll and θyaw. We estimated
the goniometric resolution to 5○, indicating that the LEGO gears’
hysteresis is not limiting the angular resolution. The scatter angles
range from −165○ < θscatter < 165○, yielding up to 67 resolvable
scatter lobes.

LEGO motors and gears also control the two-axis rotation of
the sample with similar precision. The two axes are 45○ inclined with
respect to each other to allow non-obstructed goniometric scans [see
Fig. 2(b) inset]. This inclination provides a 2D observational viewing
angle of the sample of 45○ < θyaw < 135○ and 0○ < θroll < 360○. The
number of unique combinations of target viewing angles depends on
the angular step size for the measurement. For example, 5○ steps for
θroll and θyaw result in 1296 combinations of viewing angles. This is

more than an adequate number to perform 3D reconstructions of,
e.g., entomological museum collections.21,73

The polarizer is in a static angle, linearly polarizing the light
illuminating the object, while the analyzer in front of the cam-
era rotates to probe the light of specific polarization angles. The
polarization information, independent of the high precision of the
rotation stages, can always be reduced to four variables (called the
Stokes parameters).34

E. BIOSPACE performance
The combined number of measurands of a complete

BIOSPACE measurement is the product of the number of measur-
ands in each domain, which results in over 1013 12-bit intensity
values in the tensor I(x, y, b, scatter, roll, yaw, pol), described in
Sec. III (see Table I). This corresponds to 107 unique 2-megapixel
images. However, the acquisition time for complete measurement
of all domains is typically unfeasible and unnecessary (e.g., at 10 ms
exposure, it would take over 48 h and consume over 34 terabytes of
storage). The vectors ℓx, ℓy, and λb are generally complete in each
measurement since the instrument captures multispectral images by
default. However, the θscatter , θroll, θyaw, and θpol vectors can range in
length from singular to the maximum number of measurands stated
in Table I. Therefore, experiments should be designed cleverly to
investigate the relevant indices of I. In practice, only a small subset
of the full capabilities of BIOSPACE is used for each experiment.
What this subset contains varies on the study, and typically, some
dimensions of I can be singular. The huge number of possible
acquirable images demonstrates the great versatility of BIOSPACE

FIG. 8. (a) and (c) Co- and de-polarized true-color images of Eupeodes corollae (a species of hoverfly) acquired by BIOSPACE, respectively. Four cropped-out regions are
indicated: A. dark stripe of the body; B. bright stripe of the body; C. eye; D. full-body signal from the insect. (b) Spectral responses from the different regions of the insect in
both co- and de-polarized light. The de-polarized signals are noted to be weaker for all regions as expected. (d) The optical cross-section in mm2 from 360○ viewing angles
of the full body of the insect, in the standard lidar wavelengths of 810 and 940 nm.
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as a platform for pursuing unique experiments in research and
education.

F. Trade-offs between performance in optical
domains

There are several design choices where trade-off effects influ-
ence the resolution in multiple dimensions, typically when one is
increased and the other decreased. Such examples include spatial
binning, where spatial resolution is sacrificed for a higher dynamic
signal-to-noise ratio. Another example includes the F-number of the
lens. A low F-number yields a high spatial resolution and a small
PSF; on the other hand, it yields a short DoF. Furthermore, as the
F-number affects the size of the light cone collected, it decreases
the goniometric resolution, which is the convolution of the emitted
light cone and the collected one. The spectral resolution is lim-
ited by the number of LEDs used, their availability in relevant peak
wavelengths, and their spectral sharpness. Adding more LEDs would
result in a more complex and bulky design and would lengthen the
measurement durations.

IV. EXAMPLE AREAS OF APPLICATION
A. Entomological lidar target characterization

For in situ experiments in entomology and monitoring of insect
biodiversity, the gold standard is manually emptied traps, often pre-
pared with bait to attract insects.74,75 Novel techniques such as lidar
and hyperspectral imaging have emerged as complementing alterna-
tive methods for characterizing individual insect species, diversity,
and behavior.6,76,77 Automated entomological lidar measurements
have the potential to improve the temporal resolution of observa-
tions while reducing the need for labor-intensive trapping. However,
it is not a simple task to classify insect species using a lidar sig-
nal. A library of target properties is needed for the classification.
Such properties could include the target’s optical cross-section, dif-
fuse reflectance spectrum, and the degree of polarization of the
body and the wings. Note that such classification is not a biological
classification.

BIOSPACE is capable of acquiring all of the aforementioned
optical properties of insects. Although the optical configuration of
BIOSPACE differs from lidars in terms of exposure time, spectral
width, and collimation of the lasers typically used, the measurements
acquired with BIOSPACE are expected to be comparable with lidar.
Insect sizes fall below the laser pulse lengths and detector bandwidth
encountered in lidar; therefore, steady-state spectroscopy suffices
for describing the light interaction. Furthermore, the spectrally dull
features in biological tissues contributed by melanin, e.g., can be suf-
ficiently resolved by BIOSPACE. The spectrally sharpest details from
insects derive from their wing interference patterns, thoroughly
addressed below. An advantage of BIOSPACE is that spectral shapes
arising from absorption and interference can be distinguished since
the structural colors disappear with cross-polarization and shift with
scatter angle θscatter . Finally, the sharpest angular details arise from
the wings whose surface normal distributions are comparable with
the light cones employed in BIOSPACE.

The captured diffuse reflectance spectrum of a hoverfly
(Eupeodes corollae) is shown in Fig. 8. Different parts of the body
were compared in co- and de-polarized light. The sample was

rotated, demonstrating the change in the optical cross-section of the
insect depending on its heading direction [see Fig. 8(d)], mimicking
the variation in the lidar signature of a specific insect.

The wing of a European spruce bark beetle, Ips typographus,
was studied in a specular configuration, which can occur in lidar
observations.76 The measurements were compared to an analytical
thin film equation78,79 sampled with the spectral shape of the LED
outputs according to Eq. (4). The measured thickness of the wings
was around 0.5 μm and found to decrease toward the posterior end
of the wing as expected.77 Although the thickness values were found
with a moderate coefficient of determination (R2) values of over 0.6,
this is an example where an ex vivo target characterization study can
simplify the classification of in vivo lidar measurements (Fig. 9).

B. Blood smear analysis
The study of blood with optical analysis has a long and fruitful

history. One technique is spectral analysis, where, e.g., the differ-
ent responses from oxygenated and deoxygenated hemoglobin have
been used to determine blood oxygenation in both research and
clinical settings.47,80,81 Another technique is the visual or automated
inspection of red blood cells (RBCs). RBCs are 7 μm discs; healthy
cells are donut-shaped but can be inflated due to osmotic pressure.82

FIG. 9. (inset) A false-color image of the wing of a bark beetle, acquired by
BIOSPACE. The crop regions A, B, and C indicate regions further away from the
posterior end of the wing. The RGB color bands are represented by 940, 810, and
630 nm. (a)–(c) Reflectance measured on the specular alignment of a wing of a
bark beetle on regions A, B, and C where increasing thickness is expected. The
reflectance values are compared to a white diffuse reference. Fits of the thin film
equation are presented for the estimated wing thicknesses for each region.
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Morphological changes can occur due to diseases such as sickle
cell anemia,83 and significant changes in scattering and absorption
can occur after an infection by the malaria parasites (Plasmodium
falciparum).43 The gold standard for blood analysis is typically to
stain the blood and have a trained professional perform micro-
scopic investigation.84 Preliminary diagnoses without a pathologist
have been explored but are not implemented clinically on a large
scale. Such methods include, e.g., hyperspectral imaging, multivari-
ate analysis,40,85 and studying the anisotropy of the light.86 With
BIOSPACE, the magnification is insufficient to resolve the shape of
individual blood cells. Instead, spectroscopic analysis is feasible as
well as finding the scattering phase function and anisotropy factor
of the RBCs using BIOSPACEs goniometric capabilities.

Within the framework of a study approved by the Swedish
Ethical Review Authority, we obtained a blood sample from a

healthy volunteer, who provided their written consent after being
informed about the study and the voluntary nature of participa-
tion. The unstained blood smear was goniometrically scanned with
BIOSPACE to acquire the scattering phase function (see Fig. 10).
The blood smear on a microscope slide was placed in the instru-
ment at a 45○ angle from the camera. This configuration results in
a specular reflection on the glass slide when the light source is at
−90○, where a ballistic configuration is defined as 0○. A photograph
of the mounted microscope slide and a schematic of the experimen-
tal setup are presented in Figs. 10(d) and 10(e), respectively. The
blood smear measurement provides light intensity as a function of
both wavelengths and scattering angles [see the heat map presented
in Fig. 10(a)]. A goniometrical measurement has a large dynamic
range when scanning an optically thin sample. The transmitted light
intensity will typically be close to 100% of the incident light, while

FIG. 10. (a) Goniometric measurement of a blood smear presented as a 2D heat map. (b) Horizontal integration of the 2D heat map yields the phase function of the blood
smear in intensity over the scattering angle. A Henyey–Greenstein function multiplied with a cosine projection to compensate for the amount of light hitting the sample.
Furthermore, a Gaussian function is added to account for the specular reflection at −90○. The function is fitted with anisotropy values g = 0.89, 0.92, and 0.95. (c) Vertical
integration of the 2D heat map yields the spectral information of the different angular regions. The literature values of the extinction and scattering of hemoglobin are
included.2 The literature extinction values show similarities with the specular measurements, and similarly, the scattering values from the literature show similarities with the
forward scattering region. The plots in the black boxed legend correspond to the left axis and the ones in the red boxed legend correspond to the right axis. (d) A photograph
of the glass slide mounted for measurement in BIOSPACE. (e) A schematic of the different selected angular regions, where the arrows correspond to the light incidence on
the target.
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the scattered light can have intensities of a factor 104 lower. This was
the case for the blood smear measurement, as shown in Figs. 10(a)
and 10(b), where the dynamic range of the measurement spans four
orders of magnitude. The measurement was conducted with five
different exposure times, 50 μs, 300 μs, 12.5 ms, 50 ms, and 200 ms,
to resolve the large dynamic with a sufficient signal-to-noise level.

The anisotropic scatter factor ( g) was estimated from
the goniometric measurement in Fig. 10(b) by fitting a
Henyey–Greenstein function to the measured scattering phase
function.42 The fit function was multiplied with a cosine projection
to compensate for the fraction of light illuminating the sample for
different light source angles. A Gaussian function representing the
specular reflection of the light source occurring at −90○ was also
added to the fit. The anisotropic factor g of the blood smear was
determined to be 0.92.

C. Tissue analysis
Skeletal muscle tissue is vital for functional anatomy, and many

skeletal muscle diseases can be caused by mutations in muscles’
sarcomeric proteins. The sarcomeres have a periodical fibrous struc-
ture, making them suitable for polarization analysis,87 which is
feasible with BIOSPACE.

An ∼1 mm thick slice of porcine skeletal muscle tissue was
mounted in BIOSPACE and analyzed for the total intensity and
degree of linear polarization (DoLP) for forward- and backward-
scattered light.87 A notable contrast between different muscle tissue

FIG. 11. A slice of muscle tissue in (a) backward scatter and (b) forward scat-
ter configurations of BIOSPACE. The tissue is illuminated with 630 nm light. The
DoLP is shown as green corresponding to co-polarized and red corresponding to
complete de-polarization of the light.

regions can be observed in Fig. 11. The images shown are captured
from the same region of the muscle tissue. There is a substantial
regional difference in the images of to what degree the light is de-
polarized for the different scattering modes, as seen by comparing
Figs. 11(a) and 11(b). In Fig. 11(a), a fine-striped pattern of the
myosin and actin muscle-fiber arrangement is distinguishable in the
co-polarized light, displayed as green in the figure. Previous research
has reported backward-reflected light maintaining a higher DoLP
along the axis perpendicular to muscle fiber orientation.88 Thus,
BIOSPACE enables polarization analysis to characterize tissue such
as skeletal muscle.

V. CONSTRUCTION AND UTILIZATION
OF THE INSTRUMENT

The performance evaluation in this paper is based on the
components listed in the bill of materials found in supplementary
material Table S1. The modular design of BIOSPACE allows for easy
modification with, e.g., another camera or imaging lens if there are
other specific requirements on spatial resolution or FoV. BIOSPACE
could be of great interest to replicate in contexts including sec-
ondary education classroom experiments or hands-on biophotonic
research in low-income countries. Three copies of the instrument
have been assembled and used in a biophotonics course at Lund
University.89 The project is co-funded by the International Science
Program (ISP), Uppsala, in collaboration with the African Spectral
Imaging Network (AFSIN). Multiple copies of BIOSPACE have been
deployed in research groups at the University of Cape Coast, UCC,
Ghana; Laboratory of Instrumentation Image and Spectroscopy,
National Polytechnic Institute of Yamoussoukro, Ivory Coast; and
Universidad Nacional de Ingeneria, Ecuador. The method is also dis-
seminated to physics laboratories in Senegal, Togo, Mali, Burkina
Faso, Cameroon, and Kenya.

Information for replicating the setup is available in supplemen-
tary files and on the software-sharing site, GitHub.68 The available
files include the acquisition/controlling software, PCB etching files,
CAD files for cavity and LEGO optics adaptors, and a manual for
assembly and operation.

VI. SUMMARY AND OUTLOOK
We have presented BIOSPACE, an instrument capable of ana-

lyzing rotation aspects of a 3D target with multiple scatter angles,
in different polarization modes, and with spectral sensitivity rang-
ing from 365 to 940 nm. In total, a target can be captured by over 10
million unique images. This instrument enables automated multi-
domain studies of a single sample. We have detailed the precision
and calibration procedure of BIOSPACE for this paper to serve as a
guide to replicate the instrument for broader use. We have shown the
versatility of BIOSPACE in a few biophotonic applications involving
directional dependence of an entomological lidar target, goniomet-
ric blood analysis, and polarimetric tissue analysis. The low cost and
high versatility of BIOSPACE open up opportunities for research in
the developing world and deployment in education even at bachelor
college or high-school levels.

In analogy to the double integrating sphere method,39,90 the
scatter angle stage yields multiple potential measurement geome-
tries. For example, ballistic transmittance, forward scattering, and
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reflectance could be used to deduce the samples’ optical proper-
ties (μa, μs, and g). By orientating the surface normal to intersect
the median point between the illuminator and receiver, the specular
reflection can be captured, and the refractive index, n, can be found
by identifying the Brewster angle (refractometry). Polarimetric diag-
nostics is emerging with novel sensors in both medicine,91 food
inspection,92 and vegetation analysis.93 Our instrument could serve
for feasibility studies of such applications across various domains.
Envisioned applications also comprise tissue slabs,45,90 food prod-
uct inspection,9,94 and the study of angular reflectance (BRDF) of
leaves95–97 for the diagnostics of health state or quality.

The potential applications extend beyond the examples
reported in this study. One application within entomology is small
animal imaging and 3D scanning of insects21,73 and building a
database of known insect species from museum collections or the
wild. Similar attempts are pursued in, e.g., the oVert project,98

where over 20 000 vertebrate species from museum collections are
computer-tomography scanned and stored in a digital open-access
format. Since there are over a million known insect species, a sim-
ilar entomological project would need to be massively parallelized
to succeed, e.g., by distribution to enthusiasts or high schools world-
wide. BIOSPACE is suitable for such a project due to its low cost, use
of standard components, and modular design. The extended opti-
cal capabilities of BIOSPACE could be of particular interest in such
digitization projects since the insects display interesting optical phe-
nomena such as iridescence, structural colors, ultraviolet features,
and polarization-dependent reflection.99

SUPPLEMENTARY MATERIAL

See supplementary material for replicating BIOSPACE. The
supplementary material includes the following: S1, a bill of mate-
rials; S2, a manual for assembly and operation; and S3, files for
3D-printing the costum components needed.
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There are hundreds of thousands of moth species with crucial ecological
roles that are often obscured by their nocturnal lifestyles. The pigmentation
and appearance of moths are dominated by cryptic diffuse shades of brown.
In this study, 82 specimens representing 26 moth species were analysed
using infrared polarimetric hyperspectral imaging in the range of 0.95–
2.5 µm. Contrary to previous studies, we demonstrate that since infrared
light does not resolve the surface roughness, wings appear glossy and specu-
lar at longer wavelengths. Such properties provide unique reflectance
spectra between species. The reflectance of the majority of our species
could be explained by comprehensive models, and a complete parametriza-
tion of the spectral, polarimetric and angular optical properties was reduced
to just 11 parameters with physical units. These parameters are complemen-
tary and, compared with the within-species variation, were significantly
distinct between species. Counterintuitively to the aperture-limited resol-
ution criterion, we could deduce microscopic features along the surface
from their infrared properties. These features were confirmed by electron
microscopy. Finally, we show how our findings could greatly enhance
opportunities for remote identification of free-flying moth species, and we
hypothesize that such flat specular wing targets could be expected to be
sensed over considerable distances.

1. Introduction
The lives of moths (order Lepidoptera) are obscure for most people owing to
their nocturnal lifestyles. Most of our encounters with these insects are limited
to their erratic fluttering flights around our light bulbs at night [1], and enthu-
siasts and biologists attempt to understand their behaviour and diversity using
moth light traps and illuminated sheets [2]. There are hundreds of thousands of
species of moths—10-fold the number of butterfly species [3–5]—and include
infamous agricultural pest species such as army worms [6], corn- and sugarcane
borers [7] and cutworms [8], all of which are pests with an enormous potential
to inflict severe economic damage [9]. Other species are beneficial, such as the
silkworm moth, the edible mopane worm (the larva of a species of emperor
moth) and the Bogong moth, an iconic species of immense importance to the
health of Australian alpine ecosystems [10–12]. While we sleep, moths take
the night shift of pollinating our crops [13], and they provide a source of
food that sustains a diverse group of predators [14]. Moreover, migratory

© 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
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moths transport megatons of biomass worldwide, providing
a rich source of energy and nutrition for a variety of animals
along the way [15].

How might we gain more insight into the fascinating lives
and natural behaviours of moths? The disciplines of animal
telemetry [16] and entomological radar [17] have made
great progress in our understanding of moth behaviour
over recent decades, and harmonic radar has been shown
to track moth movements in the landscape [18], although
the sample size is small in such tagging studies. The impress-
ive dispersals of nocturnal insects have been visualized by
continental networks of meteorological Doppler radars [19],
with vertical polarimetric radar capable of tracking enormous
numbers of untagged species above the ground clutter alti-
tude [20]. The radar signal reflects the liquid water
distribution in the moths, and the observations can be
grouped by size [21], elongation [22] and, to some extent,
by wingbeat frequency [23]. Despite these advances, it has
not been possible to identify moths at the level of families
and species with microwaves and radar.

At first glance, the coloration of moths is dull and domi-
nated by different degrees of melanin [24,25]. Although some
species display warning colours and mimic predators’ eyes
(e.g. the owl moth), such markings often constitute a minor
fraction of the entire wings. Such markings also generally
appear on the dorsal side of the wings, meaning that
ground-based remote sensing technology has a limited ability
to probe such spectral features [26]. The ventral sides of moth
wings exhibit shades of brown [27], which is somewhat dis-
couraging in terms of the potential for differentiating moth
species remotely. The scattering phase function (the so-
called bidirectional reflectance distribution function (BRDF))
recorded from the majority of moths displays a diffuse and
Lambertian behaviour [28]. In other words, the ventral
sides of moth wings are seldom glossy, and thus their oscil-
latory scattering cross-section waveform during a wingbeat
does not differ more than their wingbeat dynamics [29]
because of their wing shape projection throughout the wing-
beat [30]. This waveform can be effectively described by only
three harmonics, while a richer parameter space would yield
a larger opportunity for identifying individual species.

Visual appearance and crypsis are not the only functions
that could drive the evolution of wing surface morphology in
moths. Other functions might include optimization of aero-
dynamic [31] or hydrophobic properties [32] or minimizing
ultrasonic reflectance in relation to bat predation [33]. More-
over, some species possess androconial scales that produce
species-specific pheromones used for mate attraction [34],
while in the dot-underwing moth sexually dimorphic wing
coloration might be used as a sexual signal during courtship
[35]. Thus, scale morphology may also be associated with
sexual selection.

While butterflies have fascinated scientists for centuries
with their ability to manipulate daylight through organized
nanostructures or photonic crystals [36–40], nocturnal
moths have a limited benefit for such manipulations.
Similarly, the relation between pigmentation and thermore-
gulation would therefore have little influence on the
absorption of incoming visible daylight for the moth. Since
thermoregulation is based on the incoming and outgoing
energy balance, this leads to an intriguing thought: since but-
terflies manipulate visible reflectance by nanostructures, the
organization of microstructures in moths might govern the

thermal infrared emissivity spectrum associated with radia-
tive cooling [41], leaving moths with a potential mechanism
for adjusting thermoregulation. This idea has been proposed
several times [41–43], but such functionality could not be con-
firmed [24]. Nonetheless, microstructures can alter infrared
spectral emissivity [44] as well as angular emissivity [45]. In
addition, a measure of surface roughness, which determines
the specularity, depends on the wavelength of light in ques-
tion [46]. Infrared waves do not resolve the smallest
structures and also experience a steeper gradient of refractive
index [39] within a structured surface, with the result that
specularity increases towards infrared wavelengths [47–49].

It is conventional wisdom that picometre-sized atoms and
molecules, too small to resolve with microscopy, can be
imaged with spectral imaging [50]. Similarly, submicron-
dominant spatial frequencies can be deduced from coherent
tissue colours [51] or resonant thin films [39]. Even incoherent
reflectance can, in some situations, reveal microscopic fea-
tures, thus circumventing the imaging resolution criterion
[52,53]. In this study, we demonstrate how information con-
cerning lateral microscopic features on moth wings might
be retrievable over long distances.

Here, we investigate the coherent and incoherent short-
wave infrared properties of the ventral and dorsal sides of
wings in 82 individuals representing 26 species of moths.
We demonstrate that moth wings generally become glossier
towards the infrared but that both surface roughness and
the steepness of this increase consistently differ between
species. We provide simple physical models and parameteri-
zation for both coherent and incoherent scattering from both
the ventral and dorsal sides of moth wings. We investigate
the diversity that is apparent among moths and explain the
potential for remote species identification by laser radar, dis-
cussing optimal bands for specificity. Ultimately, we
demonstrate how this increased flatness at infrared wave-
lengths can increase information richness in a lidar
identification scenario.

2. Results
2.1. Infrared properties of moth wings
Hyperspectral imaging was carried out on 82 moth speci-
mens from 26 species. Specular images of each species are
presented as true-colour-visible (VIS) images and false-
coloured short-wavelength infrared (SWIR) images in
figure 1. Many moth wings display glossiness in the SWIR
image, and some even display structural colour (figure 1n,o,
t1,x; note that gain is reduced for specular images to avoid
saturation).

Hyperspectral imaging was performed for all
specimens under three different illumination configurations
to study coherent, incoherent and diffuse reflectance from
the dorsal and ventral sides of the moth wing (see the illus-
tration in the electronic supplementary material, figure S1).
We evaluated the effective reflectance spectra integrated
over the entire moth wing surface, as these are properties
that can be retrieved by lidar over far distances. These
effective reflectance spectra were then parameterized by
several spectral reflectance models. Our models rely on par-
ameters in SI units for intercomparability between studies
(see electronic supplementary material, tables S1–S6).
Co-polarized effective reflectance of 25 out of 26 species
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could be explained by a long-pass function model (but
seven species were out of our instrument spectral
range) and de-polarized and diffused reflectance of 26 out
of 26 species could be explained by a de-polarized/
diffuse reflectance model. Apart from spectral parameteriza-
tion, we also describe and parametrize the depolarization

features of moth wings, which is another aspect that can
be retrieved remotely.

The probability of correct identification of moth species
based on the parametrized values was estimated for
ventral remote identification. There are nine parameters for
co-polarized, de-polarized and diffuse classification (see

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l) (u)

(v)

(w)

(x)

(y)

(z)
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(m)

(n)

(o)

(p)

(q)

(r)

(s)

(t1)

(t2)

VIS VIS VISSWIR SWIR SWIR

Figure 1. Twenty-six moth species examined in the study are presented in both true- and false-colour images. The left halves of the moths are shown in true-colour
RGB (VIS) images taken with a commercial camera with diffuse illumination. The right halves of the moths are shown in false-colour SWIR images scanned with a
hyperspectral camera in specular illumination (band choices: blue at 1250 nm, green at 1700 nm and red at 2300 nm) with a gain of 40%. Species of moths:
(a) Tebenna bjerkandrella, (b) Meganola strigula, (c) Phiaris schulziana, (d ) Agonopterix ciliella, (e) Emmelina monodactyla, ( f ) Crambus perlella, (g) Hypena crassalis,
(h) Trichopteryx carpinata, (i) Aethalura punctulata, ( j ) Lygephila craccae, (k) Autographa gamma, (l ) Acronicta leporina, (m) Helicoverpa armigera, (n) Phragmatobia
fuliginosa, (o) Agriopis leucophaearia, ( p) Apamea crenata, (q) Furcula bifida, (r) Agrotis munda, (s) Calliteara pudibunda, (t1,t2) Biston betularia, (u) Agrotis infusa,
(v) Eriogaster lanestris, (w) Noctua pronuba, (x) Agrotis ipsilon, ( y) Aglia tau and (z) Agrius convolvuli.
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electronic supplementary material, tables S2, S4 and S6).
For each species, we produced 104 synthetic data points with
the corresponding median and interquartile range (IQR) for
each parameter; the synthetic data were then fed into naive
Bayes classifiers. The covariance between parameters was
not included. The parameter overlap was estimated between
species and visualized by a standard confusion matrix
(see electronic supplementary material, figures S32–S37).
Within the selection, several species could be distinguished
with high accuracies in the range of 80–90%, even with just
three parameters from either diffuse, co-polarized or de-polar-
ized measurements (see electronic supplementary material,
figures S32–S34). However, with only three parameters, the
species with large parameter overlap are also the species
with an asymmetric IQR caused by outliers due to wing
alignments. The success of identification drastically improves
when six parameters are included; for example, co-polarized
parameters in conjunction with de-polarized or diffuse prop-
erties (see electronic supplementary material, figures S35
and S36). When all nine ventral parameters from co-polarized,
de-polarized and diffused classification were used to identify
species, the system has nearly 100% accuracy for most of the
species, as shown in electronic supplementary material,
figure S37. From a lidar design perspective, acquiring all
nine parameters, however, implies a rather complex system.
The three co-polarized parameters imply that coherent moth
wing properties could be captured by a triple-band lidar
system. In addition, such a system would simultaneously be
able to capture the diffuse properties in between the coherent
flashes in the wingbeat cycle. Band placement would need
to include short bands for melanin, a long band where the
infrared flatness is captured and an intermediate band in
relation to the steepness coefficient, α.

Examples of effective reflectance spectra under coherent co-
polarized, incoherent de-polarized and diffuse illumination are
shown for the moth Apamea crenata in figure 2. Apart from one
species (Agriopis leucophaearia) displaying a fringed spectrum,
the remaining moths display similar spectra to those shown
in figure 2 but with distinct magnitudes, cut-on wavelengths
and spectral steepness (see electronic supplementary material,
tables S1 and S2). In addition, the cut-on wavelength of seven
species exceeded our instrument range; thus, the cut-on wave-
length could not be determined. Coherent co-polarized
spectra from both the dorsal and ventral sides of the moth
wings (figure 2e,l, solid black line) exceed 100% diffuse
reflectance. Co-polarized coherent reflection, or the specular
reflectance lobe from glossy samples, has a degree of depen-
dence on the incidence angle and predominantly contributes
to the signal in the specular imagingmode. By contrast, diffuse
targets produce a Lambertian reflectance lobe where a smaller
portion of the scattered light reaches the camera (see electronic
supplementary material, figure S1B). All spectra were cali-
brated to a diffuse Lambertian reference, and strong specular
co-polarized light reflectance exceeded Lambertian white. The
coherent reflectance increases towards longer wavelengths
(figure 2e,l), while the incoherent reflectance decreases with
wavelength (figure 2f,m). Both these effects could be explained
by the fact that long-wavelength infrared photons experience
rough surfaces flatter than their short-wavelength counterparts.
Thus, the rough surface features on moth wings cannot be
resolved at the longer wavelengths. Consequently, wings dis-
play smoothness and glossiness towards infrared. The inverse
phenomenon can also be observed in figure 2g,n, where the

moth wings were under diffuse angle illumination (illustrated
in the electronic supplementary material, figure S1A,C). As
the moth wing surface appears smoother at longer wave-
lengths, the diffuse lobe gradually morphs into an elongated
specular lobe along the surface normal, implying that less
light reaches the camera (see light lobe shape changes fromelec-
tronic supplementary material, figure S1C–S1A). The spectral
increase in coherent co-polarized reflectance in figure 2e,l and
the decrease in the incoherent de-polarized reflectance in
figure 2f,m at a longer wavelength indicate that mainly specu-
lar-reflectedphotons remember theiroriginalpolarizationstate.

Interestingly, a large proportion of the investigated species
display consistently distinguishable parameters in both
the spectral and polarization domains. Such a result consider-
ably raises the prospects for remote identification of moths. To
exploit the increased flatness of moth wings in the infrared
regime to assist with insect species identification in lidar
data, we need to understand what those extracted physical
parameters in the electronic supplementary material, tables
S1–S8 represent and how they are correlated to species
and wing surface periodic nanostructures. All physical
parameters in the electronic supplementary material,
tables S1–S8 are plotted as scatter plots and are shown in the
electronic supplementary material, figures S2–S21 for coher-
ent, incoherent, diffuse and degree of linear polarization
(DoLP) measurements. The data points are the median of
multiple specimens of each species, and the indicated spread
is by the IQR within the same species. As moth wings
become glossier towards infrared wavelengths, their physical
parameters consistently differ between species (see electronic
supplementary material, figures S2 and S3) and, for each
species, these parameters generally do not overlap with
those of the majority of the remaining investigated species.
This tendency also prevails in scatter plots of the rest of the
optical parameter spaces (see electronic supplementary
material, figures S3–S21 for both ventral and dorsal sides).

To remotely identify freely flying moths, their ventral
infrared properties could be retrieved by entomological
lidar [54] in vertical mode. Such lidars can be implemented
with polarization sensitivity [55] and/or with dual band
in the short-wave infrared [56]. Wings make the largest con-
tribution to the backscattering, and most of the wing signal
is coherent and specular. Therefore, the optical properties
of moth wings from the ventral side under coherent co-
polarized illumination contain the information that is useful
for developing a moth-identifying vertical lidar. There are a
few sources of environmental noise that may interfere with
moth identification. Daylight suppression is generally a
challenge in multiband atmospheric lidar but is less of an
issue for monitoring nocturnal moths. Atmospheric turbu-
lence can cause low-frequency noise that can be confused
with the moth wingbeat, but this mainly occurs during
the daytime. Water vapour can attenuate several bands
within the infrared spectral range. On shorter ranges, e.g. a
kilometer this attenuation is less severe than through the
entire atmosphere.

As alluded to above, the coherent co-polarized wing reflec-
tance can be explained by a long-pass function with three
parameters: Rlong, the maximum reflectance for long wave-
lengths; λ0, the surface roughness (the cut-on wavelength of
the long-pass function in micrometres at which the surface
turns from diffuse to specular); and α, the long-pass steepness
(like filter order, this is unitless). For remote lidar sensing
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applications, Rlong will be challenging to estimate because of
the orientation of the wing as well as the position in the
beam. Therefore, the surface roughness λ0 and the steepness
α are better candidates for remote identification. Since the spec-
tral features λ0 and α could not be associated with molecular
absorption (i.e. by melanin and chitin), they necessarily relate
to the microstructures of moth wings and could thus be used
to differentiate species through remote microscopy. Specular
wing properties are known to produce rich harmonic spectra
which can be sensed remotely [57]. All spectral and polarime-
try specular reflectance parameters from the moth ventral side
are provided in electronic supplementary material, table S2,
and a scatter plot of surface roughness λ0 versus steepness α
is presented in electronic supplementary material, figure S3.

Eight species (one species with two subspecies) with
extreme values of surface roughness λ0 and steepness α (elec-
tronic supplementary material, figure S3) are chosen and
highlighted in figure 3a. All eight chosen species’ wing sur-
face microstructures were investigated with scanning
electron microscopy (SEM) as part of this study. Two extreme
cases from eight species in surface roughness and two other
extreme cases in steepness are shown in figure 4 as colour-
coded wing images, where λ0 and α are calculated on a
pixel level. The figures map out the surface roughness and
steepness changes among the wings and provide a sense of
which wing region has the greatest influence on the value
we parametrized across the entire wing.

2.2. Electron microscopy of wing scale structures
The periodicity of ventral nanostructures was investigated
using SEM. Moth wings are covered in scales (both ventrally

and dorsally), which exhibit a periodic two-dimensional pat-
tern on the scale surface. These structures vary in periodicity,
with the coarsest feature being the ridges parallel to the
scale’s main growth axis. Perpendicular to the ridges, a
series of more finely spaced cross-ribs can be observed,
which are sometimes intersected by ripples. To quantitively
assess these nanostructures, spatial frequencies of ridges,
cross-ribs and ripples were measured from the SEM images
to show the relationship between the different nanostructures
and their spatial frequency content (figure 4). Comparing the
eight extreme species, there were differences in nanostruc-
tures both qualitatively (e.g. the morphology of ridges) and
quantitively (spatial frequencies); however, the orientation
of scales across the wing surface was the same for all species.

The spatial periodicities of ridges and cross-ribs from the
ventral wing surface in all examined species are displayed in
figure 3b, assigning each moth a distinct position in this par-
ameter space. Notably, periodicity or ripples did not differ
significantly among species, and ripple periodicity did not
scale with the ridge and rib periodicity. Most species do
not overlap with the majority of the other species. Moths of
the family Noctuidae and F. bifida (Notodontidae) account
for the extreme values of λ0, yet the within-species spread
is consistent between them, reflecting their close evolutionary
relatedness and thus causing them to deviate from the other
species. Although the morphology differed significantly, the
ridge and cross-rib periodicities resulted in a few overlapping
species (figure 3b). The ripple spacing had a median value of
0.17 µm for all species. This might suggest that the ripples
could relate to a molecular preference of the chitin polymer
plane thickness [58]. Therefore, ripples could be building
blocks of the wing surface structure, unrelated to both ridge
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Figure 2. The reflectance of a specular pixel ( pink circle labelled ‘a’), a diffuse pixel (mauve circle labelled ‘b’) and entire wing pixels from the dorsal and ventral sides of
the moth A. crenata. Red and blue arrows (in (b–d), (i–k)) indicate the illumination and detection configurations. In both (b,i), incident and received signals are
horizontally polarized (dots on the arrow indicate that the polarization direction is perpendicular to the plane of the paper). In (c,j ), the incident light is horizontally
polarized, and the received signal is vertically polarized (the polarization direction is parallel to the plane of the paper). In (g,n), the incoming light is unpolarized and
coincides with the surface normal, and the received signal is horizontally polarized. The yellow area in (e–g) and (l–n) highlights the effective reflectance (IQR spread of
six individual wings of the same species).
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and cross-rib periodicity. If this is confirmed in later studies,
it would imply a severe discretization of lepidopteran micro-
structures with large implications for both evolution and
remote identification. The correlation between the period-
icities of ridges, ribs and ripples is presented in the
electronic supplementary material, table S9. In particular,
we found a correlation of 97% in the relation dRidge/dRipple =
5.5 (dRib/dRipple)

½ among examined species. This result is
used in figure 3b to describe the aspect ratio between ridge
and ribs with a main axis having a square-root power relation
(½, solid grey line in figure 3b).

2.3. Correlation between the spectral properties and
moth wing nanostructure

The surface roughness λ0 and steepness α are parameters that
have the least sensitivity to the wing orientation and are
therefore the best candidates for identifying moth species.
Since these relate to the surface microstructure, we related
them to the lateral periodicities observed with electron
microscopy across the scale surface. The spectral long-pass
function can be likened to a road coarsely paved with
cobblestones (stone size of λ0) being irradiated by ping-
pong-ball-sized photons of short wavelength λ (i.e. λ < λ0).
These photons would bounce off the road in random direc-
tions, whereas basketball-sized photons (λ > λ0) would
bounce with the memory of the incident angle. Surprisingly,
we find that the species with the coarsest lateral periodicity,
F. bifida, displays the lowest λ0 value. Reciprocally, we find
the finest lateral periodicities in M. stigula, which also has
the largest λ0 value (figure 3). Our interpretation is that the
distribution of surface normal across the scales has a reduced
spread for the coarse lateral periodicities. This could occur in
a situation where the lateral periodicities scale but the depth
profiles remain constant. Unfortunately, our SEM images do
not yield depth profiles.

The ridge–rib aspect ratio (along the isotropic pink lines
in figure 3b) is somewhat related to the steepness parameter,
α. For example, B. betularia (black) and A. convolvuli are both
above the main square-root axis while B. betularia (white) and

L. craccae are below it. However, both A. convolvuli and
L. craccae display intermediate λ0 values as well as intermedi-
ate lateral periodicities (from the SEM measurements). The
black and white morphs of B. betularia are generally thought
to differ only in melanization. Interestingly, both the struc-
tural steepness parameter α and the SEM images (which are
blind to melanization) confirm that the scale microstructure
differs significantly between the two morphs of this single
species. We emphasize that there are cases where morphs
and sexes differ, not only in coloration but also in the micro-
structure. In analogy, previous lidar studies of mosquitoes’
wingbeats demonstrate high sex discrimination, whereas
species can be more challenging to differentiate [54]. The
expectations should thus be that differences in both color-
ation and microstructure only partly reflect the allocation in
the phylogenetic tree and that groups and phenotypes
could also be explained by other ecological factors than
genetic heritage.

It is evident that the specular spectral properties λ0 and α
are associated with microscopic features in the SEM images.
It is also evident that the ridge and rib spacing alone are
not enough to precisely predict the spectral properties.
Knowledge of the depth profiles of moth wing scales is
likely to improve spectral prediction.

2.4. Implications for remote sensing of freely flying
moths

With the knowledge we have gained regarding specular
reflectance from moth wings, we fed the parameters of the
hawk moth A. convolvuli into a BRDF. This model can vary
continuously from diffuse Lambertian reflectance to specular
reflectance. We then combined this reflectance model with
the wing motion angles from a previous study on hawk
moths [29]. However, such a model was constructed exclu-
sively for Sphingidae; also fore- and hindwings of some
species can conform to a wavy surface rather than a plane
during flight. The simulation was intended only as an
example to demonstrate the effect of infrared specularity on
the scattered waveform. The wing pitch and roll angles
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during one wingbeat are presented in figure 5a,c. We consider
the 180° backscattered light from a vertical lidar and multiply
the reflectance by the area of the projected wing shapes
(figure 5b,d). Accordingly, we present the expected lidar
waveform signals from flying hawk moths at two flight
speeds. The dashed de-polarized diffuse Lambertian signal
directly represents the projected wing area at zenith obser-
vation. The co-polarized, coherent and specular signal, on
the other hand, displays a moderate flash at the instant
when the wing surface normal approaches nadir (during
upstrokes). This effect increases with a longer wavelength
as the wing becomes glossier. At flight speeds of 5 ms−1,
the wing surface normally approaches horizontal, and the
flash could even occur in horizontal lidar observation
mode. Alternatively, the likelihood of observing flashes
could be maximized by observing at 56° from zenith. The
last two detection modes would, however, be highly sensitive
to the flight direction. We conclude that infrared specular
properties have a large impact on the wingbeat waveforms
and are thus retrievable from far distances. The specular
properties could thus be assessed by (i) a polarization-sensi-
tive lidar, (ii) a dual-band lidar, or (iii) simply calculating the
waveform skewness (see caption of figure 5b,d). Since skew-
ness is unitless, this approach would pose a highly robust
solution that is insensitive to instrument calibration.

3. Discussion
We have shown that moth wings become glossier towards the
SWIR, that is, specularity increases with wavelength, a fact
that is also reflected by their polarimetric properties. We
have proposed and demonstrated reflectance models that
can effectively parametrize the coherent, incoherent and dif-
fuse effective reflectance from the dorsal and ventral
surfaces of moth wings in the near-infrared (NIR)-SWIR
region. Reflectance spectra from the wings of 82 specimens
of 26 moth species (one species with two subspecies) are
reduced to 11 non-redundant parameters (see electronic

supplementary material, figure S22) in SI units for reproduci-
bility. These spectral and polarimetric parameters differ
significantly between species, a promising result for remote
identification of freely flying moths with optical sensors.

We validated the idea of remote microscopy by correlat-
ing the deduced parameters from the infrared reflectance
with spatial periodicities deduced in SEM scans of the ventral
wing surface. Species with significantly distinct spectral par-
ameters also showed significantly different microstructure
periodicities on their wing scales, although in a non-intuitive
manner. Species with rougher wing surfaces and becoming
shiny at longer wavelengths had smaller spacing between
ridges and cross-ribs. We speculate that a more accurate
relationship between spectral properties and microstructures
could be accomplished with additional measurements of the
depth profiles of wing scale surfaces (using SEM). Morpho-
logical measurement precision could also be increased in
future studies with additional techniques, such as micro-
computed tomography.

The majority of moth species were chosen based on their
abundance in the southern Swedish province of Skåne,
generally with three replicates for each species to estimate
variation. However, for some families, we only had one
species available. Therefore, when we parameterized all
reflectances and analysed how distinct each species
is relative to others, we could not conclude if there is any gen-
erally applicable trend at the family level. However, the
microstructure periodicities [59] and infrared properties [24]
in our study compare well with previous reports on both
moths and butterflies. Thus, the surface roughness assess-
ment and model could also be applied to butterflies. Within
our spectral range, we could not parametrize coherent reflec-
tance for seven of our moth species, presumably because they
had a too coarse microstructure. Further research should
include more species in the same family and use a spectral
system that can identify new extreme values by employing
instruments in the 3–5 μm range.

By using the knowledge gained by modelling the reflec-
tance of a hawkmoth and combining this with the wing
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dynamics from a previous study [29], we could simulate
entomological lidar signals, and various bands and polariz-
ations, for the purpose of remote identification of freely
flying moths. Indeed, the coherent specular phenomena
described in this study have a large impact on the resulting
lidar signals. The infrared glossiness can be retrieved
differentially with a dual-band lidar [56], through co-
polarization- and de-polarization-sensitive lidar [55], or
simply by calculating the waveform skewness. We thus can
expect that numerous moth species can be differentiated
remotely by retrieving reflected optical signals that are
directly related to the microstructures of their wing scales.

4. Material and methods
4.1. Lepidoptera specimens
We included 82 individuals of 26 moth species from 13 different
families representing both macro- and micromoths, provided by
the Lund University Biological Museum (figure 1). As examined
species show no sexual dimorphism, we do not expect any differ-
ence between males and females in the spectral and structural
signatures. Most species were selected based on their abundance
in the Skåne region of Sweden [60] (unpublished data based on
museum material in the Biological Museum, Lund University),
except for two common Australian species. The Swedish moth
species included were Agonopterix. ciliella (Depressariidae);
Agrius convolvuli (Sphingidae); Apamea crenata, Autographa
gamma, Agrotis ipsilon, Acronicta leporina, Helicoverpa armigera,
Noctua pronuba (Noctuidae);Agriopis leucophaearia, Aethalura punc-
tulata, Biston betularia carbonaria (black), Biston betularia typica
(white), Trichopteryx carpinata (Geometridae); Aglia tau (Saturnii-
dae); Crambus perlella (Crambidae); Calliteara pudibunda, Hypena

crassalis, Lygephila craccae, Phragmatobia fuliginosa (Erebidae);
Eriogaster lanestris (Lasiocampidae); Emmelina monodactyla
(Pterophoridae); Furcula bifida (Notodontidae); Meganola strigula
(Nolidae); Phiaris schulziana (Tortricidae); and Tebenna bjerkandrella
(Choreutidae). Two Australasian noctuids were also included
in the study to increase the number of species in the genus
Agrotis (Agrotis infusa and Agrotis munda) to test whether
lidar has the potential to distinguish species within a tight
taxonomic group.

Moth wings were spread and set in a horizontal plane by a
skilled expert to minimize damage or wearing to the wing
scales during handling. Estimation of within-species variation
was allowed by at least three replicates of each species variance
(except A. munda, a single specimen) and measurements were
taken from both the left and right wings for both the dorsal
and ventral sides of the body. Even if a wing should have
minor damage where scales are not intact, it has minimal influ-
ence on the reported median value. In regards to the age of the
specimen, a study on the wing interference pattern displayed
on transparent insect wings is stable even on 100-year-old dry
museum specimens [61]. Also, the nanostructures in butterflies,
which produce structural colours in the visible range, are gener-
ally considered to be stable in museum collections. Our
presumption is thus that the chitin microstructure on dry moth
scales should also remain stable over time.

4.2. Hyperspectral imaging
The NIR-SWIR optical properties of moth wings were studied
using a push-broom hyperspectral camera [62] (HySpex;
Norsk Elektro Optikk AS, Norway). Two 150 W broadband
halogen lamps were used sequentially to illuminate the sample,
and two ultra-broadband polarizers [63] (Meadowlark Optics,
USA) were used for polarimetric analysis. All specimens were
mounted on black neoprene foam sheets to minimize

–90
–90

–45

–45

0

0

0 20 40 60 80 10045

45

0 m s–10 m s–1

5 m s–15 m s–1

90

90

–90

–45

H
or

iz
on

H
or

iz
on

H
or

iz
on

H
or

iz
on

0

45

90
(a) (b)

(c) (d)

50

50

40

40

depol. @980 nm, skew. 0.10
co-pol. @980 nm, skew. 0.24
co-pol. @1550 nm, skew. 0.59

depol. @980 nm, skew. 0.13
co-pol. @980 nm, skew. 0.35
co-pol. @1550 nm, skew. 0.73

30

30

20

20

10

10

0

0

wing roll (º)  transit time (ms)

w
in

g 
pi

tc
h 

(º
)

op
tic

al
 c

ro
ss

-s
ec

tio
n 

(m
m

2 )
op

tic
al

 c
ro

ss
-s

ec
tio

n 
(m

m
2 )

w
in

g 
pi

tc
h 

(º
)

Horizon

Horizon 

Horizon

nadir

nadir

wing normal
min angle
upstroke
downstroke
direction

left right

alternative
configuration

alternative
configuration

Horizon

Figure 5. Simulated moth signals with a vertical lidar detection scheme. (a,c) Wing surface normal trajectory of a hawkmoth at two flight speeds. When the normal
approaches nadir, the wings would produce a ‘flash’ in the vertical lidar signal. (b,d) Modelled temporal wingbeat cross-section signal from zenith. Coherent
properties increase with wavelength, as does the waveform skewness.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220256

8

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

13
 M

ay
 2

02
4 



the reflection from the background. The hyperspectral camerawas
operated with an objective with an aperture of ø25.4 mm and a
working distance of 30 cm. The push-broom scan generates a
three-dimensional (x, y, λ) hyperspectral image cube, where the λ
includes 288 spectral bands ranging from 0.95 µm to 2.5 µm and
a spatial resolution of 240 µm. All recorded hyperspectral data
were calibrated to a target with a 50% diffuse reflectance
standard (Spectralon®). The angular light distribution was
captured by imaging silicon nitride spheres [64].

The hyperspectral imaging was repeated with three different
configurations of illumination (electronic supplementary
material, figure S1). The configurations were as follows. (i) Co-
polarized specular illumination (with horizontal linear polarizers
on both illumination and camera). The illumination and camera
axis were at ±56° to surface normal. (ii) De-polarized illumina-
tion (with a horizontal polarizer on the light source and a
vertical polarizer on the camera). Again the illumination
and camera axis were at ±56° to surface normal. (iii) Diffuse
illumination (illuminating with unpolarized light and capturing
the horizontally polarized light). In this case, the illumination
coincided with the surface normal, whereas the camera remained
at 56°. Examples of reflectance spectra from a specular pixel, a
diffuse pixel and the entire wing of A. crenata are shown in
figure 2.

4.3. Parameterization of specular reflectance
(co-polarized model)

We generally observed that the specular reflectance increased
and reached a plateau towards infrared (see example in
figure 2e,l). Thus, we applied a long-pass function known from
electrical and photonic engineering:

R ¼ Rlong
ðl=l0Þa

1þ ðl=l0Þa : ð4:1Þ

In this model, Rlong is the asymptotic maximum reflectance
value, λ0 is the cut-on wavelength or surface roughness and α
is the slope steepness of the spectrum. All parameters are pro-
vided in the electronic supplementary material, tables S1 and
S2. For the majority (19) of specimen explanations, grades
(R2

adj) exceed 98%. For seven species, reflectance continuously
increased towards infrared without reaching a plateau within
our spectral range. This does not imply that our model is inaccur-
ate, but rather that the surface is too rough to assess with the
spectral range of our instrument (0.9–2.5 µm). This also prevents
us from identifying both Rlong and λ0. The last remaining species
(A. leucophaearia) displayed a fringy spectrum that does not
comply with equation (4.1).

4.4. Parameterization of diffuse reflectance
(de-polarized and diffuse model)

The majority of diffuse reflectance spectra decrease towards both
short and long wavelengths (figure 2f,g,m,n). The decrease
towards a short wavelength below 1.2 µm can be explained by
eumelanin absorption [65]. The decrease in diffuse reflectance
towards long wavelengths is primarily due to transmission
losses owing to diffuse photon migration and random walks
[66] and the increasingly specular surface (thus not contributing
in diffuse mode). The mean free path increases with wavelength,
and so does the chance of light escaping on the back side of the
wing (and thus not contributing to reflectance). A model was
developed that was inspired by the Beer–Lambert law:

Rdiff � Rdepol ¼ R0 � e�ma‘mel�mTl, ð4:2Þ
where R0 is the maximum diffuse reflectance, ℓmel is the equival-
ent pathlength in pure melanin and µT is a slope coefficient

arising because of transmittance. µa is pure eumelanin absorption
and is also wavelength dependent [65]:

ma ¼ 1(l) � C ¼ 10e�ðl=lmÞ � C, 1(l) ¼ 10e�ðl=lmÞ, ð4:3Þ
where ε0 = 2.45 µm−1M−1, λm = 0.175 µm and C = 5.65M

Increased melanin pathlength, ℓmel, attenuates the shorter
part of the reflectance spectra. An increase in the slope coefficient
µT will attenuate the longer parts of the reflectance. The par-
ameters and explanation grades are provided in electronic
supplementary material, tables S3–S6.

4.5. Parameterization of degree of linear polarization
spectrum

To investigate the feasibility of polarimetric identification of
moth wings, the spectral depolarization was investigated by
calculating the DoLP:

DoLP ¼ Ico
Ico þ Ide

¼ 1þ e�(lp=l)
g

2
: ð4:4Þ

Note that there are several definitions of DoLP in the litera-
ture. The one above gives 100% for entirely co-polarized
reflectance and 50% for entirely randomized reflectance. In
equation (4.4), Ico and Ide are co-polarized and de-polarized
reflected intensities, respectively, λp is the wavelength where
wings become co-polarized. The spectral dependence of DoLP
is given by γ. In summary, a high λp implies a diffuse wing,
and a high γ implies that DoLP increases with wavelength. All
parameters are documented in electronic supplementary
material, Tables S7 and S8, where R2 indicates the fitting quality.

4.6. Scanning electron microscopy
Eight of 26 moth species (one species with two subspecies) were
selected to investigate moth wing nanostructures using SEM. The
selection was made based on the parametrization results from
specular reflectance signals from the moth ventral wings
(electronic supplementary material, figure S3). A. convolvuli,
F. bifida, L. craccae and M. strigula were chosen because they
represent the extreme values for surface roughness λ0 and
steepness α, respectively. A. crenata represents the average for
both parameters. A. infusa and A. ipsilon were selected to investi-
gate the variance of nanostructures within the same genus.
B. betularia was chosen to include another superfamily, the
Geometroidea. This species inhabits a polymorphism with two
different morphotypes differing in melanization. For each
species, one specimen was investigated. Wings were first cut
with the help of a stereomicroscope (ZEISS Stemi DV4), and
three pieces of each wing were removed. Pieces were about 3 ×
3 mm in size and taken from different areas of the wings. Both
fore- and hindwings were inspected. The dried wings were
carefully glued onto SEM stubs, air-dried and sputter-coated
with gold (Cesington 108 auto, 75 s, 20 mA). Imaging was
done with a scanning electron microscope (Hitachi SU3500) at
5 kV. For numerical analysis, the SEM images (of resolution
0.025 µm pixel−1) were analysed to extract the different lateral
spatial frequency components that could correlate with or
account for the distinct infrared properties observed.

Each image from the samples was cropped into three win-
dows across the scales. The windows were 20 × 20 µm. The
windows were subject to Gaussian apodization, after which the
two-dimensional spatial frequency power spectrum was calcu-
lated and averaged for the cropping. Three periodic structures
were identified, with ridges being the coarsest (approx.
2.0 µm), cross-ribs of intermediate size (approx. 760 nm) and
ripples being the finest (approx. 170 nm).
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4.7. Bidirectional reflectance distribution function for
waveform modelling

The reflected light lobe was modelled as a function of incident
pitch and roll angles, θ, w. The model originated from diffuse
Lambertian reflectance, I = I0cos

1/r(θ), where r represents surface
roughness. Here r = 1 is a perfect diffusor and r = 0 is a perfect
mirror. By comparing our hawk moth recordings, we determined
r980 nm = 0.53 and r1550 nm = 0.37 for A. convolvuli. To model the
dependency of the specular reflectance lobes on the incident
light, we introduced a symmetric link function, Flink(θ,θ0), with
the property Flink(θ, –θ) = 0° (maximum of the cosine function).
This ensures that incident and reflected light angles are opposite.
Furthermore, we multiply θ0 by 1 – r; thus, the reflectance lobe of
a perfect diffuser coincides with the surface normal and becomes
identical to Lambertian reflectance:

I(u,w) ¼ I0(cos(Flink(u,(1� r)u0))cos(Flink(w,(1� r)w0)))
1=r,

r [ {0 . . . 1},
ð4:5Þ

Flinkðu; u0Þ ¼ 90� uþ90�
180�
� �

�logð2Þ

log
90��u0
180�

� �
� 90��u

180�
� �

�logð2Þ

log
u0þ90�
180�

� � !

;

u; u0 [ f�90� . . .þ 90�g
ð4:6Þ

ð ð90�

�90�
I(u, w) dudw ¼ 1 , ð4:7Þ

where I is the light reflected in the directions θ and w. I0 is a scalar
intensity, while θ0 and w0 are the incidence angles.

The BRDF was used to calculate the 180° backscatter from a
moth using a vertical lidar. The dynamic wing roll and pitch
were adopted from a previous study [29]. The backscattered

reflectance during the wingbeat was multiplied by the ventral
projected wing area during the wingbeat, and the optical cross-
section was obtained as a function of time. The de-polarized
signal is modelled with r = 1. We note that this model does not
consider diffraction and reflectance anisotropy from the
grating-like lateral periodicities on the scales. The periodic fea-
tures on the scales are unlikely to be in a phase across the
wing, and diffracted orders are not observable in the zeroth
order, as is the case for our specular hyperspectral imaging
and/or backscattering in lidar.
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Feasibility of Insect Identification Based on Spectral
Fringes Produced by Clear Wings

Meng Li , Anna Runemark, Noélie Guilcher, Julio Hernandez, Jadranka Rota , and Mikkel Brydegaard

Abstract—Due to the growing awareness that insects’ diversity
and populations are in decline, there is an increased need for moni-
toring insects. Entomological lidars and photonic sensors can moni-
tor and remotely identify flying insects based on their backscattered
signal in terms of oscillations-, polarization-, and spectral content.
The backscattered light from insects is predominantly oscillatory
and derives from the wings. This part of the signal is also more
coherent and co-polarized than the light reflected from the insect’s
abdomen. Clear membranes can display soap-bubble colors due
to thin-film interference, a feature that can be associated with the
thickness of the wing. A hyperspectral camera can capture these
wing interference patterns with hundreds of spectral bands and
accurately identify the wing thickness. Here we investigate whether
the spectral fringes can provide complementary information to aid
remote species identification. We demonstrate that we can extract
wing thickness and modulation depth information from spectral
fringes of 87 species of common insect pollinators in Skåne, Sweden.
The modulation depth of a fringe provides information related to in-
sect wing thickness homogeneity, wrinkledness, or anti-reflectance
features. Our results show that examined species display distinct
modulation and wing thickness, and therefore such features can be
used to improve the specificity of species identification of photonics
sensors.

Index Terms—Spectral fringe, insect, pollinator, entomological
lidar, wing thickness, hyperspectral, thin-film.

I. INTRODUCTION

INSECT habitats and populations are adversely affected by
human-driven disturbances and global warming [1], [2],

[3]. Despite the fact that insects have high resilience and an
incredible capacity to reproduce, there has been a decline in
insect populations [4] and diversity [5], [6] over the years.
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Insects are essential to our ecosystems [7]. They are a key part
of the food chain and play an important role in pollination.
They also help to control pests and can be used as indicators of
environmental health. The decrease in diversity and population
of pollinators has negative effects on ecosystem functioning [8]
and agricultural production [9]. To protect and manage wild
pollinators, it is crucial to be able to monitor insects’ diversity
and distribution. Additionally, monitoring will enable predicting
changes in insect population sizes in response to management
strategies for the landscape [10], [11].

However, it remains a challenge to monitor insects using
conventional catch-based survey methods. Adult insects, which
are usually the main target for monitoring [12], [13], [14], are
only present for a short period of time and appear at a specific
time of the day and year. Consequently, insects captured with
conventional catch-based methods come with strong biases [15].
Baits or pheromones used in traps are also generally designed to
attract certain species. Methods based on catching and identify-
ing species of insects are also very labor-intensive and require
an experienced taxonomist. Genetic methods have recently been
used to identify trapped insect species, but they could not report
values in insect abundance [16].

Compared to conventional trap-based methods, laser remote
sensing [17], [18] can provide unbiased data on insect activity
and flux in situ with very high spatial and temporal resolution
[19]. Such information could be used to monitor pests [20],
track the spread of disease vectors [21], and monitor and man-
age agricultural pests or pollinators [22]. Machine vision and
imaging-based techniques have been reported in combination
with traps [23], [24], but focusing challenges imply that recog-
nition of anatomical details is difficult for free-flying insects
[25]. Fortunately, methods based on wing beat oscillation-,
polarization- and spectral- features of the insects can retrieve
signals regardless of focus on insects appearing sparsely in time
and space [17], [21].

Insect species have distinct wing beat frequencies and distinct
compositions of overtones. These signals have been demon-
strated to enable species discrimination in flight chambers [26],
[27], and multiple groups of insects have been differentiated in
the field based on their oscillatory properties [10], [28].

In complement to oscillation signatures of detected insects,
we explore if multiple polarization- or spectral bands could
increase the number of discernable species. Detailed spectral
information from insect bodies can be used to differentiate
insect species, sex, and age [29], [30]. Oscillatory signals from
free-flying insects can be expanded to discriminate co- and
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de-polarized backscatter both in caged environments [20],
[26], [27] and in situ [31]. This allows for the discrimination
of coherent specular and incoherent diffuse scattering. If the
wavelength resonates with the wing membrane thickness,
rapid specular flashes appear on the scattered waveform,
and consequently, a large number of harmonics appear. Both
polarized recordings with photonic sensor environments on
insects in cages [20], [26], [27] and lidar field recordings
[31] show that most of the scattered signals from insects is
oscillatory and specular, and WIPs account for most of the
optical signature (∼80%) of free-flying clear winged insects
[31]. Flat clear wings of insects can exhibit reflectance 50 times
more than a diffuse white at the resonant wavelength [31]. This
is far brighter than any diffuse light reflected from vegetation or
the sky background. Insect sensors [18], [19], [32] or lidars [20],
[31], [33] with dual- or multiple wavelength bands are, therefore
highly sensitive to Wing Interference Patterns (WIPs) and could
potentially distinguish species based on wing thickness. Like
some polarimetric insect vision systems, polarimetric lidars
can also further enhance contrast for resonant backscatter from
WIPs against the natural environment [31].

For clear-winged insect pollinators, a dominant spectral fea-
ture is thus the spectral fringe produced from their thin wing
membrane associated with the wing thickness, also known as
WIPs. This feature is stable over time and generations, according
to studies on museum specimens [34]. Studies on WIPs suggest
that the variation is low within species but high among species
[35], [36]; thus, wing thickness could be the ideal parameter for
discerning species.

Morphological data of insects could improve the interpreta-
tion of oscillatory signals [37], whereas differences in nano-
and micro-surface structures could improve specificity in mul-
tispectral systems [38]. Allometric relationships between insect
size and the morphology of their wings are known for a range of
species [39], [40], [41], and allometric relationships are typically
hard to alter. However, the relationship between wing area and
wing thickness is not well studied. It is interesting to study al-
lometry to understand how insects make morphological changes
in order to maintain the same performance despite their size
differences and whether wing thickness scales allometrically
with wing size for biomechanical reasons or if it is locked by
species interactions or sexual selection.

In this study, we investigated if spectral fringes could provide
information complementary to improving remote insect identi-
fication in optical sensing. Specifically, we captured the spectral
fringes and measured the wing thickness of 87 species belonging
to the most important groups of distinct insect pollinators: bees,
wasps, and flies. The aim was to examine the feasibility of using
fringe information to improve the remote identification of more
species with lidar or other optical techniques by recording both
wing-beat modulation and spectral information simultaneously.

II. MATERIALS AND METHODS

The Lund University Biological Museum provided 87 species
of pollinators representing 8 families from two insect orders
(Hymenoptera and Diptera) with 1 specimen of each. These

species of bees, wasps, and flies were selected as they are
important pollinators and are difficult to identify for amateurs.
They also have clear and flat wings, increasing the feasibility of
using spectral fringes for identification. The species included in
this study are presented in Table I.

The experimental setup is shown in Fig. 1. A hyperspectral
camera with 288 spectral bands from 0.95 μm to 2.5 μm was
used to capture the spectral fringes from the wings [42]. Melanin
contribution from the wings can be neglected in this wavelength
region. A 150 W broadband halogen lamp was used to illuminate
the wings, and two ultra-broadband polarizers [43] were used to
capture co- and de-polarized reflectance. The angle of incidence
and observation were ±56˚. The objective of the camera had an
aperture of Ø20 mm, and a working distance of 30 cm (forming
a light cone of 3.8°). Mirrored spheres were used to image the
size and position of the light source [44], [45]; the reflection
of the light source on the spheres provides information on the
convolution of the light cone from the source (15°) and cone
received by the camera. All hyperspectral data were calibrated
to a diffused grey reflectance standard with 50% reflectance
(Spectralon); a specular pixel calibrated to such a diffused
standard will exceed 100% diffuse reflectance. All samples were
mounted on black neoprene with horizontal wing surfaces. Black
neoprene was used to reduce the background light. One wing
of each specimen was scanned, and sexual dimorphism was not
taken into consideration in this study. We only scanned one wing
because most specimens did not have both their wings spread, as
it is not a common procedure in preparing and storing specimens
of Hymenoptera and Diptera orders of insect specimens.

III. RESULTS

When a clear insect wing is illuminated by a white light
source, different wavelengths of light are attenuated or resonant
depending on the membrane thickness, which results in the soap
bubble color patterns appearing on the wing that are visible in
both RGB and false-color images shown in Fig. 2(a), (b). The
red and blue arrows in Fig. 2(b), (c) illustrate the incident- and
captured ray paths and polarizations. Dots on the red and blue
arrows in Fig. 2(b) indicate that incident and capture light are
both horizontally polarized, whereby an co-polarized image is
acquired. The dots and smaller arrows on the red and blue arrows
in Fig. 2(c) show the incident light is horizontally polarized,
and the captured light is vertically polarized, as the polarization
directions are perpendicular, the signal captured by the camera is
de-polarized. Specular pixels from the wings are only present in
the co-polarized false-color image shown in Fig. 2(b), not in the
de-polarized image shown in Fig. 2(c), which indicates the light
reflected from the wing membrane is a coherent phenomena.

As different wavelengths either resonate in forward- or
backscattering depending on the wing thickness, the spectral
profile of each wing pixel display a spectral fringe [46]. Exam-
ples of a thicker and a thinner wing pixel highlighted by two
arrows in Fig. 2(b) have corresponding spectral fringes shown
in Fig. 2(d). The effective fringe shown in Fig. 2(d) of the
entire wing acquired by spatially averaging all wing pixels. Wing
thickness is calculated for all 3 fringes shown in Fig. 2(d) by a
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Fig. 1. (a) The experimental configuration used for hyperspectral imaging. The illuminator was equipped with a large wire grid polarizer, and another linear
polarizer was placed in front of the camera. This analyzer can be rotated to alternate between capturing co- and de-polarized reflectance. (b) The order of objects
included in each scan were: Chrome spheres, teflon spheres, a flat grey diffuse standard, and insects mounted on black neoprene.

Fig. 2. (a) Soap bubble colors on the wing are more visible when the insect
wing is placed against a black background. (b-c) Two false-color images were
generated for co- and de-polarizations. The orange and green circles in (b-c)
correspond to two wing pixels from a thicker and thinner region of the wing; Blue
colored reflectance spectrum in (d) corresponds to the effective wing reflectance
integrated over the whole wing. Value 28, 48, and 65% describe how modulated
its corresponding fringe. (e) Reflectance maxima are illustrated with closed
circles, and minima are illustrated with open circles from (d).

linear fitting method with extremum numbers (Fig. 2(e)) [46].
The two selected pixels in Fig. 2(b), (c) with different thicknesses
display different colors (thicker: pink, thinner: green, in this
particular false color visualization); the thin pixel fringe has a
larger modulation depth than thick pixel (see Fig. 2(d)), and the
thick fringe is more fringed than the thin fringe in the spectral
window. Modulation depth (M) measures how pronounced the

fringe effect is for a given wing. If modulation depth approach
zero, the accuracy of wing thickness estimation would vanish.
The mean- and standard deviation of reflectance are considered
in the spectral domain. The modulation depth is expressed as:

M =
σ (Rλ) · μ (Fλ)

σ (Fλ) · μ (Rλ)
(1)

where R is measured reflectance and F is computed fringe, λ is
the wavelength, σ is the standard deviation, and μ is the mean of
the sample. Based on the Fresnel equation and thin-film physics,
its reflectance fringe F(λ) can be expressed as [47],

F (λ, d) =
4Rssin2

(
2πd

√
n2 − sin2θ/λ

)

(1−Rs)
2 + 4Rssin2

(
2πd

√
n2 − sin2θ/λ

) (2)

where n is the refractive index of the chitin, d is the thickness
of the wing, θ is the incident angle to the wing membrane, λ

is the wavelength, and r is the reflection coefficient by Fresnel
equations. The refractive index of the cuticle is expressed as
[46]:

n = k0 + k1/λ
2 (3)

where k0 = 1.517 and k1 = 8800 nm2. For S-polarization
(electric field is perpendicular to the plane of incidence), the
reflection coefficient Rs is expressed as:

Rs =

(
cosθ −√

n2 − sin2θ

cosθ +
√
n2 − sin2θ

)2

(4)

The reflectance from P-polarization should be absent in our
case since we measure at the Brewster angle. The crossed
de-polarized P-polarized signal thus only captures multiple scat-
tered lights from veins; as can be seen in Fig. 2(c), (d) this contri-
bution is minimal compared to the fringed coherent reflectance.
Thus fringes are horizontally co-polarized (S-polarization) as
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TABLE I
LIST OF THE 87 SPECIES OF INSECT POLLINATORS STUDIED

shown in Fig. 2(b), (c), (d); therefore, only reflection coefficient
rs was used in developing the fringe model in (2).

The modulation depth was calculated for 3 example fringes
shown in Fig. 2(d) with their values shown in the same plot; the
effective fringe (whole wing) has the lowest modulation, and it
is attenuated towards the shorter wavelengths. To investigate
the reasons for the decrease in the modulation depth of the
effective fringe compared to individual specular wing pixels
(for example, thick and thin fringes), the wing thickness and
modulation depth were calculated and documented for all wing
pixels for the same wing shown in Fig. 2(b) and in Table I. Instead
of the peak-valley fitting in Fig. 2(e) [46], the fringe model
F(λ) in (2) was used to determine wing thickness for all wing
pixels. Fringe model F(λ,d) was first used to generate multiple
(1000) computed fringes with wing thicknesses 0.35 μm<d<4
μm, the modulation of F(λ,d) is always 100% because it lacks
bias terms. Each computed fringe F(λ,d) was then compared
to the measured fringe R(λ) from a wing pixel, according to the
correlation, C, in (5). We then introduced a fit quality parameter,
Q in (6):

C (R,F (d))

=
∫40.35 (Fλ,d − μ (Fλ,d)) (Rλ − μ (Rλ))

2

√
∫40.35 (Fλ,d − μ (Fλ,d))

2∂λ ∫40.35 (Rλ − μ (Rλ))
2∂λ

(5)

Q (d) = C (R,F )

(
C

(
∂R

∂λ
,
∂F

∂λ

))2

(6)

Here the spectral derivatives are used to ignore slope differ-
ences. The squared power is needed to avoid double negative
correlation coefficients.

Wing thickness and modulation of all wing pixels from the
example wing shown in Fig. 2 were estimated and presented
as a wing thickness map, and a wing modulation depth map in
Fig. 3(a). The wing thickness map example shows that wings
are generally thicker around the frontal edges (costal margin)
and thinner near the rear edge (anal margin). It is important to
note that the membrane thickness in Fig. 3 is based on the thin
film principle and does not describe vein thicknesses. However,
vein pixels also have very low modulation depth, as shown in
Fig. 3(a), and their influence on the effective fringe is relatively
small.

The density plot of thicknesses and modulation in Fig. 3(b)
shows that there is a large variation in wing thickness across
the wing. The thickness histogram reveals specific thickness
preferences; for example, thickness at 1.0 μm and 1.2 μm is
more dominant than wing thickness at 1.1 μm. A relevant ques-
tion is if these nanoscale thicknesses are quantized. Studies of
chitin polymers in lobster’s exoskeletons [48] displayed specific
folding and curling preferences of the chitin polymer.

The density plot in Fig. 3(b) also shows that the fringes of
a large amount of wing pixels display high modulation depths.
The fringes with high modulation also correspond to specific
prominent wing thicknesses (see Fig. 3(a)). Thicker wing pixels
produce narrow spectral fringes than thin wing pixels. Thus,
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Fig. 3. (a) Wing thickness and modulation depth maps of the same example wing shown in Fig. 2. (b) Wing thickness and modulation distribution and histograms.
Yellow arrows indicate the location of medians in both wing thickness and modulation. Blue arrows indicate the position of effective wing thickness and modulation
calculated and presented in Fig. 2. The effective fringe modulation is lower than the median of all fringes.

Fig. 4. Effective wing thickness and modulation depth were investigated for
a large selection of insect species while each family of insects is color-coded.

fringes across the wing surface are more likely to interfere con-
structively with thin wings and for long wavelengths. Examples
where fringe resonance modes are out of phase are shown in
Fig. 2(d) with thick and thin fringes. Consequently, the effective
modulation is reduced.

The effective wing thickness, deff, and modulation were then
estimated for 87 species of Hymenoptera (bees and wasps)
and Diptera (mainly hover flies), see Table I. This estimation
was based on the effective fringe from their entire wings (the
effective fringe for S. ribesii is shown in Fig. 2(d). All 87
studied individuals were museum specimens, each representing
a different species, belonging to 8 different families. The ef-
fective modulation depth was investigated for all specimens and
color-coded at the family level (not spread of individual species).
Note that modulation values are valid only for the spectral
window of our instrument. In Fig. 4, it can be seen that the
insect family Apidae, which includes, for example, honeybees

and bumblebees, and the family Megachilidae, which includes
mason bees and leafcutter bees, display a wide variation in wing
thickness and low modulation. We find that Vespidae, the family
comprising wasps, has a wide wing thickness distribution and a
medium degree of modulation depth among all studied species.
Only one specimen of Tabanidae, a horsefly, was investigated,
and it displayed a low degree of modulation depth. The rest of
the insect families display a high degree of modulation depth.

All scatter points in Fig. 4 show a trend that thin wings display
higher modulation depths; this could be explained by three rea-
sons: 1) the modulation could be damped due to wrinkled wings,
2) nanostructures on some wings can induce anti reflectance
effect by gradient refractive index interfaces [46], 3) fringes
from a thicker wing are narrow in the spectral domain, thus
more likely to get out of phase due to thickness heterogeneity
causing the reduction in modulation depth, whereas fringes from
a thin wing are less sensitive to phase displacement. This can also
explain why the effective fringe modulation is getting higher in
the longer wavelengths (see Fig. 2(d) effective fringe). We found
the last explanation most plausible.

The relation between wing thickness and wing area was inves-
tigated for all species and presented in Fig. 5. A squared power
relation of wing area, A (mm2), and effective wing thickness deff.
(μm) indicate allometric scaling, which is illustrated with a grey
line in Fig. 5, with a scaling factor of 17 [16–19, confidence inter-
val]. However, the relationship is better described by the relation
colored in red, with a scaling factor of 23 [21–26, confidence
interval] and a power relation of 1.2 [1.0–1.3] instead of squared.
The result in Fig. 5 shows there is a 74% R2

ajd. correlation
between wing area and wing thickness (described by the power
relation), the correlation described by the squared relation is only
41% R2

ajd.; the thickness is not scaling allometrically with wing
area. Moreover, the power relation seemingly fails to describe all
families; for example, the family Colletidae displays a range of
thicknesses with a negligible change in wing areas. This means
the scaling relation between wing area and thickness could be
family specific, and despite the correlation area alone could not
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Fig. 5. Effective wing thickness and wing area relation was investigated, they
show a strong correlation.

explain thickness variations. This encourages improved speci-
ficity by acquiring fringes.

IV. DISCUSSION

Our results suggest that the wing thickness of these groups
of pollinators ranges from ∼0.5 to 2 μm. We found that some
insect families do produce strong modulated effective fringes
even when the signals from the whole wings are integrated,
in particular when the wing membrane is thin. This effect
could yield complementary information in addition to wing
beat modulation, or it could be used to employ strategically
resonant wavelengths in order to improve detection range or
signal-to-noise. We also found that pixel modulation depth for
examined insects is always lower than 100%, which implies that
accurate thickness assessment is not possible by Newton rings
color-coding and RGB imaging in previous studies (computer
generated newton series scale of two-beam interference colors),
thus multi- or hyperspectral methods are needed.

For many species of Apidae, especially species of bumblebees
(genus Bombus), the wing segments are not in a single plane and
display a large thickness variation across the wings, and this
attenuates modulation depth. The species in the families An-
drenidae (e.g., ground-nesting bees), Colletidae (e.g., plasterer
bees), Halictidae (e.g., sweat bees), and Syrphidae (e.g., hover
flies) displayed high modulation depth. Insect species with thin
wings (∼0.5 to 1 μm) will have a higher potential to be detected
from a long distance with its relatively high modulation depth, as
fringes of thin membranes are also less sensitive to the damping
of modulation due to the resonance modes getting out of phase.
Effective fringes also become broader at longer wavelength
regions and become hard to get out of phase, resulting in an in-
crease in the effective modulation depth. This motivates infrared
methods to capture this effect. The wing thickness strongly (74%
R2

ajd) correlated to wing area, but such relation scaling can
differ between families.

During this initial survey, we only measured 1 specimen of
each species, and we did not study the sexual dimorphism among

species. WIPs play a role in the mating choice for some species
[36], [49], [50]. Hence, sexual selection based on WIPs might
prevent wing thickness from scaling allometrically with wing
size. In the future, we will assess within-species variation by
measuring multiple specimens of each species, sex, and distinct
size. Despite our small sample size, we have provided realistic
expectations of the thickness and effective modulation of exam-
ined 87 species of insect pollinators. Effective wing thickness,
together with the fringe model, provide essential information to
assist the development of photonics sensors; by placing sensors’
laser band at the resonant wavelength of WIPs to maximize
the retrieved signal magnitude and contrast for targeted insect
specie. Our data will prove crucial for designing optical sen-
sors for insect monitoring. Distinctness of wing thickness and
modulation between insect families opens up the possibility for
remote species identification using WIPs.
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Discrimination of Hover Fly Species and Sexes by Wing
Interference Signals

Meng Li,* Anna Runemark, Julio Hernandez, Jadranka Rota, Rune Bygebjerg,
and Mikkel Brydegaard

Remote automated surveillance of insect abundance and diversity is poised to
revolutionize insect decline studies. The study reveals spectral analysis of
thin-film wing interference signals (WISs) can discriminate free-flying insects
beyond what can be accomplished by machine vision. Detectable by photonic
sensors, WISs are robust indicators enabling species and sex identification.
The first quantitative survey of insect wing thickness and modulation through
shortwave-infrared hyperspectral imaging of 600 wings from 30 hover fly
species is presented. Fringy spectral reflectance of WIS can be explained by
four optical parameters, including membrane thickness. Using a Naïve Bayes
Classifier with five parameters that can be retrieved remotely, 91% is achieved
accuracy in identification of species and sexes. WIS-based surveillance is
therefore a potent tool for remote insect identification and surveillance.

1. Introduction

Insect diversity and abundance have been significantly reduced
by anthropogenic changes,[1–3] such as habitat loss driven by
agricultural intensification, pollution, and global warming, with
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insects experiencing significant declines
even within protected areas.[4] Insects
have important ecological roles, crucial not
only for natural ecosystems but also for
agriculture.[5,6] For instance, pollination
is necessary for the majority of the food
crops produced today.[7] Efficient pollinator
groups include bees and bumblebees[8,9]

(Hymenoptera), butterflies and moths[10,11]

(Lepidoptera), and flies[12] (Diptera), includ-
ing hover flies[13,14] (Syrphidae). Different
groups of pollinators may respond dif-
ferently to anthropogenic change, with
specialist insects typically showing higher
sensitivity to habitat alterations.[15,16]

Therefore, understanding the responses
of single species and groups is important.
Hover flies are considered the second most

important pollinators after wild bees,[17] and hover fly pollination
is thought to be relatively resistant to fluctuating environmental
conditions.[13] To understand the impact of diversity and abun-
dance of pollinators in ecosystems, it is necessary to efficiently as-
sess all important pollinator groups, including hover flies. How-
ever, monitoring insect abundance and diversity remains a chal-
lenge for researchers.

Conventional methods for surveillance of insect diversity and
abundance are time-consuming and do not efficiently monitor
all free-flying insects. Malaise traps are considered to capture
the least biased species composition of flying insects[18] and
pan-traps are used to monitor the Hymenoptera and Diptera
pollinators.[19] These methods are labor-intensive and require
taxonomic expertise for insect identification.[20,21] Environmen-
tal DNA (eDNA) monitoring[22–24] does not provide abundance
estimates or insights into activity patterns. Machine vision ap-
proaches can provide species-level identification, but only of
caught insects[24] and pollinating visitors in the field,[8,25] as free-
flying insects cause focus and motion blur issues. Thus, current
image recognition approaches rely on trap designs and baits, and
they yield a low number of observations to resolve weather and
hourly niches.

To improve species identification of free-flying insects, the
frequency-, polarimetric- and spectral domains have been
explored,[26] and real-time field sensors that discriminate free-
flying insect species based on wing beat frequencies (WBFs)
and harmonic overtones developed.[27–30] WBF and harmonic
spectrum depend on both the wing dynamics,[31] wing sur-
face roughness,[11] and wing membrane thickness[32–34] in re-
lation to the wavelength. The WBFs of hover flies are in the
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150–300 Hz range,[35] which is between the WBFs of bees[36]

and mosquitoes.[35] However, the WBF depend on environment
temperature,[29,36,37] humidity,[36] and body mass.[9,38] Even for a
constant temperature, the relative spread of the WBF[37,39] for
a single species and sex is typically 25%, in the best case this
would leave room to distinguish 3–4 species or sex of hover
flies (log(300 Hz/150 Hz)/25%). Therefore, utilizing WBF alone
does not enable differentiation among the hundreds of coexisting
species of syrphid flies.

In order to improve the discrimination of free-flying species
of insects, photonic modulation methodology can be expanded
in dimensionality by adding polarimetric- and spectral bands.
The polarimetric domain provides sensitivity to microstruc-
tural features,[34,40] whereas different spectral bands[41] may yield
molecular or nanoscopic information on the wing membrane
thickness.[32,33] Importantly, most of the light backscattered by in-
sects is oscillatory and contributed by insect wings,[39,42] and most
of that light is scattered by specular reflections in insect wings.
Thus, specular flashes can be observed by insects in flight.[34]

Spectrally, this wing flash is dominated by fringy thin-film in-
terference resonances[32,34] referred to as a wing interference sig-
nal (WIS) in this study. The flash instances represent the rare
occasions when the wing orientation is entirely known and the
reflectance spectra[34,43] may provide the quantitative informa-
tion to determine the species and sex. Existing literature on wing
interference patterns (WIPs) includes comparative studies,[44,45]

with RGB color cameras or spectroscopic case studies for single
insect specimens.[34,46] WIPs are reported as species-specific, sex-
ually dimorphic in blow flies,[47] and stable over time.[44] How-
ever, no literature provides quantitative estimates of the thick-
nesses, statistics across the entire wings, or any clues on how
the differences between species compare to the within-species
variation. We previously reported values for membrane thickness
for various families,[33] but that study did not include replicates
within species, and the significance of species contrast could
therefore not be evaluated.

Here, we address how the nanoscopic features extracted from
WIS can improve the species and sex identification of hover flies.
We used infrared hyperspectral imaging and scanned a total of
600 wings from 30 species of pinned hover flies, including five
replicates of each sex, and both the left-right wings. To our knowl-
edge, no studies quantitatively determined membrane thickness
or its within-species variation and how it can be used for differen-
tiating insect species. Here, we ask to what extent the membrane
thickness differs within wings and if wing thickness and variation
in thickness differ among species and sexes. We assess how the
membrane thickness scales with wing area and test if genetic di-
vergence or ecological niche explains the variation in wing thick-
ness and modulation. A challenge for interpreting signals is to
document how fringe modulation depth and fringe heterogeneity
vary across and within species and sexes. This determines the ap-
plicability of WIS for species identification and signaling. Based
on thin-film theory, we explain WIS by four parameters (mem-
brane thickness, thickness heterogeneity, fringe amplitude, and
-bias). We uncover that wings as a whole produce fringy spectra,
that the thickness differs significantly among species and sexes,
and ecological traits explain variation in WIS better than genetic
distance. This paves the way for improved specificity and species
identification of insects using photonic entomological sensors

with spectral sensitivity. This can imply the applicability of in-
sect monitoring techniques across species and could greatly im-
prove our understanding of the factors affecting insect diversity
and abundance.

2. Results and Discussion

2.1. Wing Interference Fringes Survive Spatial Averaging over the
Wing Surfaces

A polarimetric shortwave infrared hyperspectral camera
(0.95<𝜆<2.5 μm, details see Section 4.4) was used to cap-
ture the WIS from the entire wings of the mounted individuals.
Each pinned individual was scanned by a polarimetric short-
wave infrared hyperspectral imager by specular illumination
configurations (see example in Figure 1). The visual appearance
of the broad spectral bands of the ordinary RGB color camera
(Figure 1A) fails to resolve the narrow interference fringes spec-
trally, and consequently, the wings appear whitish. In contrast, a
false color image based on selected narrow infrared bands results
in soap bubble colors over the wing surface (Figure 1B). These
WIPs are highly coherent, directional, and thus co-polarized
as illustrated by the negligible de-polarized light (Figure 1C).
Spectral fringes, caused by thin film interference,[33,46,48] differ
between thick and thin wing sections (Figure 1F). The WIPs
(as shown in Figure 1B) are reflected from the chitin mem-
brane, whose structure remains unchanged from living adult
flies to pinned museum specimens.[44] As the specular WIS is
highly directional, the resonant reflectances exceed the white
Lambertian reference (100% diffuse reflectance). This implies
that WIS could be detectable over extended distances with a
considerable contrast against background,[32,34] with conse-
quences both for visual ecology and the prospects for detection
and monitoring. The spectra obtained from an individual pixel
exhibit significant fluctuations, reaching up to 88% modulation
(Figure 1F, orange solid line, see also Section 4.5). In contrast,
the de-polarized contribution shows minimal reflectance of a
few percent, (See Figure 1F orange dash line). By averaging
the reflectance across the entire wing, the spectral modulation
decreases to 23% (Figure 1F, blue solid line). We conclude
that the reduced spectral modulation for whole wings is due to
the dephasing of fringes from distinct membrane thicknesses
across the wing surface. As a result, thinner wings and longer
wavelengths generally exhibit higher levels of spectral modula-
tion. However, fringy properties are still detected in all species
examined, enabling the estimation of effective thickness for
the whole wings (Figure 1D). Generally, clear insect wings are
thick toward the anterior edge and thin toward the posterior
edge. The left-right discrepancy of the effective thickness is
just 10 nm, values are shown in Figure 1D for the examined
individual, similar to the precisions achieved by lidar estimates
on free-flying insects.[32] The spectral modulation depth varies
across the wing surface (Figure 1E), implying that all parts of the
wing surfaces does not contribute equally to the effective fringe.
In particular, the wing veins do not produce spectral fringes and
display low modulation, as illustrated by the histogram of wing
thicknesses in individual pixels (Figure 1G). The histograms
from the right and left wings are highly consistent. Finally, the
effective thickness of 1.15 μm is somewhat thinner than the
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Figure 1. RGB and false color images of the hover fly M. erraticus. A) A photo of female M.erraticus. B,C) Two false color images were generated for co-
and depolarizations with false color bands chosen according to the hyperspectral data cube (band choices: blue @ 1250 nm, green @ 1700 nm, and
red @ 2300 nm) with a gain of 80%. D,E) Membrane thickness and modulation depth maps, showing the reflectance of the selected thick and thin wing
pixels in (B,C). The blue colored reflectance spectrum in (F) corresponds to the effective wing reflectance integrated over the whole left wing. The orange
and green reflectance spectra corresponding to the fringes form the thick and thin wing pixels. D: thickness, MD: modulation depth. G) Histograms of
the wing thickness distributions of all left- and right-wing pixels.

most common thicknesses encountered on the same wing. This
is because the thinner areas of the wing have higher modulation
values and fringes from thinner membranes are more prone to
interfere constructively.

2.2. Wing Interference Signals are Species- and Sex-Specific

Wings from five individuals of each sex from 30 hover fly species
were analyzed. The wing surfaces were spatially averaged, and ef-
fective fringes were obtained (Figure 1). The effective fringes or
WIS (Figure 2A) can be explained by a spectral model with four
degrees of freedom; an effective thickness, dwing, the thickness
heterogeneity across the wing surface, 𝜆0, a fringe amplitude, 𝛼,
and a bias term, 𝛽. For convenience, we also measure the spectral
modulation depth, M, within the spectral window of our instru-
ment. Determining the effective thicknesses and modulations for
each sex and species, we find that thickness ranged between 0.4
and 2.2 μm (Figure 2A; Figures S1 and S2, Supporting Informa-
tion), and effective modulation depth in the short-wave infrared
varied from 10 to 70%. Thicker wings are not highly modulated,
whereas some thin-winged species display a variety of modula-
tion depths.

In contrast to the frequency domain,[35] we found that among
species differences were more pronounced than differences
within species and between sexes. While many species overlap
with their neighbors in this 2D scatterplot, most species do not
have any overlap with the majority of the other 29 examined
species. Species- and sex differences were apparent in both the
effective membrane thickness, dwing, and effective fringe mod-
ulation depth, M (Figure 2A). We also observed differences in
the other WIS properties such as effective fringe heterogeneity,
𝜆0, effective fringe amplitude, 𝛼, and bias 𝛽 (see Figures S3–S5,
Supporting Information). The differences have interesting impli-
cations, primarily for the feasibility of using spectral technology
to differentiate free-flying species but also for signaling in visual
ecology. As indicated by the resemblance of species with similar
color codes, more closely related species across tribes and gen-
era have more similar WIS properties. However, there is no ob-
vious pattern of thickness across the entire hover fly family. To
illustrate the substantial variation in membrane thickness and
modulation across species (Figure 2A), we selected nine repre-
sentative cases and presented their membrane thickness maps
and corresponding modulation maps (Figure 2B). Generally, in-
sect wings are thinner toward the rear edge, which also primarily
contributes to the effective fringe and modulation. We found this
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Figure 2. Membrane thickness and fringe modulations scatter plot. A) Effective membrane thickness versus spectral fringe modulation depth. The
markers indicate median values and the bars indicate the ¼ and ¾ quartiles of the within-species and sex variation. The full name of the species in the
legend is listed in Table S1 (Supporting Information). The species color coding is sorted by minimizing genetic distance with their neighbors in Figure S1
(Supporting Information). B) Nine representative cases showing the membrane thickness and modulation depth maps.

pattern to hold true across both species and sexes, but different
species and sexes displayed different degrees of gradient changes
in thickness and modulation variation (Figure 2B). Finally, our re-
sults showed that thin-winged species are more likely to produce
WISs with strong modulation depths (Figure 2A; Figure S6, Sup-
porting Information).

One study[49] suggested that subwavelength gradient refractive
indices on wing surfaces reduce modulation depths of fringes
and WISs, and others have suggested that wrinkled wings dis-
tribute interference signals spherically.[44] To uncover the main
limiting factor for the effective modulation of hover fly wing
fringes, we introduced the mean broadband reflectance, μ(R𝜆),
for the wings and calculated the broadband reflectance spatial
standard deviation reflectance, ΔRpix, as a measure of wrinkles.
We correlated the modulation depth M with the wing heterogene-
ity, Δdpix, fringe heterogeneity, 𝜆0, broadband reflectance, μ(R𝜆),
and degree of wrinkling, ΔRpix. We employed the Pearson corre-
lation coefficient, and positive definite quantities were logarith-
mized prior to correlation (marked in gray in Figure 3). Our study
incorporated all 30 species, and distinctions were made solely
when correlating males and females individually, as represented
by the respective sex symbols in the figure. We found that modu-
lation was primarily related to membrane thickness heterogene-
ity Δdpix and 𝜆0, and less to μ(R𝜆) and ΔRpix (Figure 3). Modula-
tion damping by thickness heterogeneity takes effect when widely
distinct membrane thicknesses across the surface are averaged
and interfere destructively. This effect predominantly damps the
WISs toward shorter wavelengths because thin-film WISs are
chirped, and the higher-order modes toward shorter wavelengths
are more sensitive to dephasing. Thus, we concluded that the ef-
fective fringe modulation depth is primarily influenced by the
heterogeneity in wing thickness compared to other nano features
such as wrinkles and anti-reflective gradient refractive indices.

2.3. The Allometric Relationship between Wing Area and
Membrane Thickness is Not Isometric

Projected wing- and body-area are available for both machine vi-
sion, wingbeat sensors, and lidars. To assess whether the mem-
brane thickness provides complementary information or scales
with wing area, we investigated the relationship in the examined
hover flies (Figure 4A,B). We found the relationship to be de-
scribed by a power relation of the form Awing = Gall dwing

𝛾 , where
𝛾 = 1.3 [1.2–1.4] and the aspect ratio Gall = 15 (14–16, 95% confi-
dence interval, and R2

adj of 80%; Figure 4A). This relationship is
significantly different from isometric scaling with the form Awing
= G dwing

2, where G = 10 (9–11, 95% confidence, and R2
adj of only

56%; Figure 4A). Despite the strong covariance between wing
area and thickness, many species deviate from the allometric ex-
pectation providing additional species-specific signals. Notably,
some larger flying insects, such as dragonflies,[34] have wing ar-
eas of 700 mm2 but similar wing thicknesses of 2–3 μm. Another
study found submicron thicknesses of equally large grasshopper
wings.[32] These examples illustrate how thickness-to-area aspect
ratio and allometric relation can be entirely different for other or-
ders and families.[33] Our study highlights the diversity of mem-
brane thickness maps in relation to wing sizes (Figure 4B).

Interestingly, although wing area and membrane thickness
covary, the two parameters also hold complementary species-
specific information as illustrated by the correlation matrix in-
cluding WIS parameters to wing- and body area (Figure 3).
The wing membrane thickness dwing correlates with both the
wing area Awing and body area Abody (Figure 3). Furthermore,
the wing membrane thickness is anti-correlated with the mod-
ulation depth, M, and estimated WBF, fˆ, (Figure 3; Figure S7,
Supporting Information). The WBF, fˆ, was estimated based on
hover flies body mass and wing area (details are reported in the
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Figure 3. A correlation coefficient matrix of WIS parameters with ecological traits (cropped version, full matrix is shown in Figure S7, Supporting Infor-
mation). The maximum positive correlation is 1, the maximum negative correlation is −1 and the minimum correlation is 0. Definition of abbreviations;
dwing: membrane thickness, Δdpix: wing heterogeneity, 𝜆0: fringe heterogeneity, 𝛼:effective fringe amplitude, 𝛽: effective fringe bias, M: fringe modulation
depth, μ(R): broadband reflectance, ΔRpix: degree of wrinkling, Awing: wing area, Abody: body area, 𝛾 : allometric power relation, Est.WBF: estimated wing
beat frequency.
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Figure 4. Wing area and membrane thickness are not isometrically related. A) Effective membrane thickness versus wing area. The power relation Awing
= 15∙dwing

1.3 represents the allometric relationship between the wing area and thickness better than Awing = 10∙dwing
2. B) Wing thickness map for each

species and sex based on their medians in (A). The scale bar is for the scaling of wing thickness maps.

Experimental Section). Overall, the correlations between WIS pa-
rameters, wing, and body area suggest hover flies with large bod-
ies are more prone to have larger and thicker wings, a lower WBF,
and weak WIS modulation.

Our results demonstrate that the membrane thickness, het-
erogeneity, and modulation provide complementary informa-
tion on wing area. The wing and body area can be retrieved
from free-flying insects with existing photonic sensors[50] and li-
dar technique[51] (as projected scattering cross-section in mm2).
Therefore, it is feasible to expand the capability of lidar to capture
the membrane thickness of in-flight insects and use it as comple-
mentary information to significantly improve species identifica-
tion. Although this study reports measurements from mounted
individuals with known illumination geometry, the results can
be translated to field observations. This is because backscattered
signals from clear-winged insects are dominated by the specular
WIS flash[34] and because the wing surface orientation is known
in the instance a WIS flash occurs. In a recent report,[32] we
demonstrated that such signals can be retrieved remotely in the
field, that the membrane thickness can be estimated, and that
this thickness is consistent with laboratory recordings. This im-
plies that any photonic device measuring backscattering from in-
sects would favor the detection of species with resonant wings for
the employed wavelength bands.

2.4. Classification Accuracies Based on Interference Signals

We concluded that the light reflected by insect wings is sensitive
to the membrane thickness and that this thickness differs greatly
between species. Moreover, most hover fly species exhibit sexu-
ally dimorphic WIS properties (Figures 3 and 4; Figures S3–S5,
Supporting Information). Interestingly, this also holds true for
species where sex determination based on morphology and size
is known to be challenging (Table S1, Supporting Information).

We evaluated the benefit of including spectral information for
species- and sex-specificity of photonic-based sensors. We com-
bined thickness dwing and 𝜆0 with several features, including the
WBF, fˆ, wing area Awing, and modulation depth M (see methods).
We included fˆ and Awing because they are common features for
insect identification with photonic sensors,[52–55] the spectral pa-
rameters dwing and 𝜆0 can potentially be determined with great
accuracy,[32] and the modulation, M, is a unitless feature that can
be extracted from a WIS. In addition, a WIS with a low M im-
plies great uncertainty of the fringe parameters. We applied a
Naïve Bayesian Classifier (NBC), a classification method simply
estimating the overlap of groups in an N-dimensional param-
eter space on these parameters, specified in metric units. We
show that the successful identification rate based on the WBF,
fˆ, alone was only 13%, but 91% when all four features were
considered (Table 1). We note that 𝜆0 and M could not be es-
timated without simultaneously estimating dwing This improve-

Table 1. Accuracy of identifying the correct species and sex of hover flies
based on one or several chosen parameters, more details see Figures S12–
S20 (Supporting Information). WBF: wing beat frequency, dwing: effective
membrane thickness, M: fringe modulation depth, 𝜆0: fringe heterogene-
ity, Awing: wing area.

Accuracy [%] WBF [Hz] dwing [μm] 𝜆0 [μm] Awing [mm2] M [%]

13 ✓

22 ✓

35 ✓ ✓

40 ✓ ✓

63 ✓ ✓

74 ✓ ✓ ✓

75 ✓ ✓ ✓

85 ✓ ✓ ✓ ✓

91 ✓ ✓ ✓ ✓ ✓
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ment demonstrates that the deduced spectral information, such
as the membrane thickness dwing and modulation depth M, is
complementary and could revolutionize remote species identi-
fication using WISs. Several studies have explored the discrimi-
nation of free-flying insects by their oscillatory properties using a
single band,[54,56–59] and our findings show that specificity can be
strongly improved by adding up to four spectral bands according
to the fringe model. For single-band instruments, our findings
imply increased signal-noise-ration or detection range for species
with resonant wings for the particular wavelength. The resonant
condition is given by 𝜆max = 2ndwing/(m-½), m∈ℕ, as an exam-
ple, the most brilliant of our hoverflies Syritta pipiens has dwing of
762 nm and resonant backscatter at 670, 925, and 1546 nm wave-
length. The half mode term in the equation derives from the 180˚

phase shift from the first air-chitin reflection (this flip is absent
from the backside chitin-air reflection).

2.5. Nanoscopic Features, Genetic Distance, Species Ecology,
and Morphology

Using correlation analyses, we found that genetic distance be-
tween species only explained 29% and 26% of the variation in
wing thickness, dwing, for males and females respectively. The ge-
netic distance explained 31% of the variation in spectral mod-
ulation, M, for males, but just 8% for females. For compari-
son, the group of detritivorous larvae explained 35% and 37% of
the difference in wing thickness for males and females respec-
tively. Grouping the species into wasp- and bumblebee mimick-
ing explained equally much of wing thickness variation as genetic
relatedness, with correlation coefficients between 22 and 29%
(Figures S9 and S10, Supporting Information). We also tested if
differences in wing thickness-area aspect ratios, Gspec., and dif-
ferences in sexual dimorphism in different species were signifi-
cantly correlated with genetic distance, but found that this was
not the case. There are two potential caveats to our approach.
One is that we used a short fragment of the mitochondrial DNA
(the DNA barcode) for estimating genetic distance, and the other
is that we have only sampled a small percentage of the known
hover fly species. To test a more complicated relationship be-
tween thickness and genetic relatedness, we plotted wing thick-
ness against cumulative genetic distance from the two extreme
species S. pipiens to Merodon equestris (Figure S11, Supporting In-
formation). The analysis revealed that the wing thickness param-
eter folds twice across the hover fly family (a third-order polyno-
mial yielded 36% and 41% R2

adj. for males and females, respec-
tively). This confirms our observation that thicknesses are similar
on the genus level but not on the family level (Figure 2A).

In addition, we tested whether ecological niche, phenology,
or morphological differences influenced the nanoscopic proper-
ties or biomechanical structure of hover fly wings, which would
increase the ability to interpret signals from unknown taxa in
field studies. Hover flies are often generalist or broad-spectrum
flower visitors,[60,61] but differ in phenology, habitat use, larval
diet,[62] and morphology. For instance, some hover fly species
mimic bumble bees, whereas others mimic wasps, with consider-
ably distinct wings and WISs. The larval diets of Syrphidae span
carnivore aphid predators, aquatic detritus feeders, and herbi-
vores. Moreover, hover fly sexes exhibit distinct behaviors, with

females collecting more pollen-containing proteins for egg pro-
duction and males establishing territories and fiercely defending
them from intruders[63] through hoovering. To understand how
the species morphology and ecology predict WIS parameters, we
investigated the relationship between larval feeding habits, larval
habitats, flight properties, mimicry, habitat type, and phenology
of the focal species to our four WIS parameters (Figure 3; the
full matrix is shown in Figure S7, Supporting Information). We
found that hover flies with thicker wings are: a) more likely to
be mimics of bees and bumble bees (rather than wasps), b) less
likely to be found near lakes/streams or gardens/parks, c) more
likely to have detritivorous larvae, and d) tend to be more active
during summer than during other seasons. Since thinner wings
are more strongly modulated, we generally encountered anticor-
relations between these ecological traits and spectral modulation,
M. Hover flies with higher spectral modulation, are a) more likely
to mimic wasps, b) prefer diverse habitats, including meadows, c)
are more likely to have terrestrial and carnivorous larvae, and d)
have more generations within a year and less active during sum-
mer. These findings can potentially provide clues about the traits
of the hover fly species observed based on WIS observations. For
instance, if larval feeding habits are reflected by membrane thick-
ness, it could have applications for sensors in agriculture.

Finally, we addressed if species deviated from the general al-
lometric relation by estimating a species-specific wing thickness-
area aspect ratio, Gspec. = Ad−𝛾 (Figure 4; Figure S8, Supporting
Information). We found that large-winged species with thinner
wings than expected by the allometric relationship have a ten-
dency to be more sexually dimorphic (36% of the variation is
explained by this correlation), and males generally have larger
wings than females with sex explaining 46% of the within-species
variation in data (Figure 4A). This could potentially be due to
selection for sexually selected visual signaling, as proposed in
earlier work,[45] or reflect sex-specific behaviors or morphology.
Hover flies with large thin wings prefer forest habitats (40%),
whereas hover flies with thick small wings are more likely to have
detritivorous (43%) or aquatic larvae (41%), and be active during
the summer month (50%; Figure 3 row Gspec; see also Figures S7–
S8, Supporting Information).

3. Conclusion

We presented a new and innovative approach that could revolu-
tionize our ability to remotely identify species and sex of flying
hover flies. We can explain wing interference signals by four pa-
rameters, including membrane thickness and thickness hetero-
geneity. Using these parameters, we successfully distinguished
30 different species of hover flies and could discriminate between
sexes. The proposed scheme achieves an identification accuracy
of up to 91% on mounted hover flies. Similar signals can be cap-
tured from free-flying insects in the field,[32] and hence discrim-
ination can be greatly improved by additional spectral bands in
photonic insect sensors. The implications of this work are that
1) single-band photonic sensors[29] or lidars[28] have preferences
for species with resonant wings for the employed wavelength,
2) dual-band systems[30,41,43] could differentiate species accord-
ing to wing thicknesses although thickness would be ambiguous,
3) unique determination of wing thickness would require mini-
mum four spectral bands, however hyperspectral monitoring[32]
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of insect could prove excessive and benefit from speed rather than
spectral bands.

Wing features were correlated with hover fly morphology and
ecology, including habitat use and larval ecology, which poten-
tially could help classify signals from field observation from hover
fly species not included in the study in the future. Our novel
method for identifying hover flies is expected to make a signif-
icant contribution to the development of remote monitoring sen-
sors for flying insects. The ability to accurately identify species
and sexes of hover flies will greatly enhance our understanding
of their abundance and distribution as well as habitat-specific di-
versity, which ultimately can inform the development of more ef-
fective strategies for protecting these important pollinators and
their habitats.

4. Experimental Section
Hover Fly Specimens: A total of 300 individual hover flies from 30 hover

fly species (five replicates of each sex) were provided by the Lund Univer-
sity Biological Museum, and both the right and left wings of each specimen
were studied. While hover flies (Syrphidae) are challenging for amateur en-
tomologists to identify, the flat and clear wings of hover flies are ideal tar-
gets for identification over long distances using photonic sensors based
on spectral WISs. The 30 hover fly species were chosen based on their
abundance in Sweden and wing size: species with wingspans between 15
and 40 mm were chosen to fit within the field of view of the instrument.
The 30 hover fly species included in this study are listed in Table S1 (Sup-
porting Information). The males and females of some hover fly species
(e.g., Episyrphus balteatus), are similar in size and form.[20,21] These are
marked gray in Table S1 (Supporting Information).

Ecological Traits: The 30 species studied here were categorized accord-
ing to the following traits covering different aspects of the hover fly bi-
ology: larval feeding habits (herbivores, carnivores, or detritivores), lar-
val habitats (terrestrial or aquatic), flight properties (WBF, migratory and
hovering), mimicry (wasp, bee, or bumblebee), habitat type (meadow,
lake/stream, garden/park, forest or multiple), and phenology (voltinism,
spring, or summer). Information about the ecological traits was provided
by Rune Bygebjerg from the Lund University Biological Museum (see Sup-
plementary Spreadsheet, Hover fly listRB2.xlsx).

Genetic Pairwise Distance: The genetic distance between the 30
species of Syrphidae was calculated using the publicly available sequences
and tools in The Barcode of Life Data System tools.[64] The K2P distance
model was applied on the sequences that were aligned using the BOLD
Aligner. The DNA barcodes for Anasimyia lineata and Cheilosia pagana
could not be found in the BOLD databases; thus, they were replaced by
proxy congener species (Anasimyia lunulata and Cheilosia albipila) to com-
plete the pairwise distance comparisons. The result of these pairwise ge-
netic distances is visualized in Figure S1 (Supporting Information), where
the species are sorted by maximizing neighbor similarity. It is noted that
the use of a proxy species could weaken the strength of the genetic results.

Capturing Spectral WISs with a Hyperspectral Camera: A polarimetric
Short-wave infrared (SWIR) hyperspectral imaging system (HySpex: SWIR-
384, Norsk Elektro Optikk AS, Norway) similar to that used in previous
studies[11,33,65] was used to image the hover fly wings. The hyperspec-
tral camera covered the shortwave infrared wavelength range from 0.95
to 2.5 μm and a spatial resolution of 240 μm/pix, with 288 spectral bands.
A broadband halogen-tungsten lamp (150 W) placed 30 cm away from the
sample was used for illumination (impinging on the pixel footprints in a
±8° light cone). The camera and light source were arranged in a specu-
lar condition with ±56° (Brewster angle of chitin) to the hover fly wing
surface. This angle was taken into account when calculating membrane
thickness, but similar fringes can be measured at any backscatter angle.
In fact, smaller incidence angles as in lidar[32] ease the constraints for flat
wings. Two ultra-broadband polarizers[66] were used to capture the co-

and de-polarized reflectance. The objective of the camera had an aperture
of Ø20 mm and a working distance of 8 cm (numerical aperture of ±7°

imaging cone). The swath width was 40 mm for the imaged specimen.
All hyperspectral images were calibrated to a Lambertian gray standard
reference (Spectralon®) of 50% reflectance. Calibrating the shiny wings
to a diffused Lambertian standard implies that the specular reflectance of
the wings can exceed 100% diffuse reflectance. All hover flies had their
wings spread and were mounted on black neoprene, resulting in a hori-
zontal wing surface. Black neoprene was used to reduce the amount of
background light.

Parametrizing Spectral Fringes with the Modulation and Fringe Model:
The reflectance of clear insect wings can be explained by thin film
interference.[46] According to this, light may resonate in backscatter or
transmission depending on the wavelength, membrane thickness, refrac-
tive index, and incident angle. For the case of coaxial lidar, resonant
backscatter is achieved at the wavelengths 𝜆Rmax = 2nd/(m-½) where as
no resonance is observed at 𝜆Rmin = 2nd/m, where n is the refractive index,
d membrane thickness and m∈ℕ. For all wavelengths, each wing pixel in
the hyperspectral images had a corresponding spectral profile referred to
as a fringe; thick and thin wing pixel examples are shown in Figure 1F, and
their corresponding spectral fringes are shown in Figure 1F. The effective
fringe was acquired by spatially integrating all wing pixel spectral profiles.
All three example fringes shown in Figure 1F show different degrees of
modulation, which can be described by the modulation depth M with the
following equation:

M =
𝜎𝜆 (R𝜆) ⋅ 𝜇𝜆 (F𝜆)

𝜎𝜆 (F𝜆) ⋅ 𝜇𝜆 (R𝜆)
(1)

where R denotes measured reflectance, F denotes the computed fringe, 𝜆
is the wavelength, 𝜎𝜆 denotes standard deviation in the spectral domain,
and μ𝜆 is the spectral mean value. The computed fringe F(𝜆, dpix) can be
calculated[48] according to the membrane thickness dpix as follows:

F
(
𝜆, dpix

)
=

4Rssin2
(

2𝜋dpix

√
n2 − sin2𝜃∕𝜆

)
(1 − Rs)

2 + 4Rssin2
(

2𝜋dpix

√
n2 − sin2𝜃∕𝜆

) (2)

where n is the refractive index of chitin, 𝜃 is the light incident angle on
the membrane, which was 56° in the recordings, and Rs is the reflectance
coefficient, which can be determined with the Fresnel equations. Only the
S-polarization reflectance Rs was included in the fringe model, as the P-
polarization reflectance Rp was absent when measuring specular light at
the Brewster angle. The reflection coefficient Rs is expressed as:

Rs =

(
cos𝜃 −

√
n2 − sin2𝜃

cos𝜃 +
√

n2 − sin2𝜃

)2

(3)

The refractive index of chitin n at a given wavelength 𝜆 can be
calculated[46] as:

n = k0 + k1∕𝜆2 (4)

where k0 = 1.517 and k1 = 8800 nm2. It is noted that the refractive index is
generally given by the density of the medium[67] and further by spectral dis-
persion described by the Kramers–Kronig relation. Since the SWIR range
is far from chitin’s main absorption band at 280 nm, the refractive index
only varies between 1.527 and 1.518 (<1% change). No differences are ex-
pected in refractive index between living- and preserved specimens. The
modulation depth M was calculated for all three fringe examples shown in
Figure 1F, and the values are shown in the same figure. The fringe model
F(𝜆, dpix) shown in Equation (2) was used to determine the membrane
thickness for fringes in all pixels. This was done by computing 1000 fringes
by using the fringe model F(𝜆, dpix) for membrane thicknesses ranging
from 0.35 to 4 μm. The thinnest observable fringes are given by the in-
strument’s spectral range and the thickest observable fringes by the in-
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strument’s spectral resolution. For robust numerical fitting to signals with
noise, the search range should be reduced to realistic values. The range
was chosen to cover the predominant thicknesses of all species and sexes
(See Figure S2, Supporting Information). Minor features are also seen in
Figure S2 (Supporting Information), they arise from vein pixels, which are
poorly described by the fringe model. However, veins have low reflectance
and thus a minimal contribution to the WIS from the whole wing.

The modulation of the fringe model F(𝜆, dpix) is 100% across all wave-
lengths, but the factor is included in Equation (1) to compensate for the
arbitrary number of fringes covered by the spectral range of the instru-
ment. The measured fringes, R(𝜆), in each pixel was then matched with
the computed fringe F(𝜆, dpix) based on the correlation coefficient, C, and
fitting quality parameter, Q:

C (R, F) =
∫ 2.5

0.95

(
F𝜆,dpix

− 𝜇𝜆

(
F𝜆,dpix

))
(R𝜆 − 𝜇𝜆 (R𝜆))

2

√
∫ 2.5

0.95

(
F𝜆,dpix

− 𝜇𝜆

(
F𝜆,dpix

))2
𝜕𝜆 ∫ 2.5

0.95 (R𝜆 − 𝜇𝜆 (R𝜆))2𝜕𝜆

(5)

Q
(
dpix

)
= C (R, F)

(
C
(
𝜕R
𝜕𝜆

, 𝜕F
𝜕𝜆

))2
(6)

The derivatives of the fitting quality parameter Q were used to neglect
the slopes and the squared factor void sign flipping. The membrane thick-
nesses of three example WISs shown in Figure 1F were calculated, and
the same model was then used to calculate the membrane thickness and
modulation for each specular wing pixel in Figure 1B. The membrane thick-
nesses and modulation depths are presented in Figure 1D,E. Histograms
of the membrane thicknesses for all wing pixels from left and ring wings
are shown in Figure 1G, which demonstrates the precision of the method.
The fringe model F(𝜆, dpix) in Equation (2) was applied to parametrize
the effective fringes of the whole wings and wings with a single thickness
dwing. Since fringe modulation increases toward infrared wavelengths and
decreases toward visible wavelengths, a longpass function was used to de-
scribe the amplitude, whereas a shortpass function was used to describe
the bias:

Feff

(
𝜆, dwing

)
=

𝛼 ⋅ F
(
𝜆, dwing

)
⋅𝜆

k + 𝛽 ⋅ 𝜆k
0(

𝜆k
0 + 𝜆k

) (7)

where k is the slope of the long- and shortpass functions, and the best
value to describe all effective fringes was k = e = 2.71. The remaining pa-
rameters are amplitude, 𝛼, bias, 𝛽, and heterogeneity, 𝜆0. These parame-
ters were fitted to all recordings by a numerical search algorithm (Curve
fitting toolbox, MATLAB, MathWorks, USA).

Because damaged, folded, or misaligned wings cause outliers, preci-
sion weight factor was introduced based on the left–right symmetry of each
individual:

𝜀LR =
⎛⎜⎜⎝1 −

|||dleft − dright
|||

dleft + dright

⎞⎟⎟⎠ (8)

where dleft and dright are the effective membrane thicknesses of the left
and right wings of the same specimen. This weight factor, 𝜖LR, was used
when calculating the medians and interquartile ranges (IQRs) of all WIS
parameters (modulation depth M, membrane thickness dwing, fringe am-
plitude 𝛼, WIS bias 𝛽, and fringe heterogeneity 𝜆0) for each species and
sex. The weighted medians and IQRs of the WIS parameters are presented
in Figure 2A, Figures S3–S5 and Tables S2–S3 (Supporting Information).

More wing surface structure information can be deduced from the hy-
perspectral data outside the effective spectral WISs. The wrinkling mea-
sure ΔRpix and wing heterogeneity Δdpix of the wing surface were deter-

mined by measuring the standard deviation of the broadband reflectance
Rpix or membrane thickness dpix of all wing pixels of a given species:

Δ Rpix = 𝜎pix

( 2.5
∫

0.95
Rpix𝜕𝜆

)
(9)

Δ dpix = 𝜎pix
(
dpix

)
(10)

The mean reflectance μ(R𝜆) of the wing surface was calculated by aver-
aging the reflectance of all wing pixels:

𝜇 (R𝜆) = 𝜇pix,𝜆

( 2.5
∫

0.95
R𝜕𝜆

)
(11)

It was noted that these three parameters could only be measured from
the hyperspectral data because they required spatial information, which
was not included in the effective spectral WISs. These parameters are mea-
sued although they are not applicable for remote discrimination of insects.
This is done to increase the understanding of the mechanisms affecting
spectral modulation. All parameters are provided in Tables S2–S3 (Sup-
porting Information).

Estimating the Wing Beat Frequency of the Examined Species: The re-
lationship between wing beat frequency, body mass, and wing area has
been studied extensively and provides valuable insights into insect flight
dynamics.[35,38] However, the literature lacks information on the wingbeat
frequencies of most species and sexes of the studied hover flies. There-
fore, the wingbeat frequency was estimated based on the hover fly body
mass and wing area. Because the specimens were dried museum spec-
imens, the body masses of all specimens were approximated based on
their body area and wing area and correlated to the Syrphidae body mass
values provided in the literature.[35] The predicted wing beat frequency fˆ
for Syrphidae is calculated as[35,38]:

f̂ = f0

√
m

Awing
(12)

where f0 is 386.9 Hz mg−½mm2, m is the approximated body mass and
Awing is the wing area measured according to the hyperspectral images.
These values can be found in Tables S2–S3 (Supporting Information).

The Success Rate of Identifying the Correct Hover Fly Species and Sex Based
on the WISs: In addition to the spatial and frequency information, the
spectral domain was considered to greatly enhance the species specificity
of the photonic sensors. One hundred synthetic data points for each of
the 30 species were produced for both sexes (resulted in 6000 generated
data points) based on the medians and interquartile ranges (IQRs) of the
membrane thickness dwing, modulation M, estimated WBF fˆ and wing
area (all values are shown in Tables S2–S3, Supporting Information). The
100 synthetic data points were then input into NBC without including the
covariance between parameters. The classification accuracy and overlap
between the species were visualized with standard confusion matrices, as
shown in Figures S12–S20 (Supporting Information).

Allometry: A power relation formula was used to describe how wing
area Awing and membrane thickness d are related in hover flies.

Awing = Galld
𝛾

wing (13)

The constant factor Gall and the exponent 𝛾 in the formula were spe-
cific to examined hoverflies and describe how changes in wing area affect
membrane thickness. When the wing area to wing thickness relation was
isometric, 𝛾 would be expected to equal 2. However, the analysis showed
that the best fit for all data points occurred when 𝛾 was 1.3 [with a range
of 1.2–1.4], indicating that the scaling relationship between wing area and
membrane thickness was not isometric in these hoverflies.

Adv. Sci. 2023, 10, 2304657 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2304657 (9 of 11)
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Sexual Dimorphism in WISs: The sexual dimorphism was calculated
as the membrane thickness of males divided by that of females for each
species.

Δsex =
dwing♂

dwing♀
(14)

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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Abstract 

Tropical mosquitoes transmit diseases like malaria, yellow fever, and Zika. Classifying 

mosquitoes by species, sex, age, and gravidity offers vital insights for assessing transmission risk 

and effective mitigations. Photonic monitoring for mosquito classification can be used in 

distributed sensors or lidars on longer ranges. However, a reflectance model and its parameters 

are lacking in current literature. This study investigates mosquitoes of different species, sexes, 

age groups, and gravidity states, and reports metric pathlengths of wing chitin, body melanin, 

and water. We use hyperspectral push-broom imaging and laser multiplexing with a rotation 

stage to measure near-infrared spectra from different angles and develop simple models for 

spectral reflectance, including wing thickness and equivalent absorption path lengths for melanin 

and water. We demonstrate wing thickness of 174 (±1) nm – the thinnest wings reported to our 

knowledge. Water and melanin pathlengths are determined with ~10 µm precision, and spectral 

models achieve adjusted R² values exceeding 95%. While mosquito aspect angle impacts the 

optical cross-section, it alters shortwave infrared spectra minimally (~2%). These results 

demonstrate the potential for remote retrieval of micro- and nanoscopic mosquito features using 

spectral sensors and lidars irrespective of insect body orientation. Improved specificity of vector 

monitoring can be foreseen. 

 

1. Introduction 

Mosquitoes are the deadliest animals on our planet due to their role in transmitting vector-borne 

diseases1. Human diseases, such as malaria, dengue, yellow fever, and Zika, as well as livestock 

diseases, including West Nile fever, bluetongue, and the Schmallenberg virus (transmitted by 

midges), have significant impacts globally. Many of these diseases affect rural populations in 

tropical regions with poor housing quality2,3, leading to reduced life expectancy, higher stillbirth 

rates, poverty, and hindrance to development4. Outbreaks also occur in North America following 



the socioeconomic crisis5, 6, and global warming is expanding the range of vectors and pathogens 

into northern Europe7. 

 Despite continuous public monitoring and reporting of environmental risk factors, such as 

ozone, NO₂, SO₂, air quality8, and birch pollen9, the monitoring of deadly vectors lags behind10,11. 

Mosquito populations can fluctuate dramatically over seasons 12 , and strategically timed 

elimination can locally eradicate transmission for years13. Accurate species identification is crucial 

for risk assessment, as not all mosquitoes pose a threat to humans. Many species do not blood-feed 

on humans and only older, previously blood-fed females transmit diseases. Moreover, sub-species 

can have distinct feeding timings and preferences14, 15. For example, the size of Aedes aegypti 

correlates with blood meals from multiple hosts, increasing infection risk16. Therefore, effective 

public monitoring of vector-borne disease risk requires identification of mosquito species, sex, 

size, and life stage. 

 Wingbeat frequency (WBF) is a key feature for monitoring mosquitoes in flight. 

Mosquitoes can be distinguished from other insects by their high WBF, a characteristic partly 

linked to acoustic sexual attraction for mating in darkness 17 . Various studies have proposed 

mosquito sensing by WBF, including acoustic sensing via smartphones in bedrooms18 , 19  and 

optical sensors using transmittance20 or backscatter21, 22. These methods have shown success in 

classifying a limited set of species and sexes in controlled20, 21, 22 and semi-wild environments23. 

However, in situ identification by WBF alone is impractical. Males have significantly higher 

WBFs than females, but WBF can overlap between sexes of co-existing species. Additionally, 

WBF increases with gravidity24 and air temperature25. Although some species exhibit statistically 

different WBFs26, the intra-species variation is about 25% even under constant conditions. This 

variability limits the differentiation of species based solely on WBF, especially in habitats with 

multiple mosquito species. 

 Harmonic overtone analysis of time series signals27, 28 and spectral analysis of signals from 

the wings and bodies of insects 29, 30, 31 have been shown to improve species specificity beyond 

WBFs. However, the physical mechanisms behind these improvements, the origin of harmonic 

overtones, and the factors governing reflectance from mosquito bodies remain unclear. This study 

aims to bridge these gaps by providing physical models for optical scattering by wings and bodies 

from several species of tropical disease vectors, including variations in sex, age, and gravidity. We 

demonstrate that microscopic and nanoscopic pathlengths of melanin, water, and chitin can be 

extracted from optical signals. We showcase spectral variations depending on the aspect angles of 

mosquitoes. Additionally, we provide the first quantitative values for the parameters governing the 

spectral reflectance of mosquitoes and show that these parameters significantly differ among 

species, sex, age, and gravidity. 

 



2. Optical backscattering signatures of mosquitoes 

The study of optical backscattering signatures, specifically through the wavelength and angle-

dependent backscatter (𝜎𝐵𝑆) and extinction (𝜎𝐸𝑥𝑡) cross-sections, offers a powerful method for the 

optical sensing of mosquitoes. Dedicated optical systems, such as entomological lidars32 , the 

Electronic Backscatter Optical Scanning System (EBOSS)33, and various e-trap systems34, 35, use 

single-band36 or multiband37, 38 illumination and detection to study the interactions of light with 

mosquitoes. These systems enable detailed analysis of species composition and activity patterns. 

 The backscatter cross-section (𝜎𝐵𝑆) quantifies the amount of light reflected towards the 

sensor. It depends on the mosquito's projected area A(𝜓, 𝜙), which varies with its orientation (yaw 

and pitch angles, 𝜓 and 𝜙, relative to the source and detector), and its reflectance (R(𝜆)), the 

wavelength-dependent ratio of reflected incident light. The extinction cross-section (𝜎𝐸𝑥𝑡) provides 

a complementary perspective by measuring the total attenuation of light due to both scattering and 

absorption as it passes through a mosquito. This attenuation depends on the mosquito's size, shape, 

and tissue composition (through its projected area, A(𝜓,𝜙)), and its wavelength-dependent optical 

properties (𝜆). The 𝜎𝐸𝑥𝑡 offers insights into a mosquito's interaction with light beyond direct 

backscatter, making it valuable in environments where backscatter signals might be weak or 

difficult to isolate. 

 To gain even greater insights, both 𝜎𝐵𝑆 and 𝜎𝐸𝑥𝑡 can be decomposed into envelope (𝜎𝑏𝑜𝑑𝑦) 

and oscillatory (𝜎𝑤𝑖𝑛𝑔) components32, 39 . The envelope component reflects the mosquito path 

through the beam profile and the body size, while the oscillatory components capture the wing 

dynamics and their bidirectional reflectance distribution function (BRDF). This distinction is key 

for identifying species-specific characteristics and flight behaviors. To increase measurement 

precision, techniques, such as sliding min/max windows adjusted to wingbeat frequency (WBF), 

have been developed31, 32, 40. These methods separate the scattering contribution from the wings 

and body, enabling differentiation of species by wing interference30, 41 or deducing information 

from the abdomen, such as gravidity24, biomass42, or pathogen content43. 

 While a simplified model approximates the mosquito body as a volumetric ellipsoid and 

the wings as flat ellipses, the intricate microstructures of mosquito anatomy introduce complexities 

to real-world scatter. Importantly, the scattered light from the elliptical mosquito body exhibits 

omnidirectional characteristics resembling the Henyey-Greenstein scattering phase function 

dominated by forward scatter44. In contrast, the flat wings scatter light directionally, similar to 

falling ice flakes45 , 46 . This specular property, in combination with wing dynamics, produces 

flashes47 and harmonic overtones, which can differentiate closely related mosquito subspecies21. 

This differentiation is crucial for the development of optical mosquito sensing systems. 

 



Table 1. Optical Properties and Physical Characteristics of Mosquito Anatomy: A concise overview highlighting 

the distinct anatomical features of mosquito bodies and wings, their spatial and temporal properties, and the underlying 

optical and physical mechanisms. 

Anatomy 

 

Spatial shape 

[μm] 

Temporal 

[μm] 

Frequency 

[kHz] 

Goniometric 

[°] 

Polarimetric 

[% DoLP] 

Spectral 

[nm] 

Physics  

Body a) Ellipsoid Envelope Low-pass 

convolution 

Henyey-

Greenstein, 

Omnidirectional 

Partial co-

polarized 

Absorption 

by melanin 

and H20 

Ballistic 

tissue 

transport 

Wings Two elliptical 

planes 

Waveforms 

and flashes 

Wingbeats 

harmonics 

Specular, 

Directional 

Co-polarized Interference 

in chitin 

Thin film 

 

2.1 Specular wing scattering provides species contrast due to nano-

features 

2.1.1. Background 

The BRDF for clear mosquito wings is close to specular, resulting in flashes when the surface 

normal of the wings coincides with the light source-detector midpoint. The two wings have four 

surface normals, which, when convoluted by the wing flatness and illumination and detection 

aperture, cover a large fraction of the unit sphere, creating a high likelihood of a specular flash for 

each wingbeat of the mosquito. The dynamical wing orientation can be accurately described by 

just three harmonics48, 49. Consequently, the geometrical cross-section of mosquitoes can also be 

described by three harmonics. 

 Mosquito wingbeats have a period of 1-3 ms, during which the observed flashes of 

backscattered light can contain at least 30 overtones47. These flashes are commonly observed and 

have been previously extracted as signal features21, 28. The flashes typically constitute the largest 

fraction of the total light scattering by insects39 and can be retrieved over distances of at least a 

hundred meters by entomological lidars41, 47. The flash duration, limited by the wing flatness and 

numerical aperture of the source and detector, can be as short as 50 μs. The flash is particularly 

pronounced for wavelengths matching the criterion for resonant back-scattering according to the 

thin-film interference between reflection from the front and back surface of the chitin wing 

membrane, see Equation 1. 

Eq.1 

𝜆𝑅𝑚𝑎𝑥 =
2𝑑𝑛𝑐ℎ𝑖

𝑚 − ½
√1 −

𝑠𝑖𝑛2𝜃

𝑛𝑐ℎ𝑖
2 , 𝑚 ∈ ℕ 

here λRmax are wavelengths with resonant backscatter, d is the thickness of the wing, nchi is the 

refractive index of chitin, θ is the light incidence angle, and m is the mode number. For 

backscattering instruments, such as lidar, θ is zero and the square root term can be omitted. 



 Numerous studies of wing interference patterns (WIPs) have indicated great species 

contrast and sexual dimorphism. Studies include large sample sizes50, 51, 52, 53, 54, 55, 56 surveyed by 

simple RGB imagers, which cannot quantitatively determine membrane thickness. Spectral case 

studies 47, 57  describe the relation to the membrane thickness. Non-imaging studies in flight 

chambers21 or with lidarError! Bookmark not defined. indicate that spectral flash properties, and thus 

effective thickness differ between closely related subspecies21, which cannot be differentiated 

without genetics. Hyperspectral imaging of insect wings30, 58 , 59 , 60  can provide quantitative 

thickness maps of wing membranes. It is conceivable that such quantitative hyperspectral images, 

capturing both wing shape 61 , vein structure, melanization, and membrane thickness, provide 

enough quantitative information to classify each individual to species and even subspecies level. 

2.1.2. Methods 

Mosquito specimens were reared at the Swedish University of Agricultural Sciences (SLU), Alnarp, 

Sweden21,  62, 63. A total of 428 wings from dead male and female mosquitoes from four species: 

Anopheles stephensi (110 wings), Culex pipiens Biotype Molestus (hereafter Cx. p. molestus; 106 

wings), Culex pipiens biotype Pipiens (hereafter Cx. p. pipiens; 110 wings), and Culex 

quinquefasciatus (102 wings) were detached and glued on a black edge of neoprene foam using a 

stereo microscope.  The wings were mounted 20 mm above a black neoprene background, see 

Fig.1a. The mounted wings were brought to Norsk Elektro Optikk’s laboratories in Oslo, Norway, 

for hyperspectral imaging. 

 

 
Figure 1. Hyperspectral imaging of mosquito wings. a) Picture of the setup at Norsk Elektro 

Optikk, Oslo, Norway. b) Approximate ray diagram for the setup, including the custom-made 

objective made for the purpose. c,d) False-color short-wave infrared images of mosquito wings. 



e) An example of fitting the thin film model to measured reflectance data. In this case, the first 

interference mode is on the edge of the spectral range of the instrument. 

 

 To obtain adequate magnification, a custom microscope objective was 3D printed, see 

Fig.1b. The setup includes a 10 W halogen-tungsten filament, which is imaged onto the object 

plane by a 90° off-axis parabolic gold mirror. The backscattered light is collected by a reflective 

gold objective (Edmund Optics), which images the wings onto the slit of a hyperspectral camera 

(Hyspex SWIR, Norsk Elektro Optikk). The off-axis paraboloid and reflective objective are in a 

coaxial configuration. Spatial calibration was done by imaging a ruler. The hyperspectral camera 

provides 288 bands covering 900-2500 nm. Second-order diffractions are rejected by a coating on 

the HgCdTe imager. 

 Hyperspectral images were calibrated to diffuse reflectance by a grey standard. Multiple 

scans with different focuses were made, and the sharpest wing was cropped out by a custom Matlab 

script (MathWorks, USA). The area of the wings was extracted from the masks.  Each wing image 

was averaged spatially, and reflectance spectra, Rwing(λ), were calculated. The measured reflectance 

spectra were fitted to a thin film model, see Fig.1e and previous thin-film work30, 41, 59, 64. 

Eq.2 

𝐹(𝜆,𝑑) =
4𝑅𝐹𝑟𝑒𝑠𝑛𝑒𝑙sin2(2𝜋𝑑𝑛𝑐ℎ𝑖

𝜆
)

(1 − 𝑅𝐹𝑟𝑒𝑠𝑛𝑒𝑙)2 + 4𝑅𝐹𝑟𝑒𝑠𝑛𝑒𝑙sin2(2𝜋𝑑𝑛𝑐ℎ𝑖
𝜆

)
, 𝑅𝐹𝑟𝑒𝑠𝑛𝑒𝑙 = (

𝑛𝑎𝑖𝑟 − 𝑛𝑐ℎ𝑖

𝑛𝑎𝑖𝑟 + 𝑛𝑐ℎ𝑖
)

2

, 𝑛𝑐ℎ𝑖

= 1.517 +
8800𝑛𝑚2

𝜆2
 

𝑅̂𝑤𝑖𝑛𝑔(𝜆) =
𝑎𝐹(𝜆, 𝑑)𝜆𝑘 + 𝑏𝜆0

𝑘

𝜆0
𝑘 + 𝜆𝑘

 

 

Here, the variable λ is the wavelength of light that interacts with the mosquito wing, and d is the 

wing's chitin layer thickness. RFresnel is the reflectance based on the refractive indexes of air, nair, 

and chitin, nchi.  nair is almost always considered as 1, and nchi changes with λ. The coefficients a 

and b are used to adjust the model. The exponent k influences how reflectance changes with 

wavelength. 

 In a previous study, the spatial thickness heterogeneity was evaluated over each wing by 

letting fringe bias and amplitude depend on a cut wavelength, λ0, as short- and long-pass functions, 

respectively30. This is not possible in this study, because we only observe a single fringe period 

within the spectral range of the short-wave infrared instrument due to thinner wings than 

previously reported. Consequently, k is set to zero and λ0 is indeterminable. To resolve more fringes, 

future hyperspectral imaging of mosquito wings should be carried out by instruments based on 



conventional Si CMOS image sensors in the visible to near-infrared regime. These image sensors 

also feature better resolution and reduced cost. 

2.1.3. Results 

The wing reflectance model explained 97% [94…99%] (median R2
adj. and IQR respectively) of 

the measured reflectance yielded wing thickness confidence intervals (CI) of ±1.0 nm or ±0.4% 

relative precision. 

 
Figure 2. Measured specular properties of mosquito wings. a) Median overall wing thickness 

for the investigated species of both males and females. The bars indicate within-species and -

sex spread by IQR. The spectral modulation depth, a/(a+b) from Eq.2, is very high, exceeding 

90% for most cases. b) Wing membrane thickness correlates weakly with the area. 

 

 The reflectance measurements indicate that the first interference mode for resonant 

backscattering is captured within the shortwave infrared range. Consequently, the spectral 

modulation depth is extremely high with most of the specimens exceeding 90%. This implies that 

photonic sensors37, 65 , 66  and lidars32, 67 , 68 , retrieving backscattered wingbeat waveforms from 

mosquitoes, will be extremely sensitive to the choice of wavelength in relation to the wing 

thicknesses. This is the case for single-band systems32, whereas dual-band38 or hyperspectral 

systems41 would have an increased likelihood of capturing flashes and harmonics in one or another 

band.  

 The effective wing thickness ranges from ~200 to ~300 nm, see Fig. 1a. To our knowledge, 

these are the thinnest wings reported in the literature. A thickness of 358 nm was previously 

reported from a much larger mosquito species69. Insect wings are always thinner on the hind edge30, 



41, thus wings are locally thinner than the effective thicknesses in Fig.2. Chitin polymer chains are 

spaced by 1 nm, but the hierarchical preferences form nanofibrils of 3 nm and larger nanofibers 

with 20 nm spacing70 . Therefore, mosquito wings are quite close to the quantized world of 

molecular sizes. Quantum entomology, in which wing membranes vary discretely is thus possible. 

Specificity: The intraspecies- and intrasexual variations were estimated by interquartile ranges 

(IQRs) indicated in Fig.2. The spread was as small as ±10 nm or ± 5% for An. stephensi. Although 

many of the groups overlap there are also cases with significant discrepancies in wing thickness 

between sexes, e.g., An. stephensi, and between species, e.g., An. stephensi vs. Cx. p. pipiens.  

Allometry: The wing thickness of the investigated species only correlated with the wing area by 

56% across species and sexes, see Fig.2b, and the allometric relation exponent, γ, is uncertain and 

isometry cannot be excluded (γ=2). Previous studies showed that wing thickness and area can 

deviate significantly from isometry30, 41, 47, 59. 

 

 
Figure 3. Effect of observed range of wing thicknesses on specular reflectance responsible for 

wing beat flashes. a) Modelled reflectance of the thickness spans observed in this study in the 

near- and short-wave infrared range. The black lines indicate common laser bands previously 

used in entomological sensing. b) Dual-band ratios modeled between common laser bands. Our 

current recordings match ratios from a previous study within 10 nm. 

 

 We compared observed mosquito wing membrane thickness ranges against common laser 

wavelengths, previously used in entomological sensors22, 31, 71 and lidars38, see Fig.3. In particular, 

near-infrared bands (NIR, 808-980 nm) display great sensitivity to the wing membrane thickness. 



Several dual-band sensors and lidars have been reported, Fig.3b, to display the dual-band ratio for 

specular wing beat flashes as a function of membrane thickness. In one case, we can compare this 

ratio to 10-year-old recordings from our laboratory21. At that time, the thicknesses could not be 

uniquely determined but it was pointed out as a means to distinguish between related species, 

which are almost impossible to differentiate by microscopy by taxonomists. We can here verify 

that Cx. quinquefasciatus wing membranes are 213-223 nm, with a discrepancy of just 10 nm to 

the previous study21. Additionally, both studies show that female wings are generally thicker than 

male wings 

2.2 Quantitative microscopic features retrieved from diffuse body 

reflectance 

2.2.1. Background 

Light transport in scattering media, such as biological tissue, is governed by absorption- and 

reduced scattering coefficients, μa and μ’s, in metric units 72 . Light diffusion 73  and photon 

migration74  theories were developed on macro scales of centimeters for biomedical75  and life 

science76 applications. Mosquitoes are over a thousand times smaller than humans, but μa for water 

and melanin remain constant. Although the highest μ’s is reported in insects77, the scattering mean-

free-path is bound by the wavelength of light. Consequently, near-infrared light interaction with 

mosquitoes is ballistic, similar to x-ray imaging of humans - or optical clearing scenarios78, 79, 

where scattering is low compared to the organism sizes80.  

 As opposed to diffuse light transport, ballistic interrogation implies that most photons 

inside mosquitoes keep their initial propagation direction, polarization state, and phase. It also 

implies that the interrogation pathlength of backscattered light is longer than the pathlength for 

transmitted or forward-scattered light44. Consequently, backscatter can display larger 

depolarization and equivalent water absorption pathlength than transmitted light. Melanized 

cuticles are mainly transparent for short-wave infrared light (λ>1μm), and thus this light 

interrogates the entire body of mosquitoes. This has multiple applications for detailed mosquito 

diagnostics43, for example, classification of species29 and sexes21, estimation of age81, detection of 

gravidity by depolarization24, or even detection of pathogens by the tissues-spectral scatter 

coefficients82. 

2.2.2. Method 

Several species of mosquitoes, reared at SLU, including Aedes aegypti, Anopheles coluzzii, 

Anopheles gambiae, and Culex quinquefasciatus, were brought alive to a hyperspectral imager at 

the eye clinic at Lund University hospital. Both sexes, of all species, ranging from 2 to 5 days post-

adult emergence, were represented. The specimens were immobilized by rapid chilling and 

immediately scanned, to avoid changes in the body structure after death and desiccation. Spectral 

imaging included whole mosquitoes with both body and wings towards a black background. The 

spectral imager83 (by Norsk Elektro Optikk) is based on a visible extended InGaAs camera by 



down conversion. For our experiment, the visible range (and thus their second-order refractions) 

was blocked by a RG780 long-pass filter. Hence, the usable spectral range was 382 spectral bands 

from 900 to 1600 nm. Two ultra-broadband wire grid linear polarizers (Medowlark, USA) were 

used to capture both co- and de-polarized images. The incidence angle of the light was 45°. The 

spectral imager was positioned at 0° with a working distance of 80 mm. The spatial resolution was 

33 μm/pix. The hyperspectral image cube was white calibrated and flat field calibrated by a 

Lambertian grey standard, thereby obtaining an image calibrated to diffuse reflectance for both co- 

and de-polarized light. Each specimen was initially cropped out by hand from the hyperspectral 

image, and then a mask was automatically applied to exclude background pixels. The area of the 

mosquito was calculated by the number of pixels in the mask times their physical size in the object 

plane. The mean reflectance over the mosquito pixels was calculated for both polarizations, 

Rcopol(λ) and Rdepol(λ), see Fig.4ad. The signal-to-noise ratio (SNR) of the average reflectance of 

this experimental setup was not great. However, the SNR resembles what can currently be retrieved 

by hyperspectral lidar41 of free-flying insects in situ. This instrument lacks second-order rejection 

filters on the imager, thus the long end of the spectrum cannot be used.  

 Reflectance can be split into two parts84: specular reflectance, Rspec, and diffuse reflectance, 

Rdiff. Specular reflectance is often thought to be spectrally flat since it is caused by a mismatch in 

refractive index (n1-n2)
2/(n1+n2)

2 since the refractive indices of tissues are simply given by the 

density72. These statements are truths with modifications; biological interfaces are not step-

changes from n1 to n2 but can have protruding subwavelength features causing gradient indices69, 

also known as anti-reflectance features. For mosquito bodies, these features can comprise 

nanoscopic hairs or scales85. In addition, the refractive index can deviate due to strong absorption 

bands, as described by the Kramer-Kronig relation. For mosquitoes, the near-infrared absorption 

is dominated by melanin and water, and their refractive indices do not change noteworthy in the 

near-infrared range. We estimated the wavelength-independent specular reflectance by the 

difference of co- and de-polarized reflectance across the spectral range of our instrument: 

Eq.3 

𝑅𝑠𝑝𝑒𝑐. = |𝑅𝑐𝑜𝑝𝑜𝑙.(𝜆) − 𝑅𝑑𝑒𝑝𝑜𝑙.(𝜆)|
𝑚𝑒𝑑𝑖𝑎𝑛

 

 

 There are multiple approaches for modeling light transportation in scattering media, and 

their usefulness depends entirely on the application. Our aim was to deduce microscopic metric 

features from the backscattering cross-section or spectral reflectance of free-flying mosquito 

bodies. The theory for diffuse reflectance that we found adequate for our purpose is the Kubelka-

Munck theory86. This was developed to estimate the reflectance from slabs or paper and paint in 

the 1930th Czechoslovakia. Specifically, we adopt Equation #44, which estimates diffuse 

reflectance by ‘thin specimens of poorly scattering material’. Kubelka-Munck state that the 

scattering- and absorption mean-free-path, and the sample thickness, control the diffuse reflectance 

and transmittance of a sample, but since reflectance is dimensionless, metric factors must be 



relative to each other. Such metric coefficients are possible to quantify and compare between 

studies.  

 

 With knowledge about the spectral dependence of scattering and absorption, we can deduce 

metric features from reflectance in multiple spectral bands. We introduce the term scatterance, 

S(λ), and absorbance, A(λ). The spectral scatterance can in principle display complicated 

structures87, but for the short-wave infrared region a simple power law suffices76, 88 for biological 

tissue. Diffuse reflectance, Rdiff, must converge to 100% when S→∞ and 0% when A→∞. Further, 

Rdiff=0 when S=0. The following equation fulfills this: 

            Eq.4 

𝑅̂𝑏𝑜𝑑𝑦(𝜆) = 𝑅𝑠𝑝𝑒𝑐. + 𝑅𝑑𝑖𝑓𝑓 (𝜆) = 𝑅𝑠𝑝𝑒𝑐. +
𝑆

1 + 𝑆 + 𝐴
 

𝑆(𝜆) = (𝐷½
𝜆

)
𝛼

      ,    𝐴(𝜆) = ℓ𝐻20𝜇𝐻20 + ℓ𝑚𝑒𝑙.𝜇𝑚𝑒𝑙. 

𝑅̂𝑏𝑜𝑑𝑦(𝜆) = 𝑅𝑠𝑝𝑒𝑐. +
(𝐷½

𝜆
)

𝛼

1 + (𝐷½
𝜆

)
𝛼

+ ℓ𝐻20𝜇𝐻20(𝜆) + ℓ𝑚𝑒𝑙𝜇𝑚𝑒𝑙(𝜆)

 

 

Here, D½ is the wavelength where half of the light is reflected without absorption or transmission. 

This parameter acts as a gain for diffuse reflectance. α, representing the spectral dependence of the 

scattering, is unitless, and can tilt the spectra, for example as a result of pathogens82; ℓH2O and ℓmel 

are the equivalent absorption pathlengths in water and melanin, respectively; and μH2O(λ) and 

μmel(λ) are the absorption coefficients for pure water89 and melanin49. The coefficients, D½, α, ℓH2O, 

and ℓmel were fitted to the measured diffuse reflectance Rcopol-Rspec and Rdepol by a numerical search 

algorithm (Curvefit toolbox, Matlab, MathWorks, USA). 



 
Figure 4. Hyperspectral short-wave infrared imaging of whole mosquitoes. a,d) Co- and de-

polarized reflectance for two mosquitoes. The spectra are offset by a flat specular contribution 

to the co-polarized image. b,c,e,f) False-color infrared images of the same two mosquitoes. The 

blue color represents 900 nm, and is diminished by melanin. The green color represents 1200 

nm and is insensitive to melanin and water, whereas the red color represents 1450 nm and is 

diminished by water. The model parameters are indicated with model explanation grade and 

95% confidence intervals. Note how the white spots on the Aedes aegypti diminish for de-

polarized light, also note the absence of leg gloss in the depolarized image of the Culex 

quinquefasciatus. 

 

2.2.3. Results 

The median specular reflectance was 3% (±1% IQR) for the 82 specimens. The model for diffuse 

reflectance achieved a median explanation grade, R2
adj, of 96% (95…97 % IQR). However, the 

lower confidence bound of all four coefficients, D½, α, ℓH2O, and ℓmel, was only distinct from zero 

in 46 cases of co-polarized reflectances, and 49 cases of de-polarized reflectance. Since the cases 

with insignificant coefficients showed strong preference for a specific group we chose to include 

them on the axis of Fig.5 with a note.  

 The median water pathlength across all samples was 51 μm for co-polarized reflectance 

and 61 μm for de-polarized reflectances.  The confidence was ±12 μm (±20% relative error) for 

co-polarized reflectance and ±13 μm (±17% relative error) for de-polarized reflectance. The 



equivalent water absorption pathlength only covaried slightly (21% R2
adj.) with the area, ℓH2O ~ Aγ, 

in which γ=1.3 (0.4…1.8 CI).  

 The median melanin pathlength across all samples was 25 μm for co-polarized reflectance 

and 32 μm for de-polarized reflectances.  The confidence was ±11 μm (±27% relative error) for 

co-polarized reflectance and ±10 μm (±36% relative error) for de-polarized reflectance. The 

scattering parameter D½ was estimated with confidences of ±90 nm (±27% relative error). The 

scatterance, S ~ D½α, scaled slightly (9% R2
adj) with the area, A, with D½α ~ Aγ, in which γ=0.34 

(0.23…0.44 CI). This gives a small indication that reflectance is contributed by the volume and 

depth. 

 
Figure 5. Mosquito body reflectance parameters among the investigated groups. a) Co-

polarized water versus melanin pathlength. Melanin pathlength anticorrelates with water 

pathlength. Females display stronger absorption than males. b) Melanin pathlength versus 

spectral tilt, α. Despite a covariance, new groups are differentiated, see for instance male Aedes 

aegypti and female Anopheles. c) The melanization can be entirely distinct for co- and de-

polarized reflectance, presumably because of the micro-organization of the pigment. Anopheles 

coluzzii and Anopheles gambiae occupy opposite corners of this parameter space, even though 

they are closely related. d) Despite the high refractive index of melanin, the specular reflectance 

vary independently, since subwavelength structures and gradients have a greater impact. e) The 

total tissue scatter does not increase with the water pathlength. f) Spectral tilt, α, and total 

scatter, D½, covary but sexes protrude from the diagonal. g) The spectra tilt differently for co- 

and de-polarized light, with the larger Aedes aegypti having the flattest spectra. The two 

Anopheles species display opposite spectral tilt for co- and de-polarized light, which is of 

interest as these highly related species are not possible to differentiate through microscopy. 

 



 We made a separate analysis of the white spots on Ae. aegypti in Fig.4bc. White color is 

rare in thin objects due to photon escape before multiple scattering77, 85. In addition, nanostructures 

with extreme scatter coefficients in the visible region have reduced scattering toward infrared when 

the structures are subwavelength. Indeed, the reflectance of the white spots on the Ae. aegypti 

abdomen could be explained by a short-pass function:  

Eq.5 

𝑅𝑠𝑝𝑜𝑡(𝜆) =
1

1 + ( 𝜆
𝐷½

)
𝛼 

where D½ is 1215 nm (1204…1226 nm CI) and α is 4.2 (3.9 … 4.5 CI). This confirms that the 

spots are white in the visible range below 600 nm, but steadily decrease in reflectance for longer 

wavelengths, supposedly since near-infrared wavelengths fail to resolve scattering nanostructures. 

It is noteworthy that previous studies77, 85 could not display such a decrease of reflectance towards 

infrared wavelengths. 

2.3 Aspect dependence of mosquito lidar targets 

2.3.1. Background 

Similar to radar cross sections90, lidar cross sections, σBS, also depend on observational aspect 

angles of pitch and yaw. This poses both a challenge and an opportunity for assessing heading 

directions. The spherical geometrical cross-section of dried or immobilized insects could be 

calculated from 3D models of insects from photogrammetry44, 48, 91, 92. The wings can be detached 

from the body for independent measurements58, 93, since the body and wing scatter contributions 

can later be separated in the frequency domain for free-flying specimens. By combining kHz wing 

beat sensing and stereo vision21, 31, both body- and wing cross sections can be acquired 

simultaneously as the heading direction. Despite the complicated anatomy of insects, their 

elongated bodies can be approximated as an ellipsoidal spherical cross-section. Multiple 

symmetries (left/right, dorsal/ventral) apply to mosquito bodies, and measured cross sections at 

various aspects can be projected to a low number of polar or spherical harmonics44, 58. As it has 

been proposed that spectral- or polarimetric band ratios could prove more stable for varying 

observation angles21, 24, this would be reasonable for the ballistic regime of small insects where 

the backscatter intensity is scaling with insect volume rather than cross-section. 

2.3.2. Materials and method 

We imaged six groups of mosquitoes, comprising male, as well as female virgin and gravid An. 

coluzzii. In addition, young and old Cx. quinquefasciatus females and males were imaged. 

 A multispectral multi-aspect imaging instrument was used for the analysis92, 94 . The 

instrument was upgraded with an InGaAs camera (C-RED3, FirstLight, France), and laser diode 

multiplexing, to acquire multispectral images in seven shortwave infrared wavelengths spanning 



from 1000-1640 nm. The instrument has a rotation stage to rotate targets to various angles, 

analyzing different aspect angles, see Fig.6. Compared to previously92, the target stage was flipped 

upside down for suspended mounting. 

 The wings were removed from freshly killed mosquitoes, following rapid chilling, and their 

bodies glued with their legs on pins. The pins were thereafter mounted onto the mounting stage of 

the instrument, with the mosquitoes hanging from the pins. The mosquito bodies were rotated 360° 

with 15° steps. For each aspect, a multispectral image was acquired.  The images were flat field- 

and white calibrated by a diffuse grey reference. The precise laser diode emissions deviate from 

the specifications but were measured by an InGaAs spectrometer (Stellanet). 

 
Figure 6. The instrumentation used for studying aspect angles of mosquito bodies with 

multispectral short-wave infrared images. An infrared version of the versatile Biophotonic, 

Imaging, Optical, Spectral, Polarimetric, Angular, and Compact Equipment (BIOSPACE). 

 

 

2.3.3. Results 

The multispectral images reveal different spectral features of the mosquitoes. False-color images 

were formed by combining images of 1463 nm, 1291 nm, and 1002 nm as red, green, and blue, 

respectively, see Fig.7. In the images, the bodies show a blue-cyan color, while the eyes appear 

green, and the limbs appear red.   

 

              

                        

            

              

        



Figure 7. The six groups of mosquitoes visualized as false color infrared images. Anatomical 

features display distinct spectral contributions; the body primarily scatter short wavelengths 

(displayed in blue), since water attenuate the longer bands, the eyes display green tones since 

both melanin and water decrease eyeshine. Legs and antennae scatter long waved light, and are 

seen as red.   

 

 
Figure 8. The measured cross section for two replicas from each of the 6 groups of mosquitoes, 

as a function of observation angle (yaw) and wavelength. The cross-section can be described by 

three polar harmonics. The spectral composition displays minimal dependence on the 

observation angle and replicate, however, spectral differences are pronounced between the 

groups.   

 

 Aspect angles; The yaw observation angle, ψ, foremost affects the cross-section regardless 

of the spectral band. The relation is adequately described by: 

Eq.6 

𝜎̂(𝜆, 𝜓) = 𝑘0(𝜆) − 𝑘1(𝜆) cos(𝜓) − 𝑘2(𝜆) cos(2𝜓) 

where σ is the backscatter cross-section as a function of wavelength and observation angle, ψ, 

(yaw). The head is in the direction where ψ=0. k0 is the average cross-section from all angles; k1 

is the reduction of the cross-section in the direction of the head; and k2 is the increase of cross-

section from the sagittal plane. Here, elongation is given by k2/(k2+k0) and the head/tail asymmetry 

is given by k1/(k1+k0). These dimensionless parameters are mainly constant across spectral bands, 

see Fig.9. 



 

 
Figure 9. The elongation (k2/(k2+k0)) and the head/tail asymmetry: dark headed (k1/(k1+k0)) are 

shown for the 12 samples in all seven bands. The gravid anophelines display greater elongation 

than their virgin counterparts. The eye melanization shows surprisingly little reduction of the 

frontal cross-section, however, we note that Culex males and the older Culex females show a 

slightly dark frontal cross-section compared to the younger Culex females. 

 

 We analyzed the spectral composition within the aspect scans in Fig.8 by singular value 

decomposition (SVD). Across the specimens, the trend is that the 1st spectral component explains 

91% of the spectra observed from all angles, the 2nd component explains 5% of the variance and 

the 3rd component explains just 2%. The 2nd and 3rd spectral components could not be associated 

with melanin or water, rather the specular reflections from the legs and abdomen produce a strong 

glittering, see animated GIFs in supplementary materials, S1. Mosquitoes have relatively small 

eyes, and eye melanization could be more pronounced for other more visual vectors, such as 

horseflies95. Differentiation of head and tail could also be more feasible with shorter bands, where 

melanin absorption is stronger. 

 

3. Conclusion 

This study presents measured near-infrared optical properties of mosquitoes with metric values 

and high precision, focusing on species, age, sex, and gravidity states. Our results demonstrate the 

thinnest (174 nm) insect wing in literature, to our knowledge, with a high precision (~1 nm), as 

well as water and melanin pathlengths (~10 μm precision). The spectral models derived from these 

measurements, with adjusted R² values over 95%, show a contrast between species, age, sex, and 

gravidity states of the mosquitoes. Moreover, our investigation reveals that, while the aspect angle 

of mosquitoes significantly influences their optical cross-section, the spectral variations in the 

shortwave infrared remain minimal (~5%). 

 The methods have room for improvement; the spatial resolution of the hyperspectral 

imaging was marginal. We could extract some anatomical features, such as the spots on the yellow 

fever mosquito but could not provide a wing thickness map as reported in previous studies30, 58. A 

cheaper CMOS hyperspectral camera could be preferable to the infrared setup used in this study. 



The CMOS camera could capture more interference fringes in the visible regime compared to the 

infrared, which struggled to estimate thickness heterogeneity as previously achieved30. 

 The experimental VIS extended InGaAs hyperspectral camera only has a limited spectral 

range and suffers from 2nd diffraction orders. The robustness of numerical fitting and the accuracy 

of the estimated reflectance parameters would greatly improve if reflectance could be measured 

on both sides of the 1450 nm water absorption band, and in particular if the 1940 nm water 

absorption bands could also be covered.  The illumination of the fresh mosquitoes was suboptimal 

and signal-to-noise ratio (SNR) could have been better. On the other hand, the noisy reflectance 

spectra resemble those retrieved from free-flying insects by hyperspectral lidar41.  

 The ability to remotely retrieve micro- and nanoscopic features of mosquitoes using 

multispectral lidars presents a powerful tool for vector surveillance. By accurately distinguishing 

mosquito species, age, sex, and gravidity, targeted and efficient control strategies could be 

developed. This, in turn, could lead to improved management of mosquito-borne diseases, such as 

malaria, dengue, Zika, and others, directly enhancing global health outcomes. Further research 

could expand this work with more replicates and a wider range of mosquito species, incorporating 

additional variables, such as feeding status. Developing robust spectral libraries of mosquito 

optical properties would facilitate advanced classification algorithms for remote sensing 

applications. Ultimately, this research has laid a foundation for optical analysis to combat 

mosquito-borne diseases, which could in extension improve global health. 
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Remote Nanoscopy with Infrared Elastic Hyperspectral Lidar

Lauro Müller,* Meng Li, Hampus Månefjord, Jacobo Salvador, Nina Reistad,
Julio Hernandez, Carsten Kirkeby, Anna Runemark, and Mikkel Brydegaard

Monitoring insects of different species to understand the factors affecting
their diversity and decline is a major challenge. Laser remote sensing and
spectroscopy offer promising novel solutions to this. Coherent scattering from
thin wing membranes also known as wing interference patterns (WIPs) have
recently been demonstrated to be species specific. The colors of WIPs arise
due to unique fringy spectra, which can be retrieved over long distances. To
demonstrate this, a new concept of infrared (950–1650 nm) hyperspectral
lidar with 64 spectral bands based on a supercontinuum light source using
ray-tracing and 3D printing is developed. A lidar with an unprecedented
number of spectral channels, high signal-to-noise ratio, and spatio-temporal
resolution enabling detection of free-flying insects and their wingbeats. As
proof of principle, coherent scatter from a damselfly wing at 87 m distance
without averaging (4 ms recording) is retrieved. The fringed signal properties
are used to determine an effective wing membrane thickness of 1412 nm with
±4 nm precision matching laboratory recordings of the same wing. Similar
signals from free flying insects (2 ms recording) are later recorded. The
accuracy and the method’s potential are discussed to discriminate species by
capturing coherent features from free-flying insects.

1. Introduction

Insects decline, in both abundance and diversity, at alarm-
ing rates.[1–4] This loss of insect poses a major threat to the
ecosystem services they provide, including crop pollination.[5]

The main reasons have been identified as habitat loss and
the use of pesticides.[6] Conventional insect inventorying is
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accomplished by trapping,[1,7] and the sub-
sequent analysis is both time-consuming
and expensive. To speed up this process,
innovative approaches are needed for in-
sect surveillance. Machine vision has been
applied in field,[8] on traps,[9] and for trap
catch analysis.[10] Distributed sensors pick-
ing up the wingbeat oscillations from in-
sects are also reported.[11,12] The fact that
free-flying insects appear sparsely in time
and space,[13] implies that insect monitor-
ing becomes particularly efficient when the
probe-volume is elongated over hundreds
of meters and trans-illuminated by a laser
beam.[14,15] Hereby, an enormous amount
of insects can be observed daily using only
a couple watts of light as opposed to hy-
perspectral push broom imaging,[16] where
hundreds of Watts illumination is split up
between every pixel footprint. Hyperspec-
tral lidar can be implemented with only a
few Watts of illumination as the same laser
light is recycled from one pixel footprint to
the next one until it intercepts an insect or
the end of the transect. The wide range of

detection distances and the rapid movements of free flying
insects, however, cause focus challenges and motion blur in
spatial domain imaging. Alternatively, insects can be classified
in the frequency domain by their wingbeat frequency and
overtone spectra[17,18] which is not subject to optical defocusing.
Wingbeats range from 10 to 1000 Hz, but the relative frequency
spread within a single species and sex are generally some
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Figure 1. Elastic hyperspectral Scheimpflug lidar (EHSL). Color coding; gray: optomechanics, green: degrees of freedom for alignment, yellow: broadband
light cones. a) The beam expander and receiver mounted on a Scheimpflug lidar base of 81 cm. b) Light from a supercontinuum source is stripped from
visible light, expanded and collimated. c) Retrieved light is dispersed in photon energy perpendicular to the slit. Both the slit and the 2D InGaAs array
are tilted according to the Scheimpflug condition and the hinge rule.

20–40% broad[19] and depends on temperature[15] and body
mass variations[20,21] (e.g., age, reproductive stage, or pollen
payload). In particular, the 100–200 Hz region is crowded with
species, and the frequency domain alone is unlikely to be able to
differentiate the thousands of species in a single habitat.

Adding spectroscopy to lidar allows retrieval of tiny features
over far distances; for example, picometer spacings between
electron shells in atoms[22] or molecules.[23] Micrometer fea-
tures such as snow grain size or eggs inside a mosquito ab-
domen can be deduced from incoherent scattering by measur-
ing the equivalent water absorption pathlength[24] or depolariza-
tion ratio.[20] Insects have either two or four wings, which con-
stitute thin films,[25,26] and depending on the membrane thick-
ness, the wings can exhibit resonant backscatter for specific wave-
lengths. These wing interference patterns (WIPs) have been pro-
posed to be important for mate choice.[27,28] Such mate choice
signals are expected to be highly species-specific.[29] The spectral
fringes from wings can be preserved during spatial integration
across the wing, producing a fringed spectrum from the whole
wing.[30] The two or four wing surface normal visits a large frac-
tion of the hemispheres during each wingbeat, and when a wing
surface normal coincides with the source-detector midpoint, a
coherent flash appears. This microsecond instance represents
one of the rare occasions where the orientation of the insect’s
wing is known, and an accurate assessment of area, thickness,
and reflectance can be done. In a previous study, two closely
related mosquito species could be differentiated by such flash
chromaticity,[19] although the species were impossible to differ-

entiate by morphology in the microscope. Wing flashes have
previously been retrieved remotely by polarization lidar[28] and
dual-band lidar.[31] These studies have eluded on the existence
of coherent scattering, but until now no remote instrumentation
has allowed to capture such flashes, resolve them spectrally and
uniquely determine the wing thickness.

In this work, we demonstrate a new elastic hyperspec-
tral Scheimpflug lidar (EHSL) that can simultaneously resolve
flashes from insect wings in range, time, and wavelength. The ap-
proach is based on continuous wave Scheimpflug lidar[23,32] and
its inelastic hyperspectral variety, which was previously developed
in fluorescence mode.[33–35]

2. Results

2.1. EHSL

Based on previous Scheimpflug lidars, we developed a system
with sufficient sensitivity, range resolution, spectral range as well
as the necessary speed to potentially capture a flash from a free
flying insect wing. Here, a baseline bar (Figure 1a) separates the
beam expander and receiver. In order to vastly increase the num-
ber of spectral bands, a broadband supercontinuum light source
(stripped from its visible emission) is used, expanded and trans-
mitted to the atmosphere (Figure 1b). In the tilted focal plane
of the receiving telescope, backscattered light passes a slit and
is dispersed in photon energy by a 3D printed spectral analyzer
(Figure 1c). The backscattered and dispersed light is projected on
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Figure 2. Remote Nanoscopy. a) Instantaneous lidar range-wavelength map (light distribution on the 2D InGaAs array), the signal is uncalibrated
intensity counts and the Nd:YAG supercontinuum pump laser is seen. b) Calibrated lidar time-wavelength reflectance map at 87 m range made from
200 consecutive exposures. A single, representative, exposure/echo (marked by blue arrow) is selected for further inspection. c) This lidar echo at
three selected wavelength bands, the wing displays distinct chromaticity compared to the spectrally flat neoprene termination. d) Retrieved reflectance
spectrum from a damselfly wing at 87 m range acquired during 4 ms compared to a thin film model. At this instance and wing orientation, the thickness
is estimated to 1412 ± 4 nm (95% confidence interval and 96% R2

adj).

a 2D InGaAs camera where 1D represents target distance and the
other dimension represent wavelength.

2.2. Retrieved Spectral Fringe

To demonstrate the capacity of rapid retrieval and resolving an in-
sect wing and quantifying the thickness, we inserted a forewing
of a female damselfly, Calopteryx virgo, into the lidar transect at 87
m range (Figure 2a). The echo from the beam termination on a
black neoprene target is also seen at 100 m range. The data were
collected at a pace of 200 Hz and exposure times of 4 ms (Fig-
ure 2b). When the wing surface orientation is in specular condi-
tions, high signal magnitude is observed. Such single unfiltered
exposure from the lidar is displayed in Figure 2c. The hyperspec-
tral echo from the delicate wing displays a spectral fringe Fig-
ure 2d. We could accurately model the remotely retrieved fringe
by thin film theory[26] and determine the thickness with an aston-
ishing accuracy of a few nanometers corresponding to less than
1% relative error.

2.3. Hyperspectral Imaging

To validate the thickness value and the precision, we analyzed
the same wing (Figure 3a) in detail in the laboratory by polari-

metric hyperspectral imaging[36] (Figure 3b,c). A spectral fringe
model[26] was applied to the individual pixels, and the thicknesses
were estimated across the wing surface (Figure 3d). The wing
contains cells with thin and thick membranes but also an effec-
tive fringe for the wing as a whole (Figure 3e). The absence of
fringes in the depolarized recordings verifies that the phenomena
are coherent, and a high degree of collimation from the backscat-
tered light can be expected. Thus, values exceed 100% compared
to a diffuse Lambertian reflectance standard. The encountered
thickness across the wing is displayed in Figure 3f. The remotely
retrieved fringe was recorded without the knowledge of the ori-
entation of the wing (as would be the case for free-flying insects).
Thus, only a specific part of the wing could fulfill the specular re-
flection criterion in the field experiment. However, the remotely
measured thickness of 1.41 μm closely resembles the effective
thickness which is 1.69 μm and falls within the thickness encoun-
tered across the wing.

2.4. Lidar Signals from Free Flying Insects

After the initial test described above, the lidar was deployed again
at the same location and the experiment was left unperturbed
to capture free flying insects. Numerous hyperspectral lidar
observations were captured during an evening. Two representa-
tive examples are displayed in Figure 4. In the left figures, the
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Figure 3. Laboratory recordings. a) A damselfly wing appears glossy under a specular illumination; structural colors can be seen on some wing spots.
b,c) False color image of the same wing in co- and depolarization (band choices: blue @ 1250 nm, green @ 1700 nm, and red @ 2300 nm) by infrared
hyperspectral imaging. d) Map of the wing thickness and modulation depth. e) Examples of fringes of selected orange and green circled wing pixel from
the thin and thick region as well as the effective fringe (blue line) from the whole wing. The thickness, d, and the modulation depth, M, is indicated. The
absence of depolarized reflectance indicates that the phenomenon is highly coherent. f) Histogram of thicknesses across the examined wing.

total backscattered intensity is plotted over time. Two instances
of specular flashes from the wings were selected for spectral
analysis. We also present a negative control in-between the
flashes, this signal arises from the insect body and should not
display thin-film fringes.

The first example in Figure 4ac was detected after sunset at 85
m distance. Multiple signals of this type were recorded with very
low wing beat frequencies in the range 16–22 Hz (indicating a
large insect). Further, the waveform in Figure 4a displays narrow
spikes and consequently high intensity skewness. This indicates
an insect species with clear, glossy wings, and a wing membrane
thickness fulfilling resonant backscatter. This wing membrane is
very thing and indeed the two consecutive flashes for the first ex-
ample show a discrepancy of only 13 nm, see Figure 4b. The spec-
tra from the insect body are characterized by melanin absorption
toward the shorter wavelengths.

The second selected example in Figure 4c,d, is also noctur-
nal but a much smaller insect (intensity counts are lower despite
closer range). The wingbeat of 150 Hz is marginally resolved in
time, it is therefore not possible to deduce exactly how rapid and
how intense the flashes are. Even so, spectral fringes could be re-
trieved, see Figure 4d. Despite the smaller size, the wing is three
times thicker than in the previous case, however, the discrepancy
is now 430 nm which is considerable. Also, the body contribution

shows traces of fringed properties, this points to the fact that nei-
ther the peaks nor the valleys in the backscattered waveform were
resolved properly in time.

2.5. Hyperspectral Lab Inspection of Possible Candidates

We speculated on several insect species- or family candidates
which could account for the free flight lidar recordings in Figure
4ab. The candidate is probably a large nocturnal insect species
with ultrathin clear wings and wing beats of 16–22 Hz. Crane
flies, grasshoppers, and beetles were spotted at the field site dur-
ing our lidar work. From these groups, three locally common
species were selected from the zoological museum. Hyperspec-
tral image analysis was carried out as previously, Figure 5. There
are ≈60 insect families present at the ecological field station in
late summer and much more species. Although, we encountered
both crane flies and grasshoppers with similar submicron effec-
tive wing thicknesses, none of the selected species matches the
recording exactly.

3. Discussion

This progress and the EHSL method open up for a new and
complementary domain for detecting and classifying free-flying
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Figure 4. Examples of hyperspectral lidar signals from unknown free flying insects. a) Average intensity of all spectral bands versus time from an insect
at 85 m range. The spiky and asymmetric waveform indicates clear glossy wings and the low wingbeat frequency is typical for large insects. b) Spectral
reflectance from the observation in 4a at the three indicated instances. The fringe model attained R2

adj. of 97% and thickness certainly of ± 2 nm (95%
confidence intervals). Similarly, the consecutive flashes display 13 nm discrepancy, the body reflectance between the flashes displays a characteristic
attenuation by melanin toward the shorter wavelengths. c) Another and smaller insect observed at 58 m distance where wing beat flashes are barely
resolved. d) For the case in (c), the fringe model attained R2

adj. of only 80% and thickness certainty of ±10 nm, but the two fringes display discrepancy
of 430 nm, even the body spectrum displays traces of fringed properties.

insects in situ, namely the remote acquisition of wing thick-
nesses with nanometers precision. We have demonstrated that
the method can be deployed in field and capture signals from
insects in flight. We have shown the potential in terms of pre-
cision and also that the technique could benefit from increased
sample rates. Although we could not find a perfect match to
our field recordings, lidar signals could in principle be com-
pared to pinned specimens from ecological museums. Until
now, lidar techniques for detecting free-flying insects have re-
lied mostly on frequency analysis of wingbeat patterns, which
requires multiple wingbeats during the beam transit. The EHSL
technique could in principle determine the wing thickness from
a single microsecond flash. This could ease constrains on beam
width and power allowing to detect smaller insects at further
distances, however, with a reduced probe volume. The fact that
spectral fringes from insect wings exist, that they can be re-
trieved over distance and that these fringes are highly copolar-
ized, specular, and coherent—also implies that their backscat-
ter is collimated to some extent. Therefore, the range attenu-
ation of fringed signals is likely to be weaker than the ordi-
nary square factor known from aerosol and molecular lidar.[37]

Rather related studies suggest that flat lidar targets can cause
back-propagating laser light which is partially collimated.[38] This
could imply considerable advantages in signal-to-noise ratio if
the sample rate increases (despite less illumination energy per
exposure).

The presented recordings were carried out at night as our
current supercontinuum source does not allow modulation.
However, inelastic hyperspectral lidar has been demonstrated
in sunlight[35] (despite the weaker target interaction), thus this
elastic method can be expected to work in sunlit conditions if
modulation technicalities are overcome. The thin-film effect does
generally not apply to the important and large order of Lepidoptera
(Greek: scale wings) comprising butterflies and moth. However,
species in this order can be classified in the shortwave infrared
region according to the surface roughness of the microstructures
on their wing scales.[36] The same instrument presented here
also enables quantification of such scale microstructures and
also the equivalent absorption path lengths of melanin[36] and
liquid water[39] in the body. Resulting parameters from scale
microstructures and equivalent absorption path lengths can
also be determined quantitatively and reported in microns for
inter-comparability between studies. In fact, the detailed short-
wave infrared reflectance of insect bodies can potentially enable
differentiating insect species, sexes, age groups, life stage, and
infection status.[40–43] Therefore, the described technique has
the potential to revolutionize insect surveillance. We foresee that
other disciplines of optical remote sensing and environmental
monitoring also could benefit from the outlined hyperspectral
lidar method. For example, hyperspectral lidar for vegetation
canopies[34,44] could improve tree species classification and
report on leaf moisture, fertilization, or internal leaf structures.

Adv. Sci. 2023, 10, 2207110 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2207110 (5 of 11)
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Figure 5. Small survey of species groups; crane flies, grasshoppers, and beetles which could possibly account for lidar signals in Figure 4. For each
species and sex; top: Short-wave infrared false color images (R = 2300 nm, G = 1700 nm, B = 1250 nm), middle: thickness distributions across left
and right wings. The numbers, d, indicate the effective wing thicknesses for left- and right wings, bottom: wing maps indicating spectral modulation, M
indicates fringe modulation from the entire wings. The thickness distributions for left and right wings are displayed under each specimen. (The narrow
spikes in the thickness distributions should be disregarded, since these are from the veins where the algorithm could not identify a fringe).

The method could also be employed in atmospheric sensing of
particles[45,46] and gasses such as CH4, O2, H2O,[47] and CO2.23

4. Experimental Section
Field Measurements: An initial field campaign was conducted at Sten-

soffa field station[48] in southern Sweden (55°41′44″N 13°26′50″E) on
the 5th of April 2022 to test the hyperspectral lidar. A map of the ex-
perimental site is shown in Figure S1 (Supporting Information). The li-
dar was mounted on a tripod, pointing at a neoprene termination at
100 m distance. A near infrared silicon monitor camera was used to
align and verify the broad infrared beam which is invisible to the hu-

man eye. The measurements were conducted during the night to reduce
background illumination. The acquisition rate was set to 200 Hz with
maximal laser power. During that measurement, a single damselfly wing
was held in the beam on a blackened wire at 87 m distance. The sur-
face orientation was varied randomly, while the system was collecting the
data.

In 18th August 2022, the same site was returned for the purpose of
collecting signals from free flying insects. The lidar transect was identical,
but the acquisition rate was set to 500 Hz again with the maximal available
power.

Instrumentation: The lidar in this work is based on the Scheimpflug
method, applying the Scheimpflug and Hinge rules which are described
and developed.[49–51] Mathematical derivations of the Scheimpflug
principle are found.[52,53] In hyperspectral lidar, the Scheimpflug and

Adv. Sci. 2023, 10, 2207110 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2207110 (6 of 11)
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Hinge rules are applied twice since not only range but also spec-
trum has to be determined. This concept was derived from previous
studies.[33–35]

The lidar setup is shown in Figure 1 and consist of several elements
described below:

Baseline: The receiver telescope and the beam expander are mounted
on a baseline with 814 mm separation (Figure 1a). The length of the base-
line, together with the angle between beam expander and telescope, and
the orientation of the slit, determine the first Scheimpflug and Hinge rule.

Super continuum light source: Supercontiuum light is broadband light
that is generated from picosecond pulses from a mode-locked, diode-
pumped solid-state laser (DPSS) that propagates through a single mode
nonlinear fiber.[54] The source used in this work is a Supercontiuum fiber
laser (SC400 Fianium, Nordiske Kabel og Trådfabriker, Denmark) with a
spectral range from 400 to 2400 nm. The wavelength of the pump is at
1064 nm, generated by a DPSS Nd:YAG laser with a repetition rate of
80 MHz, a pulse duration of 400 fs and a max pulse energy of 50 nJ. The
output collimator of the supercontinuum fiber is connected to the beam
expander (Figure 1a,b).

Beam expander: The purpose of the beam expander (Figure 1b) is to
expand the beam of the supercontinuum source and strip off the visible
part of the spectrum. The beam expander is designed with a Galilean tele-
scope composition where first a negative lens (f = −25 mm, Ø = 12 mm,
LC1054-B-ML, Thorlabs, USA) is used to expand the beam and afterward
collimate it with a positive lens (f = 400 mm, Ø = 50 mm, ACT508-400-B-
ML, Thorlabs, USA). The visible part is stripped off with a dichroic mirror
(SP 650 nm, 25 × 36 mm2 Thorlabs, USA) and a long-pass filter (RG850
Schott, Ø = 50 mm, Edmund Optics, UK), resulting in an emitted spectral
range of 850–2400 nm and an average power of ≈3 W. The beam expander
is mounted on a tangential stage (Stronghold, Baader Planetarium, Ger-
many) with which the slant- and overlap angles[55] can be adjusted. The
supercontinuum light beam is eye-safe for aerofauna but not for humans,
the experiment area was restricted for public access.

Receiver: The backscattered light is collected with a f = 800 mm, Ø
= 200 mm Newton telescope (Quattro, SkyWatcher, China) mounted on
the lidar baseline. The collected light is then focused onto the 45° tilted
entrance slit of the spectral analyzer which is directly mounted in the fo-
cal stage (Figure 1ac). This fulfills the first Scheimpflug condition (Beam-
Newton-Slit). Furthermore, the focuser of the Newton telescope can be
adjusted to fulfill the hinge rule, see Figure 1a.

Spectral analyzer: The purpose of the spectral analyzer (Figure 1c) is
to disperse light from the slit according to photon energy and project it
on a 2D detector array, while keeping the range information along the
slit intact. The aperture of the slit is 20 mm × 200 μm. A second set of
Scheimpflug condition and hinge rule is considered (Slit-Grating-Array).
The Scheimpflug condition and the hinge rule is based on simple geo-
metrical optics considerations and assume thin optics with large F/# and
no aberrations. The optics is F/4, matching the receiving Newton tele-
scope, therefore it includes 3 lenses with several centimeters path lengths
in solid glass. Because of this, the Scheimpflug condition and hinge rule
can only be used as a first order approximation for the design. The opti-
cal system needs refinement by raytracing (Zemax, Ansys, USA) see Fig-
ures S2 and S3 (Supporting Information) and is described in more de-
tail in the section Raytracing. This double Scheimpflug design process is
also described.[35] The optical elements in the spectral analyzer include 3
identical SWIR achromatic lenses, focal length f = 75 mm, diameter Ø =
50 mm (AC508- 075-C, Thorlabs, USA), and a 300 groove mm−1 transmis-
sion grating (GTI50-03A, Thorlabs, USA). The first achromat, collimates
the received light cone, thereafter the grating disperses the light by pho-
ton energy. The dispersed light is reimaged onto the camera with the two
remaining achromats. The distance between grating and focusing lens
is chosen such that the 0th diffraction order can be separated for beam
dumping. The axial magnification from slit to camera is 2:1.

The effective magnification of the spectral analyzer unit is 2:1 from
slit to 2D detector array. With the raytraced optical system, an opto-
mechanical system was designed with CAD (fusion 360, Autodesk, USA)
see Figure S4 (Supporting Information). This is discussed in the below
section. The opto-mechanical system was 3D-printed in black Polyactic

acid (PLA-DF = 02, Dremel, USA) with a commercial 3D-printer (3D45,
Dremel, USA).

Camera: The camera utilized in the spectral analyzer (Figure 1c) is a 640
× 512 pixel InGaAs camera (C-RED3, FirstLight, France), with a pixel pitch
of 15 × 15 μm and a dynamic range of 14 bit. The spectral range of the
sensor is Δ𝜆 ≈ 800 nm (900–1700 nm), with a max framerate of 600 fps.
The output of the camera is a USB 3.1 Gen 1 port.

Data storage: The hyperspectral lidar is recording backscattered light
intensity, I(pixr, pix𝜆), (14 bit) as a function of range (1 ≤ pixr ≤ 640 pix-
els) and photon energy (1 ≤ pix𝜆 ≤ 512 pixels) in single exposures of the
2D-camera detector. The time is recorded by stacking consecutive expo-
sures. The acquisition rate for the free flying insect signals was 90 GB h−1,
the temporal fill factor was 8% (time gaps between datafiles are caused by
real time visualization and saving to hard drives). The hyperspectral im-
ages are stored in data cubes where the axes are range, wavelength, and
time, respectively. The data are transferred from the camera to a computer
by USB 3.1 where an acquisition script (LabView, National Instruments)
visualizes the hyperspectral data real time and stores them as raw files
with a time stamp.

Raytracing Design: Raytracing is a numerical simulation of light rays
for optimizing performance and optical systems. Raytracing features a
merit function tool that allowed optimizing the system with the goal of
achieving the smallest spot size in range-, 𝛿r, and spectral, 𝛿𝜆, domain.
The parameters that were adjusted by the merit function are lens sepa-
rations, position and 2 axis tilt of the detector. A weight function was in-
troduced to optimize the system to perform better in the far range since
the pixel footprints increase with range, and thus the impact of a large
spot size is greatest at far distances. The result of the optimization can be
observed in the spot-diagram in Figures S2a and S3a,b (Supporting Infor-
mation) where the root-mean-square (RMS, 𝛿r, 𝛿𝜆) is plotted as a function
of wavelength for three different range positions. The raytracing predicts a
spot size in the spectral domain of ≈40 μm for mid- and far range, whereas
the spectral spot size at near range is close to the 100 μm image of the de-
magnified slit (by which the PSF will be convolved with). Thus, raytracing
suggests that spectral resolution is constrained by the slit width. The de-
magnified image of the slit fits ≈76 times across the chip, consequently
76 independent lidar spectral bands can be expected between 1000 and
1600 nm and accordingly a spectral resolution of 8 nm. In addition, bin-
ning several spectral pixels would not deteriorate the spectral resolution.
In the range domain (Figure S3a, Supporting Information), spot sizes are
≈80 μm for close range and <30 μm (2 pixels) for far ranges. This gives
0.4% relative range accuracy. In practice, the range inaccuracy also de-
pends on the lidar beam width, and the precision in field indicates 1%,
which is somewhat better than previous Scheimpflug lidars.[53]

CAD-Design: The opto-mechanical system of the spectral analyzer
was designed with CAD (Fusion 360, Autodesk, USA) see Figure S4
(Supporting Information). The unit is based on a 3D-printed sandwich
structure[35] combined with cage system elements. Four rods (ERx, Ø
= 6 mm, Thorlabs, USA) connect the 3D-printed structure with the
cage cube (CW4, 30 mm, Thorlabs, USA) using two cage plate adapters
(LCP4S, 30–60 mm, Thorlabs, USA). The tilted slit is mounted on a
rotation stage (B4CRP M, Thorlabs, USA) with a filter holder (FFM1,
Thorlabs, USA). The angle of the slit can be adjusted with the rotation
stage. In addition to the angle, three adjustment screws allow vertical
positioning. Furthermore, the spacing between the cage cube with the
slit and the 3D-printed part can be adjusted to ensure sharp focus from
slit to InGaAs camera. When focus is achieved, the rods can be locked
with three lateral screws. The two 3D-printed parts are held together with
bolts, combined with threaded brass inserts. This allows disassembling
and reassembling the plastic material. The bolts and the rods furthermore
act as a reinforcement structure to avoid deformation of the 3D-printed
material. The camera is attached to the 3D-printed structure with a milled
aluminum camera adapter plate. Baffles are included in the design at dif-
ferent positions along the optical path to reduce stray light. Baffles block
forward scattered light (snake light), which becomes more significant at
grazing angles. Moreover, horn-like structures[56] were included to absorb
the light from diffraction orders other than the first. Light from the 0th,
2nd, and −1st-diffraction order will be trapped in the beam-dumps and
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eventually absorbed. The spectral analyzer is installed on the focus stage
of the receiver telescope with a cylindrical aluminum adapter.

Spectral Analyzer Alignment and Characterization: The system is
aligned and characterized using a halogen tungsten light bulb as well as
a low-pressure spectral Xenon lamp to illuminate the slit of the spectral
analyzer. An integrating sphere coated with BaSO4 (Ø = 200 mm, Oriel,
USA) was used to uniformly illuminate the entrance slit.[35]

First, the system was aligned using the halogen light bulb as a light
source. The spectral analyzer can be focused by adjusting the spacing be-
tween 3D-print and cage-cube (see Figure S4, Supporting Information). A
transparent plastic foil with a line pattern was placed in the plane of the
entrance slit[57,58] and the spacing was adjusted until the black lines were
sharpest. Figure S5 (Supporting Information) a) shows the black lines of
such line pattern. In Figure S5b (Supporting Information), the intensity is
plotted along the range, featuring the line pattern. The line pattern in Fig-
ure S5ab, Supporting Information) moreover illustrates the optimization
of the far range performance where modulation depth is highest. As in all
triangulation approaches to ranging, the observation angle (position along
the slit, pixr) relates to distance tangentially. More details on Scheimflug
range calibration can be found in literature.[52,53]

Such relation was used and Scheimpflug range calibration for the case
of 2D detectors of the hyperspectral variety was expanded. The estimated
range becomes

r̂ (pr , p𝜆) = 𝓁BLcot (Φslant + 𝜃FoVpr + 𝜑shiftp𝜆 + 𝜑fanp𝜆pr) (1)

here, pr and p𝜆 denote the chip normalized pixel positions (values from 0
to 1 across the array detector chip), ℓBL is the length of the baseline (0.814
m), Фslant is the angle between the optical axis of the beam expander and
receiver, 𝜃FoV is the field of view (±) of the receiver, whereas 𝜑shift and 𝜑fan
denote undesirable wavelength dependent artifacts. The rulings across the
slit in Figure S5a (Supporting Information) is used to select 21 pairs of pr
and p𝜆 across the detector array, and fitted the four coefficients; Фslant,
𝜃FoV, 𝜑shift, and 𝜑fan. Equation (1) explained the pairs with an R2

adj. =
99.99%. The coefficients are provided in Figure S5d (Supporting Infor-
mation) along with the 95% confidence interval. As the table indicates,
the artifacts are less than 1% across the chip and not significantly differ-
ent from zero (indicative that artefacts are absent in the ranging domain).
More information regarding keystone and smile artifacts in hyperspectral
instruments is provided.[59]

In Figures S6 and S7 (Supporting Information), the halogen tungsten
filament lamp was also used as a light source to characterize the spectral
sensitivity and flat-field of the system. The light bulb is presumed to be a
blackbody radiator at 3000 K. In Figure S6 (Supporting Information), the
measured spectrum of the halogen filament is divided by Plank’s radiation
spectrum of a 3000 K radiation, resulting in the instrument spectral sen-
sitivity curve. The decrease in sensitivity for longer wavelengths is due to
the decrease in the efficiency of the diffraction grating. The camera respon-
sivity slightly attenuate shorter wavelengths. Moreover, dips at ≈1200 and
≈1400 nm are present in the sensitivity curve. The dip around 1400 nm
is caused by the BaSO4 coating of the integrating sphere which exhibits a
dip in reflectance at ≈1400 nm, whereas residual OH ions in the quartz
envelope of the halogen bulb account for absorption around both 1200
and 1400 nm. Hence, the dips arose during the calibration and will not
limit the performance of the system in field.

In Figure S7a (Supporting Information), the spectral sensitivity is plot-
ted at three different range positions. Figure S7b (Supporting Information)
shows a detector exposure with the slit uniformly illuminated. The flat-
field plot in Figure S7c (Supporting Information) describes the sensitivity
as a function of range. In practice, the lidar sensitivity range dependence,
known as the form factor,[60,61] is a complicated matter of overlap between
beam and field-of-view as well as the environmental conditions (humidity
and atmospheric attenuation coefficients). The lower sensitivity at far and
near might be caused by partly shielding, because the illumination cone
from the integrating sphere is wider than the F/4 cone from the Newton re-
ceiver. Therefore, this effect does not necessarily affect field performance.

In Figure S8 (Supporting Information) a low-pressure spectral Xenon
lamp was used to calibrate the system. Figure S8a (Supporting Informa-

tion) shows a single exposure of the Xenon emission lines recorded with
the spectral analyzer. The visibility is enhanced by a high-pass image filter
(Matlab, MathWorks, USA). Figure S8c (Supporting Information) displays
the Xenon’s atomic emission lines as a function of pix𝜆 around pixr = 50.
Several lines could be identified and literature values were assigned.[62]

The spectral lines display some artifacts but as in Equation (1), the wave-
length can be estimated accordingly

𝜆̂ (pr , p𝜆) = 𝜆0 + 𝜆spanp𝜆 + 𝛿bendp2
r + 𝛿fanp𝜆pr (2)

here pr and p𝜆 again denote the chip normalized pixel positions, 𝜆0 is the
shortest spectral band, 𝜆span is the spectral range of the instrument and
𝛿bend and 𝛿fan are undesired artifacts. The 𝛿bend and 𝛿fan parameters de-
scribe the spectral misregistration caused by the smile effect.[59] 17 pairs
of pr and p𝜆 were selected across the chip, and the hyperplane was fitted to
the table values (R2

adj = 99.99%). The fitted parameters are given in Fig-
ure S8d (Supporting Information) along with the confidence intervals. In
terms of spectral calibration, the two artifacts constitute 2% and 4% across
the whole chip. The linewidth (FWHM) in Figure S8c (Supporting Informa-
tion) of the spectral line at 1473.3 nm is 8 pixels which corresponds to a
spectral resolution of Δ𝜆 ≈ 9.5 nm. This implies 64 independent effective
spectral bands of the system which is much beyond any other elastic lidar
system reported.

Field Calibration of Reflectance: With the collected backscattered light,
I(pixr,pix𝜆), the reflectance of the target, R, was calculated (Figure 2d) as
follows

R
(

pr_target, p𝜆
)
= Rterm

⎡⎢⎢⎢⎣
(

Itarget

(
pr_target, p𝜆

)
− Idark

(
pr_target, p𝜆

))
r̂2
(
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)

S
(
pr_term, p𝜆

)
⎤⎥⎥⎥⎦⎡⎢⎢⎢⎣

(
Iterm

(
pr_term, p𝜆

)
− Idark

(
pr_term, p𝜆

))
r̂2
(
pr_term, p𝜆

)
S
(

pr_target, p𝜆
)
𝜂

⎤⎥⎥⎥⎦
(3)

here R is the reflectance of a target at pixel position pr and p𝜆 (associated
with the range and photon energy given by Equations (1) and (2). Rterm
is the reflectance of the beam termination, which in the case is a black
Neoprene foam sheet with a spectrally flat reflectance of 2%. Itarget de-
notes the measured backscattered intensity from a target at pr_target in a
spectral band at p𝜆. Idark is the background intensity. Due to environmental
structures and structured dark current, Idark is pixel specific. Idark was mea-
sured by manually blocking the beam, this was done several times during
the evening since both ambient light and dark current decreases (due to
falling temperatures). Iterm is the backscattered light from the beam ter-
mination with known reflectance. S denotes the instrument sensitivity as
a function of range and photon energy. This factor could compensate for
distinct spectral sensitivities at the target- and termination ranges, but as
seen in Figure S7a (Supporting Information), the spectral sensitivity does
not change noteworthy. Regarding range dependent sensitivity, the form
factor can be expected to be comparable to similar single band systems.[61]

In addition, InGaAs sensors can suffer from a structured pixel specific gain
pattern which is also included in S. For the purpose, it is assumed that S =
1. Omitting the form factor can imply that the absolute reflectance value
is inaccurate. However, as it can be understood from the squared range
factors in Equation (3), the expression is valid for diffuse targets, whereas
a specular target is presented. Studies of specular lidar targets are rare[38]

and would require a detailed description of the scattering phase function.
The last parameter, 𝜂, denotes the beam-target overlap. This factor can be
estimated by the relative reduction of the termination echo when the target
is in the beam. In the case 𝜂 ≈11%. With these arguments, it is understood
that the absolute reflectance value cannot be expected to be accurate.

Hyperspectral Imaging: A reference hyperspectral measurement[16]

of the same damselfly wing was carried out in a laboratory with a polari-
metric short-wave infrared (SWIR) camera (HySpex, Norsk Elektro Optikk

Adv. Sci. 2023, 10, 2207110 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2207110 (8 of 11)

 21983844, 2023, 15, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202207110 by Statens B

eredning, W
iley O

nline L
ibrary on [13/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



www.advancedsciencenews.com www.advancedscience.com

AS, Norway) with 288 spectral bands (from 0.95 to 2.5 μm). A 150 W
broadband halogen lamp was used to illuminate the wing in a specular
condition (the illumination and camera axis were at ±56° to wing surface
normal), the light was horizontally polarized with an ultra-broadband
polarizer (Meadowlark Optics, USA). A second ultra-broadband polarizer
was used to select and capture the polarimetric properties of the wing.
The camera objective had an aperture of Ø = 25.4 mm and a working
distance of 8 cm. The damselfly wing was taped to an index card paper
(taped near the axillary area of the wing, see Figure 3a. The wing was then
mounted on a black neoprene sheet during the hyperspectral imaging to
reduce the background reflection. The captured hyperspectral image of
the wing was then calibrated to a diffused reflectance standard with 50%
reflectance (Spectralon, LabSphere Inc., USA).

Fringe Model Hyperspectral Imaging: A fringe model was developed
based on the Fresnel equations and thin-film physics[26] to estimate the
wing thickness of captured fringes from both EHSL and hyperspectral
imaging

F (𝜆, d) =
4Rssin2

(
2𝜋d

√
n2 − sin2𝜃∕𝜆

)
(1 − Rs)2 + 4Rssin2

(
2𝜋d

√
n2 − sin2𝜃∕𝜆

) (4)

where 𝜆 is the wavelength, d is the thickness of the wing, 𝜃 is the incident
angle to the membrane (56° for laboratory recordings and 0.25° for EHSL).
Rs is the reflection coefficient according to Fresnel equations, and n is the
refractive index of the wing membrane

Rs =

(
cos𝜃 −

√
n2 − sin2𝜃

cos𝜃 +
√

n2 − sin2𝜃

)2

(5)

and the refractive index of the chitin in the wing membrane is expressed
as25

n = A + B∕𝜆2 (6)

where A = 1.517 and B = 8800 nm2.
For the hyperspectral imaging (Figure 2), the fringe model F(𝜆,d) was

used to generate multiple (1000x) computed fringes with wing thickness
in between range 0.35–4 μm. The modulation of computed fringes F(𝜆,d)
are always 100% since there are no bias terms. To determine the thick-
ness of the captured fringe with the reflectance R(𝜆) from the hyperspectral
imaging, each computed fringe F(𝜆,d) was then compared to the captured
fringe R(𝜆) based on correlation, C in Equation (7) with a fitting quality pa-
rameter, Q in Equation (8)

C (R, F (d)) =
∫ 4

0.35

(
F𝜆,d − 𝜇

(
F𝜆,d

))
(R𝜆 − 𝜇 (R𝜆))

2
√

∫ 4
0.35

(
F𝜆,d − 𝜇

(
F𝜆,d

))2
𝜕𝜆 ∫ 4

0.35 (R𝜆 − 𝜇 (R𝜆))2𝜕𝜆

(7)

Q (d) = C (R, F)
(

C
(
𝜕R
𝜕𝜆

, 𝜕F
𝜕𝜆

))2
(8)

where R is the measured reflectance and F is the computed fringe. Here,
the spectral derivatives are used to ignore slope differences. The squared
power is needed to avoid double negative correlation coefficients. The
modulation depth of the captured fringe can be determined by

M =
𝜎 (R𝜆) ⋅ 𝜇 (F𝜆)

𝜎 (F𝜆) ⋅ 𝜇 (R𝜆)
(9)

𝜎 is the standard deviation, and μ is the mean of the spectra. As the exam-
ples in Figure 3e show, effective fringe amplitudes increase by wavelength

Table 1. Fitting parameters for thin-film model.

Parameter Value Confidence interval Unit

d 1412 [1408, 1416] nm

𝜆0 1419 [1370, 1469] nm

𝛼 7.7 [7.0, 8.4]

Rbias 14 [12, 15] %

Rfringe 111 [99, 123] %

because the narrower fringes at shorter wavelengths are more prone to de-
phase and interfere destructively due to thickness heterogeneities across
the wing surface.

Fringe Model Hyperspectral Lidar: In order to match the increasing am-
plitude of the hyperspectral lidar measurements, the fringe model F(𝜆,d)
with a long pass function is multiplied to obtain a wing reflectance model

Rwing (d) =

(
𝜆

𝜆0

)𝛼

1 +
(

𝜆

𝜆0

)𝛼 ⋅
(

Rbias + Rfringe ⋅ F (𝜆, d)
)

(10)

here 𝜆0 is the cut-on wavelength for the long pass function and 𝛼 is the long
pass steepness. Since thickness heterogeneities across the wing damp
the effective wing fringe toward shorter wavelengths, 𝜆0 is expected to
scale with this heterogeneity. Other phenomena, such as gradient refrac-
tive coatings in damselflies could also contribute to this effect.[25] Rbias
is a scalar indicating a nonfringy bias of the spectrum. Rfringe is a scalar
indicating the amplitude of the effective fringe.

The parameters; 𝜆0, 𝛼, Rbias, Rfringe, and d were fitted to the measured
and calibrated reflectance from the damselfly wing target, R, from Equa-
tion (3). The fit was done using a numerical search algorithm (Curve Fit-
ting Toolbox, Matlab, MathWorks, USA), and ended at R2

adj 96% with the
following values (Table 1).
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Supporting Information is available from the Wiley Online Library or from
the author.
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Abstract—Specular flashes from insect wings are useful for 
remote diversity assessment, yet their duration limits and 
constraining factors remain unknown. We studied this using 
sampling rates in entomological lidar system up to 40 kHz, 
resolving quick wing flashes down to 130μs duration from 40 m. 

Keywords — insects, lidar, environmental monitoring, 
biodiversity, biophotonics, remote sensing, modulation spectroscopy. 

I. INTRODUCTION  

Insects play a vital role in ecosystems, influencing 
pollination and pest control[1, 2]. Understanding their 
populations and species compositions is essential for 
safeguarding environmental and agricultural health. 
Conventional methods for studying insects can be time-
consuming, expensive, and potentially disruptive to insect 
populations[3]. To address these limitations, our group 
developed a kHz entomological lidar system for rapid, non-
invasive assessment of insect populations and activity[4, 5]. 
This system utilizes laser light to detect and identify insects 
based on wing modulations, polarization, and spectral content. 
We previously operated the systems at a 8 kHz shared sampling 
rate (2.66 kHz after demultiplexing)[6]. However, this sampling 
rate was insufficient to capture higher-order wing beat 
harmonics, especially for male mosquitoes with fundamental 
tones of 600-800 Hz. This limits the number of observable 
harmonic tones, induce sampling artifacts  such as beating and 
folding and reduce accuracy of wing thicknesses assessment[7]. 

To improve understanding of the speed of wing flashes 
across all insect species, we  push the sampling frequency to new 
extremes over a short test range of 100 m to investigate the 
impact on data quality. 

II. MATERIAL AND METHODS 

In August 2022, a field campaign was carried out at 
Stensoffa ecological field station (55°41′44”N 13°26′50″E) in 
southern Sweden, to evaluate the performance of our 
entomological lidar system operating at three different 
acquisition rates, including 8kHz, 20kHz, and 40kHz. The 
experimental site was mapped and illustrated in Fig.1. The lidar 
instrument was mounted to a tripod and aimed along a transect 
stretching over a meadow and terminated at a neoprene-covered 
board located 100 meters away (The diffuse reflectance was 
1.8%). The laser wavelength is 808nm. The measurements were 
conducted within from 18:00 to 24:00 local hour and repeated 
for each respective acquisition rate. In this study, the laser 

module was operated in continuous wave mode and was not 
modulated as in previous studies[6]. 

 
Fig. 1: Experimental site for measurements. a) Detection range and top-

down aerial view of the site. b) Illustration of the Scheimpflug lidar with 
constituent components. The CMOS camera is tilted 37° relative to the 

optical axis (according to the Scheimpflug criterion) for an extended depth 

of field. c) The lidar system transmits light over a meadow, terminated at a 
black neoprene-covered board. The vegetation the beam passes through 

changes along its path: 0-40m (grass only), 40-100m (salix- and raspberry 

bushes), surrounded by deciduous forests and swamps. 

 

III. RESULTS & DISCUSSION 

The insect activity patterns and distributions for all three 
measurement days, captured at different sampling frequencies, 
are shown in Fig. 2. Two significant areas of high insect activity 
near 50m and 80m appear consistently across these 
measurements. Based on Fig. 1, these hotspots are in closer 
vicinity to taller trees and vegetation compared to the more open 
parts of the transect. These hotspots also display peak activity 
occurring slightly before sunset in each instance. This consistent 
timing suggests species with a certain light level niche. When 
comparing the activity distributions between the 8kHz and 
20kHz configurations (where pre-amp and gain settings remain 
identical), a reduced number of insects are observed at 20kHz. 
Due to the faster sampling rate; less laser energy falls into the 
shorter exposures, diminishing the lidar sensitivity. 
Consequently, less insects’ signals exceed the noise levels and 
thus detection threshold.  

However, at 40kHz, where both gain and preamp settings are 
doubled, there is a noticeable increase in observations. This 
suggests that enhanced electronic gain can compensate for the 
shorter exposure times of high sample rates. The lidar 
observations featured in Fig. 3 were specifically chosen because  

This project has received funding from the European Research Council (ERC) 

under the European Union’s Horizon 2020 research and innovation program 

(grant agreement no. 850463 Bug-Flash). In additional the FORMAS, Swedish 
Research Council (2018-01061). 



they share similar detection ranges and exceptionally high 
wingbeat frequencies (above 600 Hz), indicative of male 
mosquitoes. This selection allows for a direct comparison of 
how effectively different sampling frequencies resolve the same 
wingbeat signals. The 20kHz and 40kHz data samples the flash 

 

Fig. 3: Example of lidar observations under three different sampling 
frequencies. a, b): a lidar observation sampled with 8kHz sampling 
frequency, with b) showing a zoomed-in view of a). c, d): d) is a zoomed-in 
version of c), sampled at 20 kHz. e, f): Sampled at 40 kHz, with f) being a 
zoomed-in version of e). Note: this depicts the fastest wing flash observed 
during this measurement campaign. 

by multiple exposures. The single flash per wing beat period is 
likely to occur at anterior or posterior aspect of observation 
during upstroke[8]. The wing rotation amplitude is 90°, thus the 
angular speed is 4·667 Hz·90°= 240.000 °/s and a 130μs flash 
imply that specular reflection is obtained from a 31° cone from 
the wing. In comparison, the diffraction limit forms a perfectly 
plane 1 mm target over 40 m, would result in an 808 nm light 
cone of only 0.06° and the Ø150 mm receiver collects a 0.2°. 
The flash duration is thus constrained by the wing flatness in this 
scenario. Other species have flatter wings, still the implications 
are that faster flashes cannot be expected at further ranges. Also, 
fast specular flashes can be expected at much shorter ranges of 
other insect sensors[9] . 

IV. CONCLUSION 

This study demonstrates the fastest entomological lidar and 
flashes to date of just 130 μs . Two consistent hotspots and 
distant insects could be detected despite reduced laser energy per 

exposure. While a high sampling frequency can reduce signal 
intensity, the sensitivity at a higher sampling frequency can 
provide more detailed observations especially for wing flashes. 
Flash duration is predominantly constrained by the flatness of 
insect wings. 
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Fig. 2: Activity pattern recorded with different sampling frequency.  a, c, e) Range-time distribution maps of detected insects at different sampling frequencies. b, 
d, f) Corresponding histograms of insect count over time. g) Histograms of observed insect range distribution for all three sampling frequencies. 
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