UNIVERSITY OF COPENHAGEN
DEPARTMENT OF GEOSCIENCES AND NATURAL RESOURCE MANAGEMENT

PHD Thesis

\%

“Klas Rydhmer

“~Insects in the spotlight,

- photonic'monitoring of bees and inseCt biodiversity

Supervisor: Inger Kappel Schmidt
Submitted on: 30/6 2023

This thesis has been submitted to the PhD school of The Faculty of Science,

University of Copenhagen






Name of department:
Author(s):

Title and subtitle:
Topic description:
Supervisor:

Co-supervisors:

Company supervisors:

Submitted on:

Department of Geosciences and Natural Resource Management

Klas Rydhmer

Insects in the spotlight -photonic monitoring of bees and insect diversity
Automated insect monitoring

Inger Kappel Schmidt

Mikkel Brydegaard, Henrik Smith, Carsten Kirkeby

Mads Fogtmann, (Thomas Nikolajsen, Jesper Lemmich, Flemming
Rasmussen)

June 301 2023.






Preface

After working as a research engineer and data scientist at FaunaPhotonics for a couple of years, I
was offered the possibility to change my employment into an industrial PhD position. At that
point, we had focused on aquatic salmon lice, detection of birds around windmills and insect pest
monitoring in oilseed rape. The development of the first “commercially ready” insect sensor was
just started, and the company had grown from five persons when I joined into more than twenty
people. Collecting labelled data on new pest species and expanding to more crops were supposed

to be routine work in coming years.

I was offered a chance to focus on a new area, working closer to researchers rather than
agrochemical business partners and we initialized biodiversity monitoring as a side track to
complement the more commercially important pest monitoring. As we wrote the application,
OECD published their report “Biodiversity: Finance and the Economic and Business Case for

Action” and suddenly biodiversity monitoring was in every headline.

The side track offered a bumpy ride. As I am about to submit the thesis, biodiversity monitoring
is proposed to be mandatory by EU law. Rather than being a slow and steady academic side
project, it is now the key focus of FaunaPhotonics. Only one of the first four colleagues remain
and I am the oldest employee in the company. The project faced Covid, three company
supervisor replacements, the birth of my first child and most recently war in Europe. It has been

three eventful, awful and wonderful years.

/Klas, June 2023



Table of Contents

Preface
Abstract
Resumé

General introduction

Automated insect monitoring

Radar and lidar entomology

Current state of the art in lidar entomology
Light-matter interactions

Machine learning and ecology
Understanding entomological lidar data

Classifying and clustering entomological lidar data

Research objectives

Paper Abstracts
Paper I: Scheimpflug lidar range profiling of bee activity patterns and spatial distribution
Paper II: Automating insect monitoring using unsupervised near-infrared sensors

Paper lll: Dynamic B-VAE for quantifying biodiversity by clustering optically recorded

insect signals

Paper IV: Automating an insect biodiversity metric using distributed optical sensors:

an evaluation across Kansas, USA cropping systems

Paper V: Photonic sensors for comparative insect abundance and diversity in
distinct habitats

Conclusions and perspectives for further research

References

10

11
12
13
14
16
18

19

22

24

25

26

27

29

30

31

32



Paper I: Scheimpflug lidar range profiling of bee activity patterns and
spatial distribution

Paper II: Automating insect monitoring using unsupervised
near-infrared sensors

Paper Ill: Dynamic B-VAE for quantifying biodiversity by clustering
optically recorded insect signals

Paper IV: Automating an insect biodiversity metric using
distributed optical sensors: an evaluation across Kansas, USA
cropping systems

Paper V: Photonic sensors for comparative insect abundance and
diversity in distinct habitats

Patent I: Method and apparatus for determining and index of insect
biodiversity, an insect sensor and a system of insect sensors

41

55

67

77

97

121






Abstract

This thesis is the result of an industrial PhD project in cooperation between FaunaPhotonics A/S
and the Department of Geosciences and Natural Resource Management at Copenhagen University.

It explores the viability of using photonic sensors for monitoring of bees and insect diversity.

Recently reported declines of insect abundance and diversity have illustrated the need for large
scale and long running studies of insects. However, such studies are costly with conventional
methods which are constrained in their temporal and spatial coverage. Thus, there is a need for
new methods to complement the conventional monitoring approaches. Entomological lidar has
become increasingly common in recent years and allows the recording of thousands of insect
observations in minutes. Such instruments emit a beam of light and record the reflected light from
insects passing through the beam. The data is recorded as a time signal where, amongst other

features, the wingbeat frequency is seen as a modulation in the signal.

FaunaPhotonics have developed a short-range optical instrument with a similar measurement
principle to entomological lidar. The “Volito” sensor automatically record and extract insect
observations from the data and transmit them to a cloud platform via cellular network. It is eye-
safe, weatherproof and capable of long unsupervised deployments in the field. While initially
developed for pest monitoring in agricultural crops, the non-intrusive monitoring method makes it

a suitable technology for general insect monitoring.

Monitoring biodiversity is a complex task that can involve identifying a large number of insects
to sub-species level. While this seems unfeasible with optical instrumentation, this PhD project
explores the possibility to develop a “simple” biodiversity indicator, analogous to species richness,

or Simpson’s biodiversity index.

This thesis includes a spatial model for honeybee monitoring using conventional entomological
lidar, showing good agreement with manual observations. It describes the development of the new
“Volito” sensor and correlates measured insect abundance with yellow water traps. It explores a
deep learning approach to feature extraction from recorded data, improving upon earlier models
from literature. Finally, it includes two draft manuscripts covering the first attempts at correlating
a sensor-based diversity metric with conventional monitoring methods in agricultural fields in

Iowa, USA, as well as protected areas in southern Scandinavia.



Resumé

Denne athandling er resultatet af et industrielt PhD projekt udfert som et samarbejde mellem
FaunaPhotonics A/S og Institut for Geovidenskab og Naturforvaltning pa Kebenhavns Universitet.
I athandlingen undersoges muligheden for brugen af optiske sensorer til monitorering af bier og

insektdiversitet.

De seneste ars rapportering af fald i antallet af insekter og diversitet har understreget
nedvendigheden af lengerevarende og omfattende insektstudier. Sadanne studier er dog
omkostningstunge ved brug af konventionelle metoder, som desuden er begransede i deres tids-
og arealmaessige omfang. Der er derfor behov for nye metoder til at komplimentere de
konventionelle malemetoder. Entomologisk lidar er blevet stadig mere udbredt i de seneste ar og
muligger maling af tusindvis af insekter pa fi minutter. Instrumenterne udsender en strale af lys
og méler det reflekterede lys fra insekter, der flyver gennem strélen. Data registreres som et
tidssignal hvor forskellige karakteristika, heriblandt insektets vingeslagsfrekvens, kan findes som

en variation 1 signalet.

FaunaPhotonics har udviklet et optisk instrument til méling over kortere afstande, som bygger pé
méleprincipper fra entomologisk lidar. Denne “Volito” sensor maler og isolerer automatisk
insektobservationer fra data, og sender dem derefter til en platform i1 skyen via mobil netverk. Den
er sikker for gjnene, vandtaet og kan klare langvarig udsetning i felten uden overvagning. Selvom
den oprindeligt blev udviklet til overvdgning af skadedyr i afgreder, udger denne malemetode en

anvendelig teknologi til monitorering af insekter generelt uden at inteferere med insekterne.

Monitorering af biodiversitet er en kompleks udfordring, som kan indebere identifikation af et
stort antal insekter helt ned til sub-artsniveau. Skent dette umiddelbart kan forekomme
udfordrende med optisk instrumentering, sa afdekker dette PhD projekt muligheden for at udvikle

en “simpel” biodiversitetsindikator, tilsvarende artsrigdom eller Simpson’s biodiversitetsindex.

Denne athandling indeholder en spatial model for monitorering af honningbier med konventionel
entomologisk lidar, der viser en god overensstemmelse med manuelle observationer. Den
beskriver udviklingen af den nye “Volito” sensor og korrelerer antallet af méilte insekter med
antallet af insekter fanget i gule fangbakker. Den undersegger en deep learning tilgang til at finde
karakteristika fra det opsamlede data, forbedret fra tidligere modeller beskrevet i litteraturen. Til

sidst indeholder den to udkast til manuskripter der dekker de forste forseg péd at korrelere en



sensorbaseret diversitetsenhed med konventionelle overvidgningsmetoder i dyrkede marker i lowa,

USA, samt natur omrader i den sydlige del af Skandinavien.



General introduction

Insects play a crucial role in ecosystems as pollinators of wild plants and serve as food for larger
animals such as birds (1). They also have a direct impact on human life by acting as pollinators,
pests and pest control in agricultural systems and are common disease vectors (1-4). There is
concern that a decline in insect abundance and diversity can cause cascade effects across the entire
ecosystem at large scales (3). Recent reports of declining insect abundance and community health
have generated a lot of attention and worries both the public as well as decision makers and

academics (5).

The decline in insect abundance and diversity is mainly considered an effect of changes in
agricultural practices and landscapes (6-8), primarily from increased use of insecticide, habitat
losses from agricultural intensification and reduced grazing areas. However, there are few studies
that have evaluated insect abundance across long temporal and large spatial scales since such

studies are resource intensive with conventional methods (9).

Conventional insect diversity monitoring is done by trapping where insects are attracted by visual
or olfactory cues or intercepted in flight or sweep netting (10). Collected specimen are stored in
alcohol for later identification by microscope. As each trap has a different bias, a plethora of traps
and monitoring methods are needed to get the unbiased insect diversity (10,11). An alternative,
less intrusive method is to conduct the identification directly in flight in the field by Pollard walks
or using a stationary observer (12). However, this limits the taxonomic accuracy and is only viable
for larger species. Pest monitoring is, in general, easier than insect diversity monitoring as it is
focused on a few key species which often can be counted directly in traps or on plants directly in

the field (13).

As conventional methods either provide a very low temporal resolution, as with traps, or single
“snapshots”, as with manual observation, they are difficult to apply at large scale and over long
timeframes. While field visits are time consuming, the taxonomic identification of collected
specimen is in general the most resource intensive part (14,15). Recent advances in DNA based
methods could reduce these costs but the methods are not fully developed and are currently unable
to provide species specific abundance information (15,16). In order to get accurate information on
insect communities and study the effects of efforts to reverse the current biodiversity declines,

there is a need for novel methods (15).
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Automated insect monitoring

Automated insect monitoring methods can provide insect data without repeated human visits to
the field sites (15). This could help researchers study the cause and effect of biodiversity promoting
or pest supressing efforts as well as long-term trends, displacement effects and diel patterns, that

are hard to capture with current methodology (17,18).

Automated insect traps for pest monitoring are commercially available today (19,20). Such traps
typically use a pheromone lure to attract specific species or taxonomic groups and collected insects
are identified by an optical system, such as a camera or photodiode sensor, in the trap (21,22).
While the lure increases the catch and limits the range of species that enters the trap, it makes the

method unsuitable for insect diversity monitoring.

Insect communities can also be monitored by remote sensing methods using optics, acoustics or
radar. Camera systems can be used outside of traps but are limited by resolution and depth of focus
(23,24). To allow identification to species level, high quality images are needed which either
requires expensive components, or limited sampling volumes (25). Successful implementations
typically focus the cameras on a small area, such as a flower, or an attractant such as a bright
plastic piece, or an illuminated sheet (26,27). It is difficult to capture sufficiently high-quality
images of free flying insects using machine vision systems, but some systems aimed at general

insect monitoring are reported to be in development (28).

Acoustic methods have shown promising results, but are in general limited to audible insects, such
as crickets, bees and mosquitoes (29-31). However, acoustic monitoring methods can also be
deployed in solid mediums such as trees or grain silos (32-34). An advantage is that they can be
used in citizen science, as any smartphone can serve as a recorder albeit with low range. As the
acoustic methods primarily use the wingbeat frequency as an indicator, the specificity is limited

as the wingbeat frequency of many insect species are overlapping (35-38).

Wingbeat frequencies can also be recorded by radar or lidar, as the projection, or optical cross
section, of insect changes with the wing movement. Such methods can complement the wingbeat
frequency with additional features, based on the optical properties of the insects (35,37-39). In
general such instrumentation have large monitoring volumes and can record up to hundreds of
thousands of insect observations in a single day (17). However, the cost and technical skill required

to operate these instruments is currently high.
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Radar and lidar entomology

Insects were observed as noise in radar data already in 1947 (40). At the time referred to as
“angels”, these observations were shortly confirmed to be reflections from flying insects (41).
Dedicated entomological radar systems were developed in 1969 (42) and since then entomological
radars have become common (43). Entomological radars typically emit radiation in the 2 — 110
GHZ range (corresponding to wavelengths of 10 cm down to 3 mm) as pulses and record the back-
scattered signal from insects traversing the emitted beam. To avoid scatter from terrain and
vegetation, they are typically aimed above the horizon and are able to record insects flying at
kilometre ranges (43). By wobbling the beam direction, the flight direction and speed can be
estimated and entomological radars are frequently used to monitor migratory insects such as moths
(43,44). Recent advantages have also allowed existing networks of atmospheric doppler radars to

be used for biodiversity monitoring of birds as well as insects (45,46).

Interference from terrain and vegetation can be reduced by using harmonic radar. By attaching
harmonic reflectors to individual insects, flight and foraging behaviour can be recorded at local
level (43,47,48). However, the technology can only be applied to insects sufficiently large to carry
the reflector, such as bees. The beam divergence, and thus the ground scatter, can also be reduced
by reducing the emitted wavelength (25). In comparison, entomological lidar operates on the same
principles as entomological radar but rather than emitting radar waves, it uses laser beams, which

can stay collimated at astronomical distances (49).

Development of the entomological lidar

Optical insect monitoring was demonstrated already in 1949 in Copenhagen, where a searchlight
was used to monitor the nocturnal flight behaviour of moths (43,50) but entomological lidar was
first demonstrated in 2005 to monitor bees trained to find land mines (51). By replacing the emitted
radiation with a collimated pulsed laser beam, the instrument could operate near ground level and

by panning the beam, provide a heat map of insect activity (and landmines).

Many current entomological lidar implementations use diode lasers and photodiode or CMOS
detectors rather than solid state lasers and photo multiplier tubes (52). This has reduced instrument
cost and increased availability (53). Operating on a similar measurement principle but on a very

short range, trap-based systems have further reduced cost (54-57).
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Current state of the art in lidar entomology

Entomological lidar systems have proven the capability to operate for multiple months and record
long running dataset of insect activity at millisecond resolution (18). This in turns allows the study
of seasonal trends and variation. Entomological lidar have also been used to study momentary
changes such as the effect on insect activity from a solar eclipse (17). Such studies would be very
resource intensive or even impossible to perform with conventional methods. However, they still
have limited ability to provide species specific information (58). Multiple efforts to develop
species specific classification systems have been pursued (37,38,59). For practical reasons,
labelled data has been collected with close range laboratory equipment in controlled conditions,

rather than long range lidars.

Some groups have used time signals as input to neural networks and applied sophisticated deep
learning methods (60). This approach has the advantage of reducing the number of feature
extraction algorithms needed but it can be difficult to transfer the methodology to other systems.
Other groups have used numerically estimated physical features and compared more simple
classification algorithms (38). An advantage of using physical, optical properties is that they can
potentially be measured from tethered or even dead museum specimens and shared between

different instruments (51,61-63).

A common limitation of previous lidar work has been the low number of species included in the
studies and the limited ability to transfer classification models to the field. While it is impressive
to distinguish a handful of species in controlled conditions, Insecta is one of the most species rich

orders in the animal kingdom and there is a high risk of false positives.

While it remains challenging to prove that entomological lidar and similar systems can provide
species specific measurements in the field, clustering efforts have been made. Recent studies have
demonstrated the ability to cluster insects from two physical features into 4 distinct groups (64).
While these groups were manually identified from features in the data, they showed different diel
and seasonal activity distributions. Other groups used hierarchical clustering to identify the top 20
clusters in entomological lidar data collected over one week of measurements (17). Using the same
clustering algorithm, another study used the elbow method to quantify the number of clusters

found in a 500 m transect (65).
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Light-matter interactions

Entomological lidar and similar optical sensors depend on the physical interaction between light
and a target insect. Photons are emitted from an instrument, interact with an insect, and are
captured by a detector. As these interactions are well described elsewhere in the literature
(53,66,67), only a brief cover of the main light-matter interactions relevant for lidar entomology

is provided below.

Scattering

Scattering causes photons to change propagation direction. This happen when light encounters
inhomogeneity/interfaces of refractive indices in the tissue (according to Fressnell’s equations).
Insects are largely transparent in the near infrared and in general, forward scattering is the
dominating interaction (63,68). However, for practical reasons, entomological lidar has the emitter
and detector placed in close proximity and are therefore limited to detecting back-scattered light
(53). Back-scattered light can be either due to single scatter interactions, where the photons bounce
on the surface of the insects, or multiple scattering interactions where the photons bounce multiple

times inside the insect.

Polarization

Light waves are composed of waves in both the electric and magnetic fields. The direction of the
electric field component gives the polarization and light waves can contain multiple polarizations
at once. For linearly polarized light, the electric field component of the wave oscillates in a single

direction, whereas its direction is random for unpolarized light.

As light interacts with matter, there is a chance that it changes polarization. As the number of
interactions increases, the probability of losing the original polarization increases. The rate of de-
polarization can be described by a depolarization probability of the target tissue (69). We can, for
example, assume that a shiny beetle reflects less de-polarized light than a furry bumblebee. I have
not used polarization sensitive instrumentation in this work, but the polarization ratio of insects is
commonly used by other groups as a feature for species classification (51,68,70). It has also been
shown that the degree of linear polarization can be used to distinguish gravid, and non-gravid

mosquitoes (71).
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Absorption

In addition to scattering, light interacting with a medium can be absorbed and converted to thermal
energy. The absorption rate varies with the wavelength and molecular composition of the insects
but of primary interest for lidar entomologists is the melanin absorption spectra (72,73). By using

multiple wavelengths with different absorption rates, the melanisation of the target insects can be

estimated (39,74).

Interference

When multiple light waves with different phases interact, they produce a new wave which is the
superposition of the original waves. If light travels through a thin film, such as an insect wing, it
interferes with itself as it bounces back and forth inside the element. Depending on the wavelength
of the light, and the thickness of the element, the interference can be either constructive or
destructive. By comparing the reflections of multiple wavelengths, the thickness of the element
can be estimated. This has recently allowed precise measurements of insect wing thickness (61—

63,74-76).
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Machine learning and ecology

Automated insect monitoring systems depend on automated analysis of the captured data. As the
availability of machine learning models has increased in recent years, it has also become a more
common tool in ecology and entomology (15,77,78). In short, machine learning models can be

sorted into two categories, supervised and unsupervised models as illustrated in Figure 1.

Supervised learning Unsupervised learning
~

Classification ) Clustering

Noise classifier Biodiversity estimates
Species classification

/ J

N I
Regression Dimensionality reduction

Quantity predictions Feature extraction

/

Figure 1: A schematic overview of machine learning algorithms and their applications in this

thesis. Regression has not been used extensively in this work.

Supervised methods primarily include classification, where a model classifies a piece of data into
two or more separate classes, and regression, where a model aims to predict a quantity, such as the
weight or flight direction from the data. Classification models include segmentation models where
an object such as an insect is found within, and isolated from, a larger image. Common for all
supervised methods is that they require a labelled reference dataset, where each data point has a
“true” reference value. The model is then trained to make predictions on the training data and its

performance is judged on the agreement between predictions and the “true” reference values.

There are multiple metrics available for quantifying the performance of classification and
regression models. A common method for classifiers is the sum of the number of correctly
predicted targets (True positives) and others (True negatives) divided by the total size of the
dataset. However, by investigating the distribution of wrongly classified targets (False negatives)

and others (False positives), further insight can be gained. Supervised models can become very
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powerful but collecting the labelled dataset is in general a time-consuming effort that requires

human subject matter experts.

In ecology and particular entomology, machine learning classifiers are used for taxonomic
identification, both on collected microscopy images from collected samples and in camera traps
(20,77,79). Classifiers are able to combine multiple images of the same insect, recorded from
different angles or with a different focus to improve the accuracy (79,80). Classifiers can also be
used to identify the collected pollen from bees to identify food networks, recognize birds from
audio recordings etc. (77). They are available to the public in smartphone apps, capable of
identifying animals or plants from photos (81). In general, supervised models are limited by the
availability of high quality labelled data. The amount of data needed to train a model increases

with number of model parameters, i.e. its complexity.

Unsupervised methods are also affected by the amount of training data, but it does not require
manual labelling. Both supervised models and clustering methods require pre-processing to unify
the data before their application. A common pre-processing step is the dimensionality reduction,
where the amount of data for each data point is unified and reduced to simplify the model. The
variational auto encoder described in paper III is a typical example of an unsupervised,
dimensionality reducing model. The clustering methods described in paper IV and V are also

unsupervised methods.

Unsupervised methods are frequently used with DNA based methods, especially in fields such as
mycology and soil science, where a large part of the genome is unmapped. By clustering the data,
researchers can find common traits between clusters and find new patterns (16,82). While
unsupervised methods do not require labelled training data, they in general have tuneable
parameters that affects the number of clusters generated, or the similarity metric used compare the

datapoints.
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Intensity (16-bit)

Understanding entomological lidar data

In my thesis, I have mainly worked with FaunaPhotonics” “Volito” sensor. It is a close range, dual
band entomological lidar system described in detail in paper II. An example of a insect recording

from Volito sensor is shown in figure 2.
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Figure 2: Example of an insect recording from the Volito sensor, adapted from paper V.

a) Signal is recorded in time and the body, wing and specular wing magnitudes are estimated. b)
Fourier transformation of the total backscatter and body envelope. The fundamental frequency is
indicated in blue. The first three overtones are indicated in orange. The Volito has a bandwidth
of 0-5 kHz. In this case the second harmonic is stronger than the fundamental. The reason for the

limited magnitudes of the harmonics is that each one is convoluted by the body envelope (66,67).

In general, we assume that an insect recording has three frequency components in each wavelength
band:

e A body signal

e A diffuse wing signal

e A specular wing signal

The contribution from the insect body is the result of single and multiple scattering events in the
body of the insect. As this signal does not have any oscillatory properties, it can be estimated as
the lower envelope of the signal. The diffuse wing signal is the result of scattering from scaled
wings or veins in clear winged insects. As the projection, and thus the optical cross section, of the
wings varies with their movement, the diffuse wing signal is seen as a periodic contribution on top

of the body signal.
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The specular wing signal, visible as rapid flashes in intensity with the same periodicity as the
diffuse wing signal but with much shorter duration. This signal is caused by specular reflections
when clear wings surface normal intercepts the midpoint between light source and detector. A

mathematical formulation of these signals are provided as an appendix to paper V.

From the body, diffuse and specular wing signal components, we can estimate number of physical
features. Of special relevance is the wingbeat frequency since it is closely linked to the anatomy
of each species. While temperature dependent, it is relatively consistent within species and
comparatively well described in literature (37,83—87). There is, however, a large overlap between
species as most insects have wingbeat frequencies between 25 and 1000 Hz. The average spread

within the 42 species used in paper V was 20 Hz £10 % of the mean.

Classifying and clustering entomological lidar data

Extracted features in lidar data are caused by morphological and behavioural properties of insects
and are in general consistent within species. Therefore, we can use such features for species
classification and biodiversity estimates. However, as any object that traverses the beam will
generate a signal, including rain, leaves, dust, etc. insect observations need to be isolated from
recordings generated by other objects. The first step in this noise filtering is often to remove all
observations without identifiable wingbeat patterns. In my work, I have also used a neural network,

trained on manually labelled observations, to further remove non insect observations.

There are many different approaches to develop a classifier to identify species from others and a
fundamental task for all of them is to draw boundaries in the feature space, minimizing the overlap
between target and negative classes. In contrast, the task of estimating biodiversity is less well

defined, not only for entomological lidar but also in conventional ecology.
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One approach is to mimic the conventional monitoring method of identifying all observations to
species level. This would allow for any conventional metric to be applied to optically recorded
data. However, the task of collecting data and training classifiers for every species in the world
seems unrealistic in the near and even in the far future. As a starting point, the taxonomic level
could be to identify broad groups, such as family, or even order. However, even this remains

challenging.

Another approach is to focus on indicator species. Indicator species are commonly used in
conventional monitoring methods (88). However, it is an approach that is poorly suited for
entomological lidar where any rare species is outweighed by a large factor by common species

such as flies and there is a high risk that false positives will influence the results.

Alternatively, one can use biodiversity estimates such as species richness, or the Shannon and
Simpson indices. These estimates are based on the number of unique species or registrations and
their relative proportions but do not include the genetic relationship between the species. It is
therefore not necessary to identify which species are present, just how many of each kind. This is
the main approach I have pursued in this work, since it allows a flexible statistical approach to

clustering, while it is conceptually similar to methods used with conventional monitoring methods.

A final approach, not explored in this thesis, is to abstain from direct translations of methods used
with conventional monitoring methods. Rather than classifying or clustering individual
observations, the general distribution of features can be quantified. For example, the variance of
recorded wingbeat frequencies could be used as a metric. Such a metric would not have any
obvious equivalents in conventional monitoring. More complex metrics such as entropy
measurements across a multi-dimensional feature space is also likely to perform well. However, I
have avoided these approaches due to time limitations. Additionally, their lack of analogies to
conventional monitoring might render them more difficult to get adopted by the scientific and

general community.
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Research objectives

The goal of this project was to develop and evaluate the use of automated optical sensors in insect
monitoring. While entomological lidars have been reported in multiple countries, there has been
few comparative studies, relating their results to conventional ground truthed data. Most of the
previous work have been focused on shorter measurement campaigns rather than extended,

seasonal, monitoring schemes.

The first task focused on the possibility to use distributed sensors to quantify insect biodiversity.
We aimed to focus on a simple metric such as richness, and the related Shannon and Simpson’s
biodiversity indices. The goal was to develop a tool for researchers and ecologists, enabling them
to answer relatively simple questions such as “does a flower strip increase the biodiversity in a
field or not?”, “at what time of the year is the biodiversity at its peak?”, “does the application of
insecticide reduce the biodiversity within a field?” and in the future, more complex questions such
as “is this action an effective way to increase biodiversity on a landscape level”? These goals have

been pursued in paper I1I-V.

The second task focused more specifically on bee monitoring. Managed bees are important actors
in the agricultural landscape but there is concern that competition between managed honeybees
and wild bees is partly to blame for the decline of wild bee communities. The decline of native bee
communities has received a lot of attention from the public, which has engaged with bee hotels
and reserved meadow areas in private and public gardens. As honeybees and bumblebees are flight
active, relatively large insects that are commercially available and easy to manage, they were
deemed good targets for an initial, proof of concept classification algorithm. The goal was to
develop a honeybee counter which would be a useful tool for studying competition effect and

investigate foraging range and pollination strategies.”

This work has been pursued in paper I and in an additional experiment. In the latter, a honeybee
and bumblebee hive were separately installed in a large plant tunnel. A food source was placed in
the far end of the tunnel along with three Volito sensors, which recorded the bees as they flew
back and forth between the hive and the food source. To validate a future classifier, a field

experiment was conducted.
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Three different phacelia flower strips were selected in areas without any registred honeybee hives.
At each site, three beehives were installed in cages, allowing us to modify the honeybee access to
the flower strip. At 50, 100 and 150 m distance from the hives, along the flower strips, Volito
sensors were installed. The experiment ran over two weeks and the honeybee cages were opened
and closed every two days. The experiment was validated by manual observations, were all honey-
and bumblebees entering a 1 m? square in front of the sensor in a 10 min period was manually

counted by visual inspection. This data is still being treated.
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Paper I: Scheimpflug lidar range profiling of bee activity patterns and spatial

distribution

In this work, we used a long range entomological lidar to study the foraging behaviour of managed
honeybees in a white clover field. Commercial honeybees are frequently used for pollination of
fruit trees and vegetables as well as arable crops and while wild bees are less important in such
settings, they are essential for the pollination of wild plants. However, honeybees may also
contribute to declines of wild bee communities through competition and spread of diseases. To
reduce the impact of commercially deployed honeybees on the wild insect communities, we need
to study the temporal and spatial behaviour of both managed and wild bees. As such studies are
complicated to conduct with conventional monitoring methods, we evaluated the performance of

an entomological long range lidar.

The lidar monitored a 1 km long transect and passed close to a cluster of beehives at ca 180 m
distance. The insect activity was recorded over three days and the distribution of insects in the
field was mapped. In total 566 609 insect observations were recorded, and the spatial distribution
was separated into three groups, with two centred on the beehives. Using these distributions, the
temporal activity and foraging range was estimated. In addition to the lidar measurements, we
conducted ground truthing by performing transect walks. We also used hive scales to monitor the
weight change of the hives, from which the flight activity could be estimated. The measured

honeybee activity in the lidar was well correlated with both the transect walks and hive scales.

The study showed that by designing the measurements around a point source, or in the future, an
attractor such as a food source, behavioural studies can be conducted using long range
entomological lidar without the classification of individual insect observations. Additionally, some
insight into the three-dimensional distribution of honeybees was gained by altering the beam
height between a lower and a higher transect, which revealed a funnel like distribution around the

hives.

Relationship to state of the art

While the very first application of entomological lidar also focused on honeybee monitoring (51),
it has not been repeated since. The publication included the first attempt to use lidar to estimate
foraging ranges. Additionally, it is, to my knowledge the first-time insect abundance measures

from lidar were correlated with manual observations of honeybees.
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Paper II: Automating insect monitoring using unsupervised near-infrared sensors

This paper describes the development and deployment of FaunaPhotonics novel short range
sensor, later named “Volito” which was used in the following publications. While the long range
entomological lidars can provide a large number of observations, the field installation is
cumbersome and requires highly trained operators. Additionally, the instrumentation requires

close supervision due to its sensitive alignment and eye-safety risks.

To allow for continuous monitoring in remote areas, and repeated landscape studies, a smaller and
more robust sensor was needed. The Volito is a close range field monitoring device powered by
a solar panel and equipped with a cellular connection to allow remote monitoring and real time
data acquisition. The sensor automatically extracts insect observations from the raw data stream

and transmits these to a cloud database for further processing.

The Volito uses a dual band infrared LED array and the light is emitted in a wide angle to improve
eye safety and maximize the near field measurement volume. The effective measurement volume
varies with the size of the target but using a custom-built mapping robot, it was measured to
between 5 and 100 liters depending on the configuration of the sensor and the size of the target

insect.

Six sensors were deployed in an oilseed rape field over four weeks along with water traps to
evaluate the performance against conventional monitoring methods in commercial crops. The
water traps were emptied daily and the aggregated insect counts in sensors and traps were
comparable (Spearman rank correlation of 0.6). The main purpose of the paper was to describe the
sensor in detail, to have a common reference and allow further publications to refer to technical

details to this paper.

Relationship to state of the art

While entomological lidar has become increasingly common in recent years (65,89-93), they have
been cumbersome to deploy. This paper describes the first photonic sensor, measuring an open-air
volume, capable of autonomous long-term monitoring in the field. It includes the first
characterizing of the probe volume using a sphere dropping robot. It also covers the first long term
deployment and comparison between photonic sensors and yellow water traps in an agricultural

setting.
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Paper lll: Dynamic B-VAE for quantifying biodiversity by clustering optically
recorded insect signals

In this paper, we evaluated a deep learning approach to extract a low dimensional feature
representation of the insect observations to allow for later biodiversity clustering. A parameter
space becomes increasingly empty with increasing dimensions, commonly known as the “curse of
dimensionality”. Regardless of clustering method used, it is thus advantageous to represent your
data with as few features as possible, while still capturing sufficient information to allow for the

downstream tasks.

In entomological lidar, a low dimensional representation is typically constituted by estimated
physical features such as a wingbeat frequency, melanization, body wing ratio etc. Estimating
these features is a difficult and potentially error prone task where the algorithms are sensitive to
outliers. An alternative is to use the wingbeat frequency power spectra but in order to achieve a

sufficient spectral resolution, a comparatively large number bins are needed.

In this work, we developed a dynamic variational auto encoder (VAE) to automatically transform
a high dimensional frequency representation of the data into a two-dimensional and well
regularized feature space. As phylogenetic insect groups are clustered together, the approach was
deemed suitable for later richness estimations. f-VAE’s introduces a scaling term, B, to balance
the regularization and reconstruction losses. In this work, we introduced a dynamic self-adjustment
of B which greatly improved model stability and results. This approach made it possible to achieve
well regularized latent representation while also retaining high quality reconstructions. Unlabeled

data recorded in the field was used to train the model.

The performance of the model was based on the ability to cluster similar species together, using
the ARI and AMI score. This required labelled data and we used insect observations recorded one
species at the time in flight cages. The B-VAE was compared to alternative more simple methods,
including PCA and hierarchical clustering. The B-VAE achieved two to three times better results
than the conventional methods. To further improve the ability to cluster single species together,
we tested to include a small subset of labelled data in the training. In this experiment, an additional
loss term based on the intra and inter cluster distances between the labelled data points were added.

This yielded an improvement of ca 10% as compared to the fully unsupervised B-VAE.
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While exploratory, this work showed that phylogenetically similar species in general share similar
properties when recorded by entomological lidar. This verified fundamental assumption for future

richness estimations, regardless of method used for feature extraction, or richness estimation.

Relationship to state of the art

This publication describes the first application of a variational auto encoder on photonic insect
data. While regular auto encoders have previously been used for feature extraction before
classification. (94), they are unsuitable for unsupervised clustering due to their highly irregular
latent spaces. The paper show that using the proposed models, the results improve upon the
methods used in previous state of the art (65) by ca. 100 — 300%. Additionally, it introduces

dynamic scaling of the B-term which improved the results ca 80% over the regular VAE.
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Paper IV: Automating an insect biodiversity metric using distributed optical

sensors: an evaluation across Kansas, USA cropping systems

This manuscript describes the first experiment conducted to compare biodiversity estimates
between sensors and conventional methods. Financed and partly planned by General Mills, 20
fields covering 6 different crops and various regenerative farming practices were investigated. The
fields were sampled using sweep netting, Malaise traps and Volito sensors twice during the growth
season. Malaise traps were open for 24 hours and the sensors were active for three days each
sample period. Collected specimen were in general identified to species level. Additionally,

ecosystem indicators such as the predation rates were measured once per field.

The experiment suffered from some limitations. Firstly, sensors were installed close to the growing
crop, which generated large amounts of noise in the data. Secondly, the sampling was not done
simultaneously for all methods. It is therefore likely that weather effects influenced the data and
the measured insect abundance was uncorrelated across all methods. We used one third of the data
to optimize the hyperparameters of the DBSCAN clustering algorithm. The number of clusters,
and their relative distribution, generated by the algorithm was compared to the results from the

conventional measurements of species richness Shannon and Simpsons biodiversity indices.

Simpson and Shannons biodiversity indices were largely uncorrelated across all methods. Species
richness was weakly correlated between the two conventional methods (Spearman R: 0.36, p<0.05,
N=40). The correlations between the number of clusters generated by the algorithm and both
individual sampling methods were high (Spearman R: 0.48 and 0.52, p<0.05, N=40). The
correlation between the number of clusters generated by the algorithm and the combined richness
of the individual sampling methods was also high (Spearman R: 0.55, p<0.05, N=40) In this
project, I got involved after the experiment was completed. My task was to take over the data

analysis and write a first, technical draft of the manuscript.

Relationship to state of the art

This manuscript describes the first attempt to use photonic sensor for insect biodiversity
measurements by comparing the results to conventional monitoring methods. Previous work has
aimed to quantify richness in entomological lidar data but haven’t been ground truthed or
compared with conventional monitoring methods (65). This manuscript contains the first proof of

concept that photonic sensors can quantify insect diversity.
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Paper V: Photonic sensors for comparative insect abundance and diversity in
distinct habitats

The manuscript describes the development and testing of two different approaches to quantifying
species richness with photonic sensors. The models were developed and optimized on labelled
data, collected in flight cages during controlled conditions, and evaluated in the field. The field
tests included 5 different locations in southern Sweden and Denmark where sensors and Malaise
traps were deployed simultaneously from March to November. Traps were emptied weekly and

caught specimen were identified to family level. In total, 9503 insects were identified.

The labelled dataset used for development was composed of 42 species, recorded one species at
the time in flight cages. Using this library, we assembled arbitrary compositions of data with
known diversity. We developed two tests to evaluate the models. The first test quantified the
correlation between the number of clusters generated by the algorithms against the number of
species present in the data. The second tests investigated the number of clusters generated from

increasing number of observations from a single species.

We investigated the DBSCAN algorithm, also used in paper IV, as well as a hierarchal clustering
algorithm (HCA). The DBSCAN algorithm operated on a low dimensional feature representation
of the data while the HCA operated on the high dimensional wingbeat frequency power spectra.

A parameter sweep was done to optimize hyperparameters on the labelled data. The best
performing configurations were then tested on the data collected in the field. Both methods showed
good correlations with the Malaise trap data (Pearson R: 0.54, 0.67, p<0.05, N=40, for DBSCAN
and HCA respectively) but the relative sizes of the clusters were not well correlated with the

distribution of families in the traps.

Relationship to state of the art

This manuscript describes the first efforts to validate the biodiversity metrics achieved from
photonic sensors on a fully independent dataset. It uses a unique collection of labelled insect data,
spanning 42 species to develop the methodology. This is a 400% increase over the largest
previously reported database of photonic insect signals (59,95). Additionally, it covers the first
long term comparison between photonic sensors and Malaise traps for both abundance and

diversity.
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Conclusions and perspectives for further research

This project has aimed to develop a proof of concept for the use of entomological lidar in
entomological and ecological studies. To tackle the decline of insect diversity and abundance,
novel monitoring methods are needed. While the insight gained by regular field visits by skilled
experts cannot be replaced by machines, the automated methods can complement the conventional

monitoring methods and provide data in real time as shown in paper II, IV and V.

At the start of the project, there was a handful of entomological lidars available globally and they
in general required technical experts to set up and utilize. This project included the very first
installation of FaunaPhotonics “Volito” sensor. At the end of this PhD project, FaunaPhotonics
has deployed hundreds of sensors across in Europe and America. The cost is still high compared
to conventional equipment and access for researchers to the technology is still limited but the

methodology is gaining traction.

The ability to accurately identify single observations to species level is still limited and difficult
to validate in the field. The experiment with honeybees in flower strips aimed to collect a ground
truthed-dataset for classifier development. Four persons working in the field for two weeks yielded
ca 400 manually observed ten-minute time periods. This work is not ready for inclusion in this
thesis, but it illustrates the work necessary to validate the performance of a single classifier. While
scaling to more species will be a challenge, I believe “just” an automated bee classifier would be

a great asset for ecologists worldwide.

This PhD project yielded the first validated proof-of-concept of biodiversity monitoring using
photonic sensors, but a lot of work remains. I have investigated two clustering algorithms but there
are many approaches available. Future work could combine the deep learning feature extraction
from paper III with the validation approach developed in paper V. Additionally, more sites with

where the species richness and abundance are more uncorrelated should be investigated.

Although we have not developed a new golden standard for biodiversity monitoring with
automated sensors yet, or a high performing bee classifier, I do believe this project collected the
data necessary for this future work. The tools and concepts explored in this work are transferrable
to both the acoustic and radar domains. A big advantage of the automated methods is the ability to

scale, and I hope we will see large regional networks of live biodiversity sensors in the future.
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Abstract

Background: Recent declines of honeybees and simplifications of wild bee communities, at least partly attributed
to changes of agricultural landscapes, have worried both the public and the scientific community. To understand
how wild and managed bees respond to landscape structure it is essential to investigate their spatial use of foraging
habitats. However, such studies are challenging since the foraging behaviour of bees differs between species and can
be highly dynamic. Consequently, the necessary data collection is laborious using conventional methods and there is
a need for novel methods that allow for automated and continuous monitoring of bees. In this work, we deployed an
entomological lidar in a homogenous white clover seed crop and profiled the activity of honeybees and other ambi-
ent insects in relation to a cluster of beehives.

Results: In total, 566,609 insect observations were recorded by the lidar. The total measured range distribution was
separated into three groups, out of which two were centered around the beehives and considered to be honeybees,
while the remaining group was considered to be wild insects. The validity of this model in separating honeybees from
wild insects was verified by the average wing modulation frequency spectra in the dominating range interval for each
group. The temporal variation in measured activity of the assumed honeybee observations was well correlated with
honeybee activity indirectly estimated using hive scales as well as directly observed using transect counts.

Additional insight regarding the three-dimensional distribution of bees close to the hive was provided by alternating
the beam between two heights, revealing a “funnel like” distribution around the beehives, widening with height.

Conclusions: We demonstrate how lidar can record very high numbers of insects during a short time period. In
this work, a spatial model, derived from the detection limit of the lidar and two Gaussian distributions of honeybees
centered around their hives was sufficient to reproduce the observations of honeybees and background insects.
This methodology can in the future provide valuable new information on how external factors influence pollination
services and foraging habitat selection and range of both managed bees and wild pollinators.

L Keywords: Lidar, Remote sensing, Entomology, Landscape ecology, Pollination, Honeybees

Background, motivation and aim

The decline of insect numbers in recent years has wor-
ried both researchers and the public [1]. Pollinators and
in particular bees and hoverflies provide essential ser-
vices in terms of pollination of wild plants [2] and crops

*Correspondence: kkgr@ign kudk [3]. Honeybees provide a large part of the pollination
Department of Geosciences and Natural Resource Management, £ b ild 1li 1 itativel
University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, of crops, but wild pollinators are also quantitatively
Denmark important crop pollinators [4] and are essential for
Full list of author information is available at the end of the article wild plant pollination [5]. Accordingly, recent declines
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of honeybees [6] and simplifications of wild bee com-
munities [7], has caused considerable concern [8]. The
decline of wild pollinators has been attributed to a mul-
titude of factors, such as landscape simplification caus-
ing loss of foraging and nesting habitat, increased use
of pesticides, spread of diseases and potentially also
direct competition with managed pollinators [8, 9]. The
decline of managed bees is instead mostly related to
socio-economic factors, including lack of profitability
of bee keeping [10], which may, however, be related to
landscape structure [11].

To generate a mechanistic understanding of how both
wild pollinators and honeybees respond to landscape
change and to monitor the pollination services they pro-
vide, it is essential to investigate their spatial use of forag-
ing habitats. Bees are central place foragers, that have to
find food for their offspring in the vicinity of their nests
[12, 13]. For wild bees, a major reason for their decline is
thought to be a loss of a continuous forage supply across
the season and sufficiently close to the nest [14]. How-
ever, since bee species differ in their foraging ranges, the
consequences of landscape simplification may be species
dependent [15-17]. Similarly, the benefit of managing
honeybees may depend on the forage landscape sur-
rounding hives [11], with consequences for the interest
of bee keepers to manage hives for honey production.
Finally, honeybees and wild pollinators may to a smaller
or larger extent share flower resources,, suggesting that
they may compete [18, 19]. The scope and consequence
of competition may depend on their foraging ranges [20],
for example whether or not wide-ranging species such
as honeybees are able to outcompete less mobile spe-
cies in simplified landscapes [21]. Knowledge about the
use of foraging habitat and mobility of bees is, therefore,
essential when designing mitigation measures to coun-
teract ongoing pollinator declines, e.g., to safeguard crop
pollination.

Although knowledge of habitat selection and forag-
ing ranges of bees is essential, there is a lack of informa-
tion on how it varies between species, landscape types
and over time. The major reason for this is that studies
of habitat use and foraging movements are challeng-
ing. For example, their foraging may show spatio-tem-
poral dynamics [22-24] that can differ between species
[25, 26], resulting in a requirement of extensive data to
describe their use of foraging habitat. Conventional
methods to determine habitat use, such as pan-traps, fail
to produce fine time-resolved data and may result in bias
because of bees being attracted to the traps [27]. Other
methods, such as Pollard walks, require considerable
resources and may produce data that are so scarce that
they need to be pooled over space or time for analyses
[28]. Hence, there is a need for methods that allow for
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time-continuous monitoring of bees and can accurately
resolve different taxonomic groups.

Detection of insects with radar was demonstrated as
early as 1949 [28] and entomological use of radar has
since been considerably refined [29, 30]. It has in par-
ticular been applied to monitor large insects, such as
moths and locust, migrating at heights of hundreds of
meters. Using existing weather radar infrastructure, large
amounts of data can be made accessible for radar ento-
mology [31, 32]. The monitoring of foraging insects close
over the ground is challenged by ground clutter noise but
harmonic radar systems [33, 34], where a nonlinear diode
is glued to the insects, can track individual insects at low
altitudes [35]. However, the technology is limited to mon-
itoring insects strong enough to carry the antenna and is
unsuitable for monitoring large numbers of insects.

Inspired by progress in entomological radar and
early entomological lidar [36, 37], lidar entomology has
evolved [38] and overcomes many of the challenges for
remote monitoring of insects near the ground. Lasers and
the shorter wavelengths used in lidar allow for increased
sensitivity and superior beam control in terms of collima-
tion and side lobes. This makes it possible to use lidar in
cluttered environments, e.g., embedded in forest vegeta-
tion [39], or just above ground in agricultural fields [40,
41]. In recent years, it has been used in several applica-
tions due to its capability of recording large number of
observations in short time [40, 42, 43]. Lidars can provide
sufficient statistics of insect activity within minutes and
the retrieval of modulation properties provide some dis-
crimination between groups, although not yet to species
level [43]. Lidar instrumentation has earlier been used to
monitor honeybees [44] but to date there are no studies
attempting to capture the whole foraging range through-
out the day.

To evaluate the feasibility to monitor honeybee activ-
ity separately from the activity of other insects, we set up
an entomological Scheimpflug lidar [45] to monitor the
honeybee activity in a pollinator-dependent crop, white
clover for seed production (Trifolium repens L.). In addi-
tion to the lidar measurements, the activity of honeybees
was measured using modified Pollard walks [46] and
hive scales, measuring the weight of the hives over time.
In this paper, we aim to show the ability to distinguish
between honeybee and general insect activity using a
spatial model rather than individual classification of each
insect observation.

Materials and methods

An entomological kHz lidar was used to monitor the
honeybee and insect activity in a 755 m transect over a
white clover field for seed production in Denmark on 4.
to 6. July 2017. The field contained 6 clusters with ca 20
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beehives each for pollination services, as shown in Fig. 1.
For ground truthing, Pollard walks and hive scales were
used to monitor the honeybee activity. The measure-
ments were carried out from 11:20 to 20:35 on 4 July,
from 08:50 to 20:15 on 5 July and 09:00-15:00 on 6 July
(local summertime).

Study site

The study site was a 300*1000 m white clover field
located on the island of Lolland, Denmark (54°46’ 15.7" N
11°36’ 25.5" E). This site was selected for its flatness. The
field was surrounded by hedges along the long sides and
a small deciduous forest in the far end (Fig. 1). Within
the field, there were two flower strips with a mix of lacy
phacelia (Phacelia tanacetifolia) and buckwheat (Fag-
opyrum esculentum) to attract and support insects. The
white clover crop was established with an even plant den-
sity resulting in 1331 flowerheads per m?* (average of six
samples 12.5x 50 cm). At the time of the experiment,
the white clover was in full bloom. On the eastern side,
a wheel track ran along the field. The surrounding area
contained agricultural fields and small forests.

Lidar instrumentation

The lidar instrument was purchased from Norsk Ele-
ktro Optikk AS, Norway. It resembles the ones earlier
described in [40, 47, 48]. Briefly, in this study, the light
from a 3 W 808 nm laser diode was expanded using a
beam expander with 500 mm focal length and 102 mm
aperture. The emitted light was focused on a neoprene
covered termination board at 755 m and a tree at 1000 m
distance (Fig. 1). The back-scattered light from insects
entering the beam was collected by a Newtonian tel-
escope with 200 mm aperture and 800 mm focal length.
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To reduce the amount of background light in the system,
the collected light was filtered by a 3 nm wide bandpass
filter. The filtered light was recorded by a 2048-pixel
(14 x 200 pum pixel size) silicon line scan camera mounted
according to the Scheimpflug principle at 45° angle. The
optical instrumentation was mounted on a tripod and
protected from weather by a 3 x3 m tent. Power was
supplied by a mains connection from a residential house
at the field border.

The laser beam was aimed ca. 2 m west of the south-
eastern beehive cluster ca 180 m along the beam (Fig. 1).
On 6 July, the height of the beam was alternated in height
between the termination plate and a tree at 1000 m every
15 min to profile the activity at two heights. The beam
height above ground was measured on site at 15 loca-
tions along the transect and varied from ca 0.5 m close
to the lidar to 2.5 m at the highest point for the lower
beam. These measurements where combined with open
source terrain data available from the Danish elevation
model [49] and a linear model was used to interpolate the
beam’s height above the terrain along the full transect.

Data processing

The lidar recorded 35 000, 16-bit exposures at 3.5 kHz
into a file of 10 s duration. The laser was synchronously
modulated with the 3.5 kHz sampling frequency such
that every second exposure was taken with the laser
turned off. Between each file, there is an average gap
of ~1 s due to data transfer which yields an average tem-
poral fill-factor of~90%. As in previous work [48], the
frames, recorded when the laser is off, are subtracted
from the frames recorded with the laser turned on
yielding synchronized lock-in detection. This detection
scheme allows the lidar to record insect echoes during
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Fig. 1 Schematic of the field and experiment layout. The lidar beam passed ca 2 m from the beehives, ca 1.5 m above the ground. Satellite image

755 m 1000 m
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daytime by removing the influence of background illu-
mination and yields a time-range map, as exemplified in
Fig. 2. Subsequently, the 10 s median intensity at each
pixel is subtracted to remove static signals from atmos-
pheric backscattering.

The Scheimpflug ranging principle is based on trian-
gulation and thus the pixel number corresponds tangen-
tially to the range [50-54]. Insect observations, as the
one shown in Fig. 2b, were automatically extracted from
the raw data using a slightly adapted version of the algo-
rithm described in detail in [48]. An insect observation
is defined as a sequence of above-threshold signals pro-
duced when an insect transits the beam. Each observa-
tion thus consists of a single insect trajectory through
the beam. In total over 3 days, 566 609 individual insect
observations were recorded by the lidar during a total
measurement time of 23 h and 15 min.

Ground truthing

Two 45 m modified Pollard walks were conducted every
hour at two different transects ca 150 m from the bee-
hives, as shown in Fig. 1 [46]. The first was a 100 cm wide
area between two wheel tracks for field operations in
the white clover. The second was a 150 cm wide flower
strip with phacelia and buckwheat. The transect walks
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Fig. 2 a Lidar raw data example. The time-range map reveals a large
number of insect observations by the beehives at 180 m. At the

top of the image, the static echo from the termination is visible as a
continuous line at 755 m. The signal intensity over range is shown in
the vertical plot to the left with maximum, median and interquartile
range (IQR) signals in orange, blue and green. Likewise, the signal
over time (up to 700 m) is shown in the horizontal plot at the bottom.
b Cut out showing an insect observation, where the wingbeats are

visible as vertical stripes
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were conducted by various operators at the site, in total,
5 different persons, counting all honey- and bumblebees
foraging, resting or flying between the wheel tracks or
within the flower strip. Due to a limited number of bum-
blebees observed (<50 in total), we only used honeybee
counts in the further analyses. On average, ca 40 bees
were observed by each observer and Pollard walk and in
total, 5730 honeybee observations were made.

Two of the beehives were remotely monitored by the
beekeeper and the weight was logged every second hour.
The change in weight over the course of the day is deter-
mined by the number of bees in the hive as well as the
amount of collected pollen and nectar. We assume that
all bees are inside the hives at midnight, thus represent-
ing the total weight of bees and the hive, W,,,. By linearly
interpolating the change in hive weight from midnight to
midnight, we can then, for every two hours, subtract the
measured “hive weight’, Wy, which is removed from
each weight measurement:

Wgee = Wiot — WHive (1)

whereWp,. represents the lost weight of the bees in the
hive when they are out foraging, assumed to be directly
correlated to the number of bees in the hive and, there-
fore, negatively correlated to the flight activity. This
weight loss will of course also be affected by the amount
of pollen and nectar collected and consumed between
each 2-h sample, this is ignored in our model.

Weather data was collected by a small weather station
with 30-min resolution monitoring temperature, humid-
ity, air pressure, wind speed and wind direction. In gen-
eral, the weather was stable with temperatures between
15 and 25 degrees Celsius, varying sun and cloud cover-
age and low winds during the entire measurement period.

Measurement results and data analysis

The distribution of insect recordings over time and range
is shown in Fig. 3. Half of the observations were recorded
within 11 m of the beehives. The maximum activity
recorded by the lidar was reached between 14:45 and
15:00 with a total of 10 807 insect observations along the
whole transect and 26 insect observations per meter and
minute.

The measured insect activity over range during the
peak activity is plotted in Fig. 4. From the gathered lidar
data, we hypothesized that the spatial distribution of
insect activity can be explained by three types of obser-
vations: hive activity, due to honeybees flying around
near the hives, honeybees foraging within the field and
background activity from wild insects. The activity from
male drones is neglected in this model, since they gen-
erally only make up less than 10% of the total popula-
tion in a beehive [55, 56]. Drones can aggregate in drone
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congregation areas (DCAs), but these generally occurs at
higher altitudes than we’ve monitored in this study [57].
To quantify the honeybee and wild insect activity we
used a spatial model to decompose the observed range
distribution into these three components. In simple
terms: insect distributions centered around the beehives
are assumed to be either clustering, or foraging bees. This
is modelled as

(r,£) = Ny (r,£) + Npp (1, £) + Niiwe (1 0) ©

where N, is the number of wild insects, Ny, is the number
of foraging honeybees and N, is the hive activity from
honeybees located near the hives.

The distribution of wild insects is defined as a negative
exponential function:

Ny (7, £) = Now (®)r*®?,35 < r < 755 (3)

where r is the range from the lidar, and « is a nega-
tive parameter which depends on the optical proper-
ties of the targets. This reciprocal distribution is caused
by the reduced sensitivity of the lidar with range and
the expected measured result from insects distributed
homogenously in the field [54].

The hive activity and foraging honeybees are modelled
as Gaussian distributions, N, and Nfo, centered around
the beehive cluster:

_ r=re@)?

R(t)% (4)

N (r, t) = Nopp (t)e

where Ny, is the maximum number of observations, r, is
the centre position and R is the width of the curve.

The model in Egs. (2)—(4) has 8 free parameters and
was fitted to aggregated range distributions with a bin
width of 2 m, yielding 360 datapoints from 35 to 755 m.
using Scipy’s optimization package [58]. The model was
fitted to 15 min subsets of the collected insect observa-
tions and had an average adjusted r-squared correlation
coefficient of 0.96 with a standard deviation of 0.026.

The foraging distribution (shown in purple in Fig. 4)
includes both flights to and from foraging sites as well
as actual foraging flights. The width of the foraging dis-
tribution describes the foraging range from the beehives
and has an average full width half maximum of 153 m
throughout the full measurement period, with a standard
deviation of 50 m.

All insect observations were split into three groups,
matching the regions, where N,,, N, or N, dominated the
model as illustrated in Fig. 4. To investigate the assump-
tion that these groups consist of different insect spe-
cies, we estimated the modulation powers of a sample of
insects selected in the dominating range interval of each
group by the Welch method [59]. In Fig. 5, the median
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power spectra from 500 random observations recorded
in r,, r, and ry, is presented. We see that both honeybee
distributions have a strong peak around 180-220 Hz
which fits well with the expected wingbeat frequency for
honeybees from literature [60—62]. Wild insects show a
different distribution with lower and more varied wing-
beat frequencies than the clustered and foraging bees.
We only counted honeybees and bumble bees during
the Pollard walks but many other small insects can be
expected to be active in the field.

Fitting the spatial model to all data, the number of wild
insects, clustering and foraging bees can be estimated
for the full measurement period. The result is plotted
together with the ground truthing results in Fig. 6. The
lidar was shut down for ca 20 min due to computer prob-
lems on 4 July around 11:00 and thus, some data points
are missing in Fig. 6. The lidar data from 6 July is shown
separately in Fig. 7.

In Fig. 6a, b, we see that the hive activity and foraging
bees show a strong daily pattern, where activity rises

during the morning, reaches peak activity around 14:00
both days, slightly after the solar noon at 13:18 [63] and
decreases in the afternoon. In contrast, the wild insect
activity shows a more consistent activity throughout
the day, and even increases throughout the entire sec-
ond day.

The lidar measurements of bee activity show good cor-
relation with the reference measurements (Table 1). The
correlation between the Pollard walk counts and hive
scale measurements were calculated by linearly interpo-
lating between the two closest sample points of the hive
scales to each Pollard walk. The correlation between the
Pollard walks and the lidar was calculated by interpolat-
ing the between the two closest 15 min recording inter-
vals to each Pollard walk. Since the lidar was alternated
between a higher and lower transect during the third
day, it gradually became un-aligned and recorded fewer
and fewer observations in each timeslot. Lidar data from
6 July is, therefore, not comparable to the two previous
days or used in the correlation calculations.
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The transect walks by the wheel track show a slightly
better correlation with hive and lidar measurements than
the flower path, possibly because the honeybees were
easier to spot in the low clover crop than in the flower
strip. The lidar shows slightly better correlation with the
loss in hive weights than with the Pollard walk observa-
tions. This is also shown in Fig. 8.

48

Analyzing lidar data from the third day when the beam
was altered between two transects, we find ~68% more
bees in the lower transect than in the upper. The bees
observed near the beehives in the upper transect are also
more dispersed, as shown in Fig. 7a, b. The average wing-
beat frequency spectra in the lower and, respectively,
upper transect are shown in Fig. 7c. By fitting a spectral
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model from [64], the fundamental frequency in the lower
and, respectively, upper transect can be estimated. With
an explanation grade for the model of >98%, the funda-
mental wingbeat frequency was calculated to 179.6 Hz
with in the lower transect and 191.5 Hz in the upper
transect. Confidence intervals were 178.8 Hz to 180.4 Hz
and 191 Hz to 192 Hz, respectively.

Discussion

In this study, we have separated hive activity and forag-
ing bees from wild insects. The measured activity is cor-
related with alternative measures of activity obtained by

hive scales and Pollard walks. The average foraging dis-
tance is estimated and the insect distribution close to the
hives is profiled by multiplexing the height of the beam.
The large abundance of honeybees in this experimental
setup made it possible to assume that the vast majority
of insects centered around the beehives were due to hive
activity or foraging honeybees. While there were sev-
eral beehive clusters in the field, the selected cluster was
relatively isolated from the others and we could assume
that insects showing a different spatial distribution were
other insects. This made it possible to calculate the hon-
eybee activity and foraging range without individually
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Table 1 Relationships (Pearson correlation coefficient R, p value p and number of time intervals used N) between alternative
measures of honeybee activity

Pollard walk counts, wheel Pollard walk counts, flower Wiee loss Wiee loss
track path hive 1 hive 2
Pollard walk counts, R:0.811
flower path p:5.1 %107
N: 26
Wy, l0SS R:0.846 R:0638
hive 1 p:1.08 % 107° p:843 %107
N: 32 N: 32
Wigo 0SS R:0.874 R:0.832 R:0.821
hive 2 P:6.76x 107" p:3.69x 107° p:2.30 % 1071
N: 32 N: 32 N: 38
Lidar bee counts R:0.607 R:0.526 R:0.725 R:0.777
(Nye+Np) p:1.65%x 1073 p:829x 1073 p:861x107° p:7.00%x 1077
N: 24 N: 24 N: 29 N: 29
R: 0.569, p: 2.5e-05 R: 0.745, p: 2.1e-11
Datapoints: 48 a) Datapoints: 58 )
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Fig. 8 Measured honeybee activity from the lidar is correlated with the observations from the transect walks (a). The correlation is even stronger
between the lidar and the hive weights (b). The interpretation could be that the lidar and hive scales measure all flight activity, whereas the Pollard
walks only measure bees foraging in part of the field

classifying each observation. This simplification was
validated by the frequency spectra shown in Fig. 5. The
drone activity was ignored as they only make up a rela-
tively small fraction of the individuals in a beehive.

The lidar, beehive scales and manual transect walks
all show good agreement on the honeybee activity
(Table 1). However, using the beehive scales to monitor
activity is based on the approximation that the weight
is linearly changing by a constant rate from midnight
to midnight. This is an assumption; the weight of the
hives depends on the feed brought into the hive, the
feed eaten and the weight of the bee population within
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the hive. The lidar measurements are more strongly
correlated with the hive scales than the Pollard tran-
sects. One interpretation is that the hive scales and
lidar measure all flight activity, while the Pollard tran-
sects mainly record flower visits and flights close to
the ground level. Alternatively, the Pollard counts are
prone to more random variation, caused by observa-
tions of shorter time duration, smaller spatial scale cov-
ered and bee detectability. In addition, both the lidar
and the hive scales are more strongly correlated with
the activity in the wheel track than in the flower strip.
This could indicate that the bees from the monitored
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height, close to the ground, while returning bees fly along a higher path. In this study, the full-width-half-maximum (FWHM) of the foraging range

Max flight
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hive were mainly foraging in the nearby white clover, or
that the honeybees were more difficult to count in the
high growing flower strip.

By modulating the beam between a lower and higher
path, we profiled the honeybee activity at two heights.
The fewer and more dispersed insects in the upper beam
seems to indicate a “funnel like” distribution of bees over
the beehives, widening with height, as shown in Fig. 7a, b.
Orientation flights of new workers have been described
as a spiral widening with height and could contribute to
this distribution [65]. However, the number of orienta-
tion flights is expected to be low compared to the num-
ber of foraging flights. In addition, the insects observed
in the upper beam had 7% higher wingbeat frequency, as
can be seen in Fig. 7c. If returning bees carrying nectar
and pollen have a higher wingbeat frequency, the results
indicate a scenario, where bees leave the hives flying close
to the ground for foraging. Once fully loaded, ca 150 m
from the hive, they return to the hive on a higher trajec-
tory, as illustrated in Fig. 9. However, a recent study based
on a limited number of measurements failed to find a
correlation between weight load and wingbeat frequency
[61]. Other work on bumble bees show that payload ini-
tially affect flight pitch angle and that the wing beat fre-
quency is only increased in extreme cases [66]. Wingbeat
frequency increases with temperature, and since the air is
expected to be warmer near the ground, a thermal differ-
ence between the beams is unlikely to be the cause.

A few previous experiments used a “scanning” beam to
map insect activity in three dimensional space [67], but to
our knowledge this is the first time this is combined with
automated algorithms for individual event extraction on
a large number of observations. In this work, the beam
was moved manually and only vertically but the logical
progression would be to alternate the beam horizontally
over more transects and automate the movement. One
could also employ a 2D detector chip in combination
with a laser sheet [68]. This would allow a 2D model of
the foraging range within the field. We wish to explore
this in future studies. Although this experiment only cov-
ered total of ~ 23 h of recordings, the high number of col-
lected recordings allows statistical analysis of temporal
changes with 15 min resolution. This is to the best of our
knowledge not possible with any other insect monitoring
method.

In this study, the range distribution of the foraging bees
had an average full width half maximum of ~ 150 m. This
can be compared to studies in the literature which finds
that foraging ranges vary from 45 to 6000 m, with aver-
age foraging distances typically around 600 m to 800 m
depending on colony size, foraging resources and time of
year, with shorter distances in early summer [69, 70]. In
this field, the hives were placed in the middle of a food
source which has been shown to result in shorter forag-
ing distances [23]. However, as discussed in Fig. 4, the
sensitivity of the lidar decreases with range due to the
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optical configuration. Therefore, the minimum detect-
able target size decreases with range, and in addition, the
beam’s elevation over the crop is also varying along the
transect. This makes it hard to quantitatively compare the
activity at different distances [23]. A future more com-
plex parameterization model could take these parameters
into account as discussed in [54] and investigate inhomo-
geneous distributions of wild insects, pollinator competi-
tion and displacement of wild pollinators.

Outlook

Since the height of the beam strongly influences the
number of detected observations, it is challenging for
lidar entomologists to compare insect activity levels at
different locations. Regardless, the instrumentation can
be a vital tool to investigate the behavior of bees and wild
insects. In this study, a simple spatial model was relied on
to discriminate target types and provide quantitative esti-
mates of their relative occurrence. As characterization of
the scattering properties of individual insects develops,
discrimination at the level of individual transit observa-
tions may become possible [71-73].

While instrumentation used in this study is commer-
cially available, it currently requires skilled technicians
for alignment and operations. As the entomological lidar
community is growing and research groups are active in
several countries and continents, there are good pros-
pects for the methodology becoming accessible for ento-
mologists and ecologists in general.

Conclusions

We deployed an entomological lidar in a homogenous
flowering white clover field and profiled the honey-
bee activity around a cluster of beehives over time. By
decomposing the observations into hive activity, forag-
ing honeybees and wild insects the number of honey-
bees engaged in flight activities could be estimated and
showed good correlation with estimates from hive scales
and Pollard walks. In addition to counting the number
of active bees, average foraging distance was estimated.
In addition, the three-dimensional distribution of hon-
eybees around the hives was investigated by moving the
beam between an upper and lower height.

This work has shown the ability to record very high
number of insects during a short time period, which
allows the study of insect activity with a very high tem-
poral resolution. We propose that lidar monitoring can
change pollinator research in the future by providing val-
uable new information on how external factors influence
pollinator activity.
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Automating insect monitoring
using unsupervised near-infrared
sensors

Klas Rydhmer%2*¢, Emily Bick3, Laurence Still*, Alfred Strand?, Rubens Luciano?,
Salena Helmreich?, Brittany D. Beck?, Christoffer Grennel, Ludvig Malmros?, Knud Poulsen?,
Frederik Elbaek?, Mikkel Brydegaard®*>¢, Jesper Lemmich® & Thomas Nikolajsen®

Insect monitoring is critical to improve our understanding and ability to preserve and restore
biodiversity, sustainably produce crops, and reduce vectors of human and livestock disease.
Conventional monitoring methods of trapping and identification are time consuming and thus
expensive. Automation would significantly improve the state of the art. Here, we present a network
of distributed wireless sensors that moves the field towards automation by recording backscattered
near-infrared modulation signatures from insects. The instrument is a compact sensor based on dual-
wavelength infrared light emitting diodes and is capable of unsupervised, autonomous long-term
insect monitoring over weather and seasons. The sensor records the backscattered light at kHz pace
from each insect transiting the measurement volume. Insect observations are automatically extracted
and transmitted with environmental metadata over cellular connection to a cloud-based database.
The recorded features include wing beat harmonics, melanisation and flight direction. To validate
the sensor’s capabilities, we tested the correlation between daily insect counts from an oil seed rape
field measured with six yellow water traps and six sensors during a 4-week period. A comparison of
the methods found a Spearman’s rank correlation coefficient of 0.61 and a p-value =0.0065, with

the sensors recording approximately 19 times more insect observations and demonstrating a larger
temporal dynamic than conventional yellow water trap monitoring.

Insecta is the most speciose class of terrestrial fauna' and the majority of the world’s biodiversity is composed
of this class®. In epidemiological and agricultural ecosystems, insects serve as both beneficial organisms*> and
economic pests®’. Data on insects can support biodiversity conservation®®, human health protection'® and
increased food production''.

Insects are monitored via established sampling methods including trapping, sweep netting, and portable
aspiration'?!4. These methods are imperfect resulting in biases towards size'>"'” and stage'®. Additionally, con-
ventional methods may be time-consuming, costly and prone to human error such as person-to-person vari-
ation in sampling execution'*-2!. New methods, like insect anesthetization sampling®, are being implemented
to minimize these biases. Regardless of sampling method, insect identification is time consuming and requires
specialized training.

In order to reduce the cost of insect monitoring and identification, automation of insect trapping*~*" and
identification?’ ! has been developed. While these methods could greatly improve monitoring via traps, they
are unsuitable for monitoring a general insect population since trap designs and baits are generally biased in
regard to species®*.

Automation of insect monitoring without traps could reduce species bias of conventional methods and human
error, thus greatly improving the state of the art. Insect identification has been automated as early as 1973 using
wingbeat frequency®*-%, and today remote insect sensing includes acoustic detection®’, radar observations®-*’
and lidar*~*. Acoustic methods work best with a solid medium?**, though acoustic monitoring of free fly-
ing insects has been demonstrated*-*’. While radar technologies have much larger monitoring range'®4%48->0,
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Figure 1. Situational photo of the sensor. As insects fly into the measurement volume, the backscattered
light is recorded by the receiver. Insect observations are automatically extracted and transmitted along with
environmental data, location, and situational photos, to the cloud via a GSM connection. Using a solar panel
and battery, the sensor is capable of unsupervised, long-term monitoring in remote locations.

they are unsuitable for monitoring small insects, or insects around vegetation, such as a crop canopy. Optical
methods were early used as to overcome many of these limitations® ~**. Today, lidar can be used to record a large
number of observations in a long transect®*-® and distinguish between species groups by wingbeat frequency
(WBF)*>*. However, lidar equipment requires a trained operator and requires constant supervision due to eye
safety restrictions.

Here we present an autonomous near-infrared sensor for monitoring of flying insects in the field. The sensor
aims to minimize human biases, be usable by non-technical personnel, and be capable of unsupervised long-
term monitoring. Compared to existing entomological lidars, it has a smaller measurement volume but is eye
safe and weatherproof.

Instrument design

The sensor is weatherproof, compact, and intended for field use by non-technicians. Like entomological lidar
instrumentation, an air volume is illuminated, and light backscattered from insects entering the measurement
volume is recorded by a high-speed photodetector. In addition, the instrument is equipped with a satellite naviga-
tion device, a camera for situational photos, and an environmental sensor monitoring temperature, humidity, and
light intensity. An internal Global System for Mobile Communications (GSM) modem allows for communica-
tion and data transfer. The sensor can be powered by any 12 V power supply, including utility power, batteries,
or solar power, and has a maximum power consumption of 30 W during monitoring. A photo of the sensor is
shown in Fig. 1 and an internal block diagram is described in Fig. 2.

Emitter. The emitter module consists of a rectangular array of LEDs emitting two spectral bands at 808 nm
and 980 nm with total output of 1.6 W and 1.7 W, respectively. The two wavelengths are modulated in a square
wave at 118.8 kHz and 79.2 kHz respectively. The LEDs are mounted in a checkerboard pattern to achieve a
homogeneous beam profile. The total area of the checkerboard, and thus the beam size at the source, is 82 cm?.
The light emitted from each diode is partially collimated by an asymmetrical lens and expands with 20° and 4°
diverging angles (6g). The full width half maximum (FWHM) of the emitted light is 26 nm for the 808 nm band
and 47 nm for the 970 band.

Receiver. The backscattered light from insects entering the overlap between the beam and the receiver’s field
of view (FoV) is collected by a near infrared coated aspheric lens (60 mm focal length, ¢ 76.2 mm aperture)
onto a silicon quadrant photodiode (QPD) with a total area of 1 cm?. The receiver is focused at 1 m and has a 4°
divergence angle (6r). Quadrant detection of insects allow for basic range and size estimation®*®' and can dif-
ferentiate ascending and descending insects as well as migrating insects with tailwind or host- or scent-seeking
insects with headwind.
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Figure 2. General measurement principle. Light is emitted and collimated from the LED board at 808 nm

and 980 nm and modulated at different carrier frequencies. The backscattered light from an insect entering

the measurement volume is collected by a lens and focused onto a QPD. The four QPD-quadrants are
independently amplified by a TIA and sampled. The digital data streams are sent to the FPGA, where 8 digital
lock-in amplifiers individually amplify each wavelength in the digital signal processing (DSP) unit. The resulting
8-channel data stream is analyzed by the MCU which extracts events from the data stream. The events can then
be stored locally or sent via GSM modem to a cloud database. Created using Power Point 365.

Signal processing. Each quadrant of the QPD is amplified by a dedicated trans-impedance amplifier (TIA)
with a bandwidth of 10 Hz-1 MHz and a gain of 0.75 V/pA around 100 kHz. The amplified signals are sampled
by four analogue-digital converters (ADC) with 14-bit output at a rate of 6 MHz. The digital data-streams
are sent into a field-programmable gate array (FPGA) where eight digital lock-in amplifiers are implemented
in VHDL (Very High-Speed Integrated Circuit Hardware Description Language). This allows the two spectral
bands to be recorded independently on each quadrant, resulting in an 8-channel data stream. The data is then
filtered by a low-pass filter with a cut-off at 5 kHz and digitally sampled to a 20 kHz, 16-bit data stream before it
is sent to a microcontroller unit (MCU) for event extraction and further processing (Fig. 3). Since insects gener-
ally have wing beat frequencies below 1 kHz, a 5 kHz cutoft allows us to resolve a minimum of five harmonics
in the frequency spectra. The increase in bit depth is possible due to the oversampling of the unfiltered signal.

Measurement volume. The measurement volume is defined by the overlap between the beam and the FoV.
Its size and shape can be adjusted by changing the angle (0s) between the emitter and receiver.

The beam, FoV and the measurement volume have been mapped by a custom-built 3-axis robot covering a
volume of 2 mx 1.5 m x 1.5 m. The robot is equipped with a photodetector, an illumination source, and a sphere
dropping mechanism. The photo-detector and illumination source are used to map the emitted beam and FoV
respectively while sphere dropping mechanism allow us to verify the signal intensity from a standard object at
any point in the volume. Using these methods, the signal response from an arbitrary target can be estimated.
The volumes were measured at 20 planes along the Z axis, from 30 to 1655 mm, each plane consisting of 56 x 56
measurement points in a 12 mm grid. The calculated signals were then compared to actual measurement values
by dropping black and white spheres. The white spheres were assumed to be 100% reflective and the black spheres
had a 5% reflectivity.

The measurement volume properties for targets with various optical cross sections (OCS) at different angles
are shown in Table 1. The size of the measurement volume is dependent on the minimum acceptable sensitivity,
which is related to the noise in the instrument. In the following results, the edge of the volume is defined as the
limit where the signal to noise ratio (SNR) is larger than 10 for typical noise levels in a field installation. The
signal to noise ratio is defined as the maximum value of the recorded signal divided by the peak-to-peak noise.
The volumes for a 10 mm? target are shown in Fig. 4.

Data processing. Automated event extraction. The sensor records intervals of 10 min (4 quadrants, 2
spectral bands, 16 bit and 20 kHz sample rate after demux of carrier frequency) and automatically extracts in-
sect observations from each recording. The event extraction is inspired by earlier work but modified to reduce
computational load****>62, The event extraction algorithm was developed during prior experiments in various
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Figure 3. Frequency diagram. The wide beam yields long insect transit times, and the corresponding frequency
resolution is high enough to accurately capture most species. The frequency response curve (red) is flat in the
wingbeat frequency region and the effect of the LP filter at 5 kHz is indicated. The 5 kHz bandwidth allows a
minimum of 4 harmonic overtones to be recorded even for mosquitoes with very high wingbeat frequencies.

5 28.6 >1650 8 52 100
12.5 315 130 7 27 87
20 32.3 95 5 16 70

Table 1. Measurement volume parameters at different angles for different target OCS. The target OCS values
correspond roughly to a small midge, a small beetle, and a honeybee.

conditions. In simple terms, it aims to quantify the noise level and subsequently multiply it with a signal-to-noise
factor to yield a threshold. All events that exceed this threshold are then extracted.

In the chosen implementation, the signal in each channel was downsampled to 2 kHz and a rolling median
boxcar filter with a width of 2 s and 50% overlap was used to estimate the quasi-static baselines (the baselines can
change with environmental conditions, static objects in the beam etc.). A 2 s window width makes the median
estimation insensitive to insect observations, which has an average transit time of ca 100 ms. The standard devia-
tion of the baseline was measured with an identical filter, applied to all datapoints below the median. The selection
of values below the median reduces the influence of rare events, such as insects, on the noise level estimation.

The interpolated median signals were removed from the full resolution data and we employed a Boolean
condition for insect detection when the time series exceed ten times the estimated standard deviation. A high
threshold factor rejected weak observations which could yield unreliable results in the downstream feature
extraction. The Boolean time series were eroded by 500 ps and dilated by 30 ms. The erosion rejects short spikes,
outliers and insect signals to short to be interpreted and the dilation includes insect observation flanks. The
logical OR function was applied across all QPD-quadrants and spectral channels. Extracted observations are
transmitted to a cloud database along with metadata such as baseline and noise level, via GSM connection or
stored locally until a connection is available. An example of the event extraction process is shown in Fig. 5, and
the insect event is shown in greater detail in Fig. 6.

Each insect observation, along with its associated timestamp and device identifier, is automatically uploaded
to the cloud via one-way AMQP (Advanced Message Queuing Protocol), with unique connections for each
device. Virtual computing is then used to further process, analyze, and securely store data for further use and
aggregation.

Feature extraction/data interpretation. The QPD segments collect backscattered light from different
sections of the measurement volume. For a single object passing through the measurement volume, the signal
strength within each QPD-quadrant is related to the object’s OCS as well as its position. As the OCS varies with
each wingbeat, the wingbeat frequency can be resolved. Many methods have been used to extract the wingbeat
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Figure 4. Measured FoV, beam, and measurement volume for the three angles. Each volume is mapped at 20
planes along the Z axis and each plane consists of 56 x 56 measurement points with 12 mm spacing. For the FoV
and beam, all measurement points below 2% of the maximum value are excluded. For the measurement volume
all points with a SNR <10 for a 10 mm? target are excluded. A low angle yields a longer and larger, but less
sensitive, measurement volume. The FoV is identical in all configurations.
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Figure 5. An example of the event extraction process in a single channel for visibility. (a) The data, in the

810 nm band of a single QPD segment after the rolling median has been removed. The part of the signal above
the event threshold is marked in grey, and the final insect event after erosion and dilation of the binary map is
marked in green. (b) Intensity distribution of the data.
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Figure 6. Insect event example. (a) The 810 nm signal for a single insect event in of one of the QPD segments.
The insect wingbeats appear as undulating spikes. The minimum envelope of the signal is interpreted as the
insect body contribution to the signal. (b) The Welch spectral density of the event. The fundamental wingbeat
frequency and harmonics are seen in the event signal. This event has a fundamental wingbeat frequency of
160 Hz and an average body-to-wing ratio of 0.4.

frequency from insect observations®*-**

frequency domain, as shown in Fig. 6b.

In addition to the wingbeat frequency, the body and wing contribution can be measured from each time
signal which allows calculation of additional features such as body-to-wing ratio. Additional features can be
calculated by comparing the relative intensity of the body and wing signals in the two spectral bands. These bands
differentially index melanin absorption®~” and may yield some sensitivity to wing interference patterns®®5?,
although not enough to uniquely determine wing membrane thickness. Together these features can be used to
quantify the morphology of different insect groups and allow remote classification of insects according to order,
family, genus or species®>¢+67,

and most are based on identifying the fundamental frequency in the

Field validation

Methodology. The sensor was field-tested against a conventional insect monitoring method, yellow water
traps (22 cm diameter)*”!, in an organic oilseed rape (Brassica napus L.) field in the vicinity of Sore, Denmark
(55°29'04.3" N 11° 29’ 34.6" E). During a four-week period (04/22/20-05/22/20), insects were monitored with
six sensors and six yellow water traps. The water traps were filled with water and soap, immediately drowning
any insects landing in the trap. Sensors and traps were placed in a grid pattern, consisting of four linear transects
30 m from and perpendicular to the field’s southern-most edge. This is illustrated in Fig. 7. Each transect con-
sisted of three monitoring points (either sensors or traps) with 45 m spacing, and a separation of 22.5 m between
transects. The first and third transect consisted of sensors and the second and fourth were yellow water traps.
During the field study presented in this work, 05 was set to 20° in order to maximize the signal strength of small
targets at close range.

Fundamentally the two methods observe different insect behaviors. While the sensor looks at insects fly-
ing above the crop canopy, the yellow water traps look at insects that occur within it. Further confounding the
comparison, yellow is attractive to some insects®’. Therefore, some proportion of insects will be attracted to
the yellow water traps, resulting in overrepresentation of some species’>”*. However, water traps constitute the
standard practice for pest monitoring in oilseed rape for many species.

Data analysis. The water traps were emptied daily, except for Sundays and 7 additional days (3 sample days
inlate April and 4 days in mid May) where we were unable to empty the traps. Sensor data was recorded continu-
ously. All insects in the traps were collected, but to allow for a more direct comparison of methods, non-flying
insects and thrips found in water traps were excluded from further analysis.

The sensor data was aggregated according to the collection time of the water traps. Insects trapped during
Sundays were added to the following days count and the number of collected insects was normalized by the
number of trapping days. One day, April 30th, was excluded due to instrument malfunction. The average number
of recorded insect observations per sensor per day and per hour was calculated. The calculated numbers were
normalized by sensor uptime, which was on average 90% throughout the measurement period. Observations
during heavy rainfall and without any distinguishable wingbeat frequency, ca 1% of the observations, were
automatically removed from the data using a classification algorithm.
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Figure 7. Layout of sensors and traps on the field. Sensors and traps were placed in a grid pattern ca 30 m from
the field edges. The four north-south transects are separated by ca 22 m and consists of either sensors or water
traps, spaced by 45 m. Image data from Google Earth 2021, Aerodata International Survey Mapdata 2021.

Results

The insect activity recorded by the sensors and traps respectively are shown in Fig. 8. Insect counts from sensors
and traps cannot be directly equated due to differences in measurement subject (insect flights vs insect landings)
and non-homogeneous insect distribution; however, they serve to visualize similarities in gross changes in insect
activity over the sample period. The results demonstrate a significant correlation between the sensor and trap
results, specifically with a Spearman’s rank correlation coefficient of 0.61 and a p-value=0.00657*. Over the course
of the season, an average of 1122+242 (SE) insect observations per day were collected per sensor (excluding
downtime), compared to an average of 63 £ 6 (SE) insects caught per water trap per day over the same period.

Discussion

Here we present a sensor for automated unsupervised field monitoring of insect flight activity. The sensor illumi-
nates an air volume and records the backscattered light from insects that fly through the measurement volume.
Discrete insect observations are automatically extracted from the continuous raw data flow and transmitted
over a cellular connection to a database in the cloud. Field validation showed the number of recorded insect
observations correlates with the number of individual insects trapped by a conventional insect monitoring
method. Furthermore, the sensor recorded an order of magnitude more insects than the conventional method
over the same period.

The automation of insect monitoring has the potential to reduce monitoring bias, cost, and human labor,
potentially resulting in an increased ability to collect large quantities of biodiversity, public health, and economi-
cally relevant insect data. Additionally, the observations from the sensors were available in real time, whereas
emptying and counting insects from traps required a significant amount of labor. While this work was limited
to comparing total insect counts from the traps, it is possible for a skilled expert to identify these insects to the
sub-species level. This is an area were the traps currently have a strong advantage over this sensor and similar
instrumentation. Developing and evaluating species specific insect classification algorithms is therefore a major
focus. Significant work is still needed prior to field implementation to test possible use cases and limitations of
this system.

One of the most striking differences in monitoring methods is the day-to-day variability in the number of
data points collected (Fig. 7). While the yellow traps catch a similar number of insects each day, the difference
between low and high flight activity days were more visible in the sensor. Early analysis of the trap and sensor

Scientific Reports |

(2022) 12:2603 | https://doi.org/10.1038/s41598-022-06439-6 nature portfolio

62



www.nature.com/scientificreports/

No. of insects

No. of insects

10000 - 10
a) c) r

5000 -

per sensor

- 103

200
b)

- 102

No. of insects per sensor

100 A

a4 l “ * i““' 'i*j- " | — LSTQ, 10

10t 102
No. of insects per trap

per trap

Apr May May May

Figure 8. Sensor-trap comparison. (a) Average insect counts across sensors per day. Errorbars indicate the
standard deviation between the sensors. (b) Average insect count across yellow traps per day. Errorbars indicate
the standard deviation between the traps. (c) Sensor vs trap counts during days where both sensor and trap data
were available. The red line is the linear least square fit (LSTQ) with a Spearman correlation coefficient of 0.61.

data indicates that the peak recorded during May 7-11 is due to a pollen beetle (Brassicogethes aeneus) activity
spike. This will be the subject of further studies.

Another marked difference between the sensor and the water traps is the number of data points collected over
the same collection period. Each sensor observed ~ 19x more insect observations than insects collected in the
water trap. While in general the correlation between the two values is considered more relevant than the absolute
number, one advantage of a much higher observation is the ability to get statistically sound data aggregated with
very high temporal resolution. In this work, the data was aggregated to match the collection times of the traps but
it could easily be aggregated down to hourly activity. The higher temporal resolution and continuous monitoring
during unsociable hours allows for the comparatively easy and low-labor collection of data on insect circadian
rhythms, as well as direct weather interactions.

We hypothesize that the sensors observe different insect behaviors compared to conventional monitoring
methods since only airborne (flying or jumping) insects are recorded. Therefore, we did not expect a perfect cor-
relation between the sensors and the conventional methods. Sweep netting is likely the most similar monitoring
method since it also catches insects in flight above the crop. However, sweep netting, which also collects insects
on plants, occurs at a point measurement in time and is typically performed along a transect, rather than at a
fixed point in the field". Also, each trapping method is biased towards different insects, influencing catch'>"’.

Trapping methods, such as the water traps used in this study, monitor insects landing, walking, or jumping
to a specific point and do not record insects in flight. Also, each trapping method is biased towards different
insects, with the trap color influencing the trap catch®. It would therefore be beneficial to include multiple trap
types in the ground truthing in future work. Additionally, both the sensors and the conventional ground truthing
methods assume that the recorded insect activity in one specific point in the field is representative of the insect
activity in the near surroundings.

Although we do not fully understand in what manner, the sensor is also most likely biased towards report-
ing certain species groups. Most primarily, its only capable of recording airborne insects and unsuitable for
monitoring during rain. Insect vision is focused towards the visual or ultraviolet spectrum and not capable of
resolving infrared light and we believe the emitted beam has very little influence on insect behavior”®. However,
in a homogeneous landscape such as an agricultural field, any foreign object placed above the canopy could
serve as an attractant to insects. Finally, the size of the measurement volume varies with the OCS of the insects
and larger insects will be over-represented. To provide a complete picture of the insect population, this should
be considered. Along with species specific observations, this is an area where we expect significant progress.

Automated insect monitoring has the potential to facilitate pest prevention, public health studies and bio-
diversity monitoring. Compared to alternative methods, such as automated traps, the sensor described in this
paper comes at a higher cost per unit and with higher power requirements. Compared to previously described
entomological lidars, we record fewer observations, but with a longer transit time and higher sampling frequency.
We believe the advantage of entomological lidars, such as the sensor described in this paper, is the ability to
potentially monitor and discriminate between multiple species using a single instrument.

In further work we will explore the possibilities of unsupervised long-term monitoring of insect activity and
species recognition.
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Conclusions

In this work, we have introduced an unsupervised automated sensor for insect monitoring. The measurement
principle is similar to entomological lidar setups but is optimized for near-field measurements. This simplifies
the installation process and increases the robustness of the sensor, allowing it to be operable by non-technical
experts and enables long-term unsupervised monitoring.

The sensor automatically extracts insect events from the raw data and transmits these via a built-in modem
for further processing. From the recorded observations, features such as the wingbeat frequency, body-wing
ratio, and melanisation factor are computed and used to predict the insect classification down to species. Dur-
ing a 4-week deployment in an oilseed rape field, the detected flight activity was shown to be correlated with a
conventional monitoring method.

The capabilities, standardization, and scalability of this sensor-based method has the potential to improve
the state of the art in insect monitoring. To date, 119 similar units have been deployed in field and in 2021 the
cloud database encompassed > 18 million insect observations. The sensor can be used to explore areas such as
biodiversity assessment, insecticide resistance, and long-term monitoring of remote areas, facilitating research
studies currently difficult or impossible to conduct with conventional methods.
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ABSTRACT

While insects are the largest and most diverse group of terrestrial animals, constituting ca. 80% of all known
species, they are difficult to study due to their small size and similarity between species. Conventional moni-
toring techniques depend on time consuming trapping methods and tedious microscope-based work by skilled
experts in order to identify the caught insect specimen at species, or even family level. Researchers and policy
makers are in urgent need of a scalable monitoring tool in order to conserve biodiversity and secure human food
production due to the rapid decline in insect numbers.

Novel automated optical monitoring equipment can record tens of thousands of insect observations in a single
day and the ability to identify key targets at species level can be a vital tool for entomologists, biologists and
agronomists. Recent work has aimed for a broader analysis using unsupervised clustering as a proxy for con-
ventional biodiversity measures, such as species richness and species evenness, without actually identifying the
species of the detected target.

In order to improve upon existing insect clustering methods, we propose an adaptive variant of the variational
autoencoder (VAE) which is capable of clustering data by phylogenetic groups. The proposed dynamic -VAE
dynamically adapts the scaling of the reconstruction and regularization loss terms (f value) yielding useful latent
representations of the input data. We demonstrate the usefulness of the dynamic $-VAE on optically recorded
insect signals from regions of southern Scandinavia to cluster unlabelled targets into possible species. We also
demonstrate improved clustering performance in a semi-supervised setting using a small subset of labelled data.
These experimental results, in both unsupervised- and semi-supervised settings, with the dynamic f-VAE are
promising and, in the near future, can be deployed to monitor insects and conserve the rapidly declining insect
biodiversity.

1. Introduction

and health of the insect community across various biotopes (or habitats),
researchers, agronomists, policy makers and institutions are in need of

Insects make up the majority of all known animal species with ca. 1
million described species and an estimated 3-4 million yet to be
discovered (May, 1988; Stork, 2018). While insects are numerous and
found in almost all habitats, the total insect population is thought to be
shrinking at an alarming rate. An influential report recently reported a
70% loss of flying insect biomass in 30 years (Hallmann et al., 2017).
These losses have mainly been driven by changes in the agricultural
landscape, increased use of pesticides and the spread of disease, but the
exact reasons and consequences are still unknown (Potts et al., 2016;
Goulson et al., 2015). In order to accurately measure the biodiversity

insect monitoring capabilities from multiple areas, over long periods of
time.

Conventional insect biodiversity monitoring typically involves
various trapping methods, each with their own bias towards different
species, which makes it difficult to compare the results across studies
(Muirhead-Thompson, 2012). The collected insect specimens are further
identified under microscopes by highly trained experts. These methods
provide data with very high specificity but are time consuming and
expensive which severely limits the ability to collect data on a large
scale, or over extended time periods, with high spatial and temporal
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resolution.

In recent years, new technologies have been developed for insect
monitoring such as automated traps (Potamitis et al., 2014, 2017),
acoustic methods (Ganchev et al., 2007; Mankin et al., 2011) and optical
instruments such as the entomological lidar (Brydegaard, 2014; Genoud
et al., 2018; Jansson and Brydegaard, 2018; Shaw et al., 2005). In
general, these methods provide large amounts of data with a high
temporal resolution but with lower specificity compared to conventional
methods (Kirkeby et al., 2021; Fanioudakis et al., 2018; Potamitis et al.,
2017; Chen et al., 2014). The introduction of automated and continuous
monitoring methods has the potential to greatly improve biodiversity
monitoring and, consequently, conservation efforts. In order to utilize
the full potential of these new methods, large number of unlabelled
insect recordings need to be translated into a quantifiable biodiversity
index, comparable to conventional estimates.

In this work, we combine the rich data from lidar entomology with
the powerful capabilities of variational auto-encoders (VAEs) (Kingma
and Welling, 2014). A common trade-off that is difficult to achieve in
VAE:s is between its two loss components: reconstruction loss and reg-
ularization loss. Balancing these two components can yield useful
low-dimensional features (representations) of the input data which can
be further analyzed to perform clustering of the input data (Bengio et al.,
2013; Higgins et al., 2016). We introduce a dynamically changing
formulation of the scaling of the loss terms (/). The proposed  dynamics
takes instantaneous changes to the loss terms and the historical perfor-
mance during training into account to keep both the reconstruction and
regularization performance near their optimum.

The proposed dynamic p-VAE is trained on unlabelled insect re-
cordings collected using a novel optical insect sensor at several sites in
southern Scandinavia. We demonstrate its ability to successfully extract
features from input data into the regularized latent space, and to cluster
the data into an appropriate number of clusters. We experimentally
validate improvements compared to more conventional methods such as
the hierarchical clustering algorithm (HCA) (Brydegaard et al., 2020;
Kouakou et al., 2020) and principal component analysis (PCA). Addi-
tionally, we show that the introduction of a semi-supervised data set
further improves the clustering performance on the unlabelled data
when evaluated on known phylogenetic groups.

2. Background & related work
2.1. Lidar-entomology & clustering

Lidar entomology is an insect monitoring method where insects are
recorded as they enter an infrared laser beam which can sometimes
extend for kilometers. It might be the fastest way to record large
amounts of insect data, yielding up to several tens of thousands of
optically recorded insect signals per day (Brydegaard et al., 2020). This
data consists of time series, where the signal intensity varies with the
insect cross section and wing beats. As the wing-beat frequency (WBF)
varies between insects groups, it can to some degree be used to distin-
guish between species, alone or with other extracted features (Kirkeby
et al., 2021; Fanioudakis et al., 2018; Potamitis et al., 2017; Chen et al.,
2014; Gebru et al., 2018).

While the ability to identify a number of key species from automated
sensors would be greatly beneficial to the entomological community, it
is not sufficient to quantify the biodiversity. Instead, the total number of
species (species richness) and their relative distributions (species even-
ness) are the commonly used measurements. Previous efforts to derive
these numbers from a large number of optically recorded insect signals
have been made using HCA on the WBF power spectra (Brydegaard
et al., 2020; Kouakou et al., 2020). However, in order to cover a broad
range of frequencies with sufficient resolution, a high dimensional
feature space is required and the distance measures are non-trivial. For
reduced model complexity and improved computational and clustering
performance, a reduction of the parameter space is desired.
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In order to reduce the parameter space while retaining the necessary
information, various algorithms for extracting the WBF and other
physical properties from insect recordings have been proposed and used
(Kirkeby et al., 2021; Gebru et al., 2018; Qi et al., 2015; Jansson et al.,
2018; Li et al., 2020). Machine learning based methods for feature
extraction, such as auto-encoders (AE), have also been used to extract
additional features (Qi et al., 2015), and very recently, to cluster
acoustically recorded bird songs (Rowe et al., 2021). While an AE is able
to generate high quality features for classification, a known behaviour of
AE is the irregularity of the latent feature space where two similar data
inputs might end up with very different latent representations. This
makes the extracted features from an auto-encoder unsuitable for clus-
tering recordings of similar insect species and quantifying the diversity
of the recorded insects.

2.2. VAEs and p-annealing

Variational autoencoders (VAEs) consist of a regularized probabi-
listic encoder-decoder pair and are some of the most powerful repre-
sentation learning methods (Bengio et al., 2013; Kingma and Welling,
2014). They have seen broad applications in generative modelling and
unsupervised learning tasks.

Given unlabelled input data consisting of N samples with F features,
x € RMF the probabilistic encoder of a VAE maps the input to the
posterior density p(z|x) over the latent variable, z € RN*L, In practice,
L << N and the encoder neural network approximates the true posterior
density, p(z|x), with a multivariate Gaussian, gy(z|x) ~ N (4y, 62). The
decoder of a VAE reconstructs the input data from the latent variable
and is given by the density function p,(x|z). The encoder and decoder
neural networks are parameterised by 6 and ¢, respectively. The opti-
mization objective of a VAE consists of two competing terms and it can
be shown to be (Kingma and Welling, 2014)

Lyar = —Ey,[logp, (x[2)] + KL[ge(z[x)||p(2)] M
Lyar2Lie + Lics 2

The quality of the auto-encoded reconstructions is controlled by the
reconstruction loss L., which is the first term in Eq. (1). The encoder
density is regularized to match the prior over the latent variable, p(z) ~
N (0bf I), enforced by the regularization loss, L., which is the Kullback-
Leibler divergence (KLD) term in Eq. (1). At a high level, the regulari-
zation term controls the smoothness or the regularity of the latent space.
Well structured and smooth latent spaces can yield useful representa-
tions of the input data.

The trade-off between the two loss terms can have influence on the
performance of any VAE. A VAE where the reconstruction term domi-
nates might be able to reconstruct the input data well with a latent space
that might not be interesting for the downstream tasks (such as clus-
tering). To alleviate this, a simple trick of scaling the regularization term
L was used in Higgins et al. (2016) resulting in a modified objective:

Lsvag = Lrec + PLcg- 3)

Here the role of # > 0 is to balance the reconstruction- and regulariza-
tion losses. Typically, lower f values yield better reconstructions but a
less regularized latent space and less disentangled features. On the other
hand, higher  may lead to posterior collapse, where all reconstructions
are reduced to the average input and the KLD approaches zero. Various
methods have been proposed to overcome this instability in achieving a
reasonable trade-off between the loss terms. A common implementation
is f-annealing, where g is gradually increased from a very low value up
to a fixed point. While this solves the initial stability problems, the task
of finding the optimal value of § remains. Recently, it has been shown
that repeating the process with a cyclic # can lead to better performance
(Fu et al., 2019). However, when unchecked both implementations face
the risk of posterior collapse (vanishing KLD) once f enters a stationary
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phase.

More recently, several approaches have attempted to adapt  instead
of using a fixed or scheduled scaling (Shao et al., 2020, 2020; Asperti
and Trentin, 2020). In the controlVAE formulation in Shao et al. (2020),
rather than gradually increasing $ to a maximum value (annealing), it is
controlled with feedback from a non-linear proportional-integral (PI)
controller to keep the KLD at a desired level. This addresses the van-
ishing KLD problem but the users still have to set the desired value of the
KLD, which might not be straightforward for many applications.

3. Methods

The primary goal of this work is to obtain low-dimensional latent
representations suitable for clustering of the high-dimensional input
data. Specifically, the objective is to obtain latent space encodings of the
insect spectral data such that similar species of insects are positioned
close to each other. To this end, we propose to dynamically adapt, the
otherwise constant scaling factor, § of a standard $-VAE.

In our proposed dynamic -VAE formulation, the changes in recon-
struction and regularisation losses are monitored throughout the
training process; these changes are used to adapt the g value in each
epoch using a simple control algorithm. If either the reconstruction- or
regularization losses increase above a specific level of their historical
minimum then f is adjusted (either by increasing or decreasing) until a
new optimum is attained. This dynamic control of # maintains a steady
trade-off between the two loss terms while reducing the global loss
function by latching on to the historical minimum of the loss
components.

In the remainder of this section, we detail the dynamic g-VAE and
formulate a semi-supervised variant of the model using a new clustering
loss component.

3.1. Dynamic p-VAE

The key contribution in this work is an online, adaptive formulation
of the #-VAE using dynamic control of 8. This is achieved by varying f at
each epoch, based on the instantaneous changes in the reconstruction-
and regularization terms in Eq. (3), with an objective of not letting either
of the loss terms to dominate the overall model optimization. This results
in a trade-off between sufficiently good reconstructions and adequately
regularized latent space yielding representations of the input data that
are useful for the downstream task.

At any given epoch t the objective for the dynamic g-VAE is given by,
£ = L0+ pOLE, @
The dynamically controlled ) is formulated using the signum func-
tion', w[-1, given by

b
ﬂ(t) = ﬂ(til) _Z (1 - W[Areg} )(1 + W[Arec] + ACrec )
u )
+Z (l - W[ATCC} )(l + W[Areg] - Al:rec )
where
Arcc = 55;1 - W'min(ﬁl('::l)) (6)
Brg = £, = wamin(£V) %)

! The signum function, y[x] returns the sign of any real number s € R
+1 s>0
yls]=40 s=0
—1 s<0
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AL = y[£0 —will)] (L8 — wic)] ®
with hyperparameters [a,b,w;,w2,w3,w4] € R*. The notation (: t — 1) is
used to indicate all epochs up to (t-1) and (¢') is the epoch when S was
last changed. The terms associated with (: t — 1) provide a form of long
term memory of the previous local optima for each of the two loss terms.

The # dynamics in Eq. (5) can be divided into two regimes aimed at
optimizing reconstruction- and regularization terms corresponding to
increase- and decrease of f3, respectively.

3.1.1. Reconstruction regime (Bl)

The value of § is decreased due to the —b term in Eq. (5) when A is
positive; meaning the reconstruction loss is increasing compared to the
historical minimum reconstruction loss, according to Eq. (6). The g
decrease rule also checks if the regularization loss is decreasing
compared to the historical minimum with the term 1 — y[A.] in Eq. (5).

3.1.2. Regularization regime (1)

The increase in § happens due to the +a term in Eq. (5) when Apeg is
positive; meaning the regularization loss is increasing according to Eq.
(7). The increase rule checks if the reconstruction loss has decreased
compared to the historical minimum with the term 1 — y/[A.,] in Eq.
(5).

Additionally, AL, in Eq (8) nudges a change in j based on the last
update to B. This allows f to get out of plateaus of either stable recon-
struction or regularization regimes.

In Fig. 1, one instance of optimizing the dynamic f-VAE with the
objective in Eq. (4) is shown. The value of 8 increases until about epoch
700 at which it plateaus and decreases (Fig. 1, row 3). At epoch 2000, it
has finally stabilized. These changes are correlated with changes to L.,
and L, captured in the second row of Fig. 1, estimated according to Egs.

(5)-(8.
3.2. Semi-supervised clustering

Using a small subset of labelled data that optimizes a relevant loss
could steer learning of representations that are more expressive for the
downstream tasks under consideration. One approach to achieve this is
to introduce auxiliary tasks based on the labelled data, resulting in a
semi-supervised learning setup (Figueroa and Rivera, 2017).

Q 3
; = Lrec Ereg — £rec"'treg
24
= "
© X OGN - .
et e L hnad
€11 -
o
= T T T T T T
&1.5' i 'I_Mr YV y— Tt |
S 1.0 e = — L
< 0.5 A —— ALrec Drec = Aregy
1.0 1
0.5 A
— B
O'O- T T T T T T
0 1000 2000 3000 4000 5000
Epochs

Fig. 1. The evolution of # during training of an unsupervised dynamic $ VAE.
After a 25 epoch warm-up phase when g = 0, it is dynamically adjusted based
on AlLwc, Are and Apyg Thereby, L., and L., remain balanced without
increasing the total loss (Row 1) implying stable model convergence.
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As we are interested in clustering of insect species based on their
latent representation, we enforce clustering of a small subset of labelled
examples to improve the overall clustering. An additional loss term, L,
based on the auxiliary task is introduced to the model optimization:

L= ﬁrec + /}(I)ﬂreg + }/(t)ﬁc]s (9)

where y© is the scaling of the clustering loss component.

The clustering loss, L5, has two components to encourage intra-class
cohesion and inter-class repulsion. Intra-class cohesion is captured as
the sum of distance between all data points belonging to a particular
class and the corresponding cluster centroid location. Assuming K
clusters with centroids Z; € RE k = 1, ..., K and Ny cluster members with
class label k denoted 2, the intra-class cohesion distance is given by:

K
k=

Ny
de =YY d(z, 7). (10)

k=1 i=1

The inter-class repulsion distance is captured using the sum of all pair-
wise distances between the cluster centroids:

K
dp =YY d(7:,7) (11)
i=1

In both cases, d(-) is the Euclidean distance.

Finally, the clustering loss is computed as the ratio between the two
distances, which when minimized encourages smaller intra-class and
larger inter-class distances, given by

dc+e¢

‘Ccs: s
! dk+8

(12)

where ¢ is a constant used for numerical stability.
3.3. Training of dynamic -VAE

The final objective of the dynamic S-VAE with semi-supervision in
Eq. (9) has three components which are introduced during the training
in three successive stages:

1. Warm-up phase (f =0, y =0): In this phase, the model primarily
learns to reconstruct the input data similar to bottleneck
autoencoders.

2. Regularized phase (§ > 0, y = 0): In this phase, the dynamic control
of f sets in which smooths the learned latent space without deteri-
oration in the quality of reconstructions.

3. Semi-supervised phase (>0, y > 0): In this phase, the learned
latent space is steered to favour the downstream task of clustering.

4. Experiments & results

The main objective of the proposed dynamic $-VAE is to cluster
unlabelled insect spectra into plausible clusters that could correspond to
unique species. To evaluate the performance of the model, we use real
data collected from field instruments and compare the model’s perfor-
mance in different settings. Details of the data and experiments are
presented in this section.

4.1. Data collection & pre-processing

The insect data were recorded with a novel instrument from Fau-
naPhotonics, which uses a similar principle at close- and long ranges as
the methods described in (Kirkeby et al., 2021; Gebru et al., 2018;
Brydegaard et al., 2020; Brydegaard, 2014). In the current imple-
mentation, an air volume is illuminated with infrared light in two
spectral bands at 808 nm and 975 nm. The back-scatter of any object
passing through a 20 L volume within 1m of the sensor is recorded onto
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a photo diode quadrant detector. As insects fly past, the optical cross
section varies with their WBF. This yields a modulated time series,
sampled at 20 kHz with a bandwidth from 0 to 5 kHz. As signals from
any non-insect object passing through the volume are also recorded, a
CNN trained with manual labels was used to filter out insect recordings
from rain and dust etc. For simplicity, the multi spectral time series were
reduced to one dimension by calculating the average Welch power
spectra (Welch, 1967) over both spectral bands in F = 193 bins between
0 and 2 kHz. Finally, the data was log-transformed and individually
normalized by the maximum of each spectrum.

The unlabelled data were recorded from March to November 2020 in
various biotopes in the Oresund region in southern Scandinavia and
N =40, 000 insect recordings were randomly selected for the experi-
ments with F = 193 features after the WBF pre-processing.

Additionally, data encompassing 12 different species groups were
labelled one species at a time in closed cages in Copenhagen, Denmark.
From this data, 6000 insect recordings (15% of the unlabelled data)
were randomly selected and added to the labelled training set. For each
species group, this resulted in 500 labelled recordings to be used in the
semi-supervised mode. The average WBF spectra for each labelled spe-
cies group is shown in Fig. 2.

In order to validate the clustering ability of the different models, 8
out of the 12 labelled species were included in computing the clustering
loss, L in Eq. (11), in the semi-supervised setting. The remaining four
labelled species were used as test set for validating the clustering
accuracy.

4.2. Experimental set-up

The dynamic p-VAE was evaluated in unsupervised and semi-
supervised modes to obtain latent representations, which were clus-
tered using K-means (Lloyd, 1982). Their clustering performance was
compared with the baseline methods: PCA, Kernel-PCA, HCA using the
standard implementations in sklearn (Pedregosa et al., 2011) and a
conventional VAE on the same data. The encoder neural network gy(z|x)
consists of 9 fully connected layers, with rectified linear unit (ReLU)
activation (except for the last layer). The encoder predicts the mean and
the variance of the approximate posterior distribution. The decoder
neural network p,(x|z) is implemented with 10 fully connected layers
and ReLU activation (except the last layer, which has sigmoid activa-
tion). The VAE uses a bottleneck L = 2 to create the latent representa-
tion. The model layout was developed on a independent unlabelled
dataset recorded at a different location and was gradually expanded
until reconstructions were sufficiently good. In order to visualize the
latent representation, the size of the bottleneck of the model (latent
dimension) was limited to two. Details of the network architecture are
reported in Table 1.

Both the unsupervised and semi-supervised models were run five
times on random training and test splits. A random subset of 3000 re-
cordings from the dataset were used as the test set.

After each training run the latent representation of the unlabelled
test set was clustered using K-means method. The appropriate number of
clusters K were automatically selected by the maximum average
silhouette score (Rousseeuw, 1987) from a range of 5 — 50. As we expect
the unlabelled data to consist of at least 5 distinct species, we incorpo-
rate this as prior information in choosing the range of clusters. For
comparison, the data were also clustered into the same range of clusters
using PCA, Kernel-PCA (implemented with sigmoid kernels) and HCA
(implemented with complete linkage).

The final evaluation was done by comparing the automatically
identified clusters with the four labelled test species. The automatically
found clusters were compared with the labelled data using the adjusted
rand index (ARI) (Rand, 1971) and adjusted mutual (AMI) information
score (Vinh et al., 2010). These metrics are useful to compare clusters
obtained in unsupervised settings, as they are agnostic to labels and only
focus on the similarity between members within the clusters.
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Fig. 2. The median wing-beat frequency (WBF) spectra estimated from each labelled species in the input data, x; € RF. The shaded areas indicate the inter-quartile
range, between 25% and 75%. The mosquitoes (Culicidae spp.) have the highest WBF and the moths (Tortricidae spp. the lowest. The weevils, (Ceutorhynchus spp.)
have a large variation around their fundamental WBF. All recordings are log-transformed and individually normalized.

Table 1

Network architecture of the implemented dynamic -VAE showing the number of hidden units per layer (H) and the non-linear activation functions per layer in the

encoder and decoder parts of the network. (RL: Rectified Linear Unit. SG: Sigmoid.)

# 1 2 3 4 5 6 7 8 9 10

Enc H 193 128 128 64 32 16 8 4 2+2 -
’ Act. RL RL RL RL RL RL RL RL - -

Dec H 2 4 8 16 32 32 64 128 128 193
. Act. RL RL RL RL RL RL RL RL RL SG

4.3. Model parameters & hyperparameters

The dynamic -VAE has several tunable model parameters, as seen in
Egs. (3)-(8). These model parameters were tuned on an independent
dataset, collected with the identical instrumentation but at a different
location. The data had a similar distribution as the data used in this work
and we obtained: a = 0.2 and b= 0.05, w; = wy, = 1.2, w3 = 0.9 and
ws = 1.1. These parameters were found to be sufficiently robust on the
dataset used in this work without any fine-tuning.

All models were implemented in PyTorch (Paszke et al., 2019) and
trained for 5000 epochs using the Adam optimizer (Kingma et al., 2015)
with a learning rate of 10~3. The models were trained on Nvidia GTX
1050 graphics processing unit with 4 GB memory with a batch size of
256. A decision to adapt  was taken every fifth epoch to avoid random
fluctuations. The scaling of the clustering loss, 7, in the semi-supervised
mode was cycled between 0.01 and 0.2 every 100 epochs.

4.4. Results

The clustering performance on the labelled test set for the unsuper-
vised and semi-supervised instances of the dynamic f-VAE is presented
in Table 2.

The dynamic f-VAE performs better than the baselines in the ARI-
and AMI-scores which quantifies the intra-class cohesion and inter-class
separability. While HCA have been successfully used to identify groups

Table 2

Aggregated results from 5 repetitions of each method. The unsupervised model
performs better than the classical models and adding the labelled data further
improves clustering of unlabelled data. The median number of automatically
determined clusters (K) are also reported. (ARI and AMI scores: higher is better.

Models K ARI-score AMI-score

PCA 5 0.15 +0.02 0.21 +£0.01
K-PCA 5 0.17 +0.02 0.22 +0.01
HCA 16 0.11 + 0.06 0.21 £0.10
VAE 5 0.14 +0.09 0.20 £ 0.09
B-VAE 7 0.25 + 0.02 0.34 +0.03
p-VAE (semi-sup.) 6 0.28 + 0.05 0.37 £0.05

72

of similar insects by other groups previously (Brydegaard et al., 2020), it
has the lowest ARI score. With semi-supervision the dynamic S-VAE
further improves upon its unsupervised clustering scores, and the im-
provements compared to the conventional models are more pronounced.
The nonlinear kernel-PCA does not show any drastic improvements over
conventional PCA. The low dimensional representations of the test
species for each model are shown in Fig. 4. While the different species
form largely separable and homogeneous clusters in all methods, they
are relatively more compact in the semi-supervised implementation.

In the results presented in Table 2, the appropriate number of clus-
ters found in the unlabelled test set data is also reported. The number of
clusters, K, was automatically chosen to maximize the average silhou-
ette score (Rousseeuw, 1987).

An example of the latent representation from all 12 labelled species
groups by the unsupervised instance is shown in Fig. 3. All species
generate dense, but partly overlapping, clusters except the weevils
(Ceutorhynchus spp.), and to some degree the fruitflies (Drosophilidae
spp.) which form sparser clusters.

The latent space obtained by the semi-supervised f-VAE on the
unlabelled test set is shown in Fig. 6a. Using K = 15 the data is color
coded by cluster and the average spectra from each cluster is shown in
Fig. 6b.

5. Discussions

In this work, we introduced a dynamic $-VAE in order to achieve a
good trade-off between the reconstruction and regularization loss terms
by performing online adjustment of the $ term. The proposed  dynamics
result in useful latent representations for the downstream clustering
task. Our experiments demonstrate the ability of the model to map high-
dimensional insect data into a well regularized latent representation
where phylogentic groups are distinguishable.

5.1. Generalization of the f dynamics

The primary objective of using the # dynamics in Eq. (4) is to perform
online adjustment of the scales of reconstruction and regularization
terms based on their instantaneous values while taking the previous
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Fig. 3. Latent representation of optically recorded insect wingbeat frequency spectra. The proposed dynamic g-VAE is able to cluster unlabelled field recordings into
compact clusters. Evaluated on labelled data, most species form compact clusters, as shown with different colours for each of the 12 named species groups. Closely
related species groups, such as the Lucilaspp. and Muscidae spp. are partially overlapping but well separated from more distant species groups, such as the Bombus spp.
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Fig. 4. Example latent representation of unlabelled field data and the four test species. While all methods map the high dimensional input data to a two dimensional
feature space, the dynamic -VAEs creates clusters with less overlap between the species groups. The inclusion of 10% labelled data for training further improves the
results, yielding denser clusters with less overlap than the unsupervised p-VAE.
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optima into account. The specific formulation of these control mecha-
nisms in Egs. (6)—(8) force the model optimization to not deviate from
the previous optimal solutions. The terms comprising min over (: t — 1)
epochs in Egs. (6) and (7) provide a form of memory of the previous local
optima. The trade off between long and short term memory of the losses
and the corresponding optima help the model to steer towards more
global optima. These equations provide a sufficiently general formula-
tion for adjusting f as they are only dependent on the two loss compo-
nents. Further, one can also envision a learnable neural network with
long short-term memory (LSTM) that can perform this dynamic control
in a recurrent neural network type formulation of a closed loop control
system (Hochreiter and Schmidhuber, 1997).

5.2. Influence of the p and y parameters

As seen in Fig. 1, the initial effect of a dynamic $ is similar to
p-annealing, where f gradually increases during training in order to
prevent posterior collapse (Bowman et al., 2015). However, the key
difference with § annealing is that the rate of annealing is not pre-
determined, as the p dynamics described in Section 3.1 enables
self-regulation of g. This is witnessed during the latter part of training,
where f repeatedly adapted either by increasing or decreasing its value
dependent on the changes in the reconstruction- and regularization
terms. This behaviour is similar to what is reported with the cyclic f-VAE
(Fu et al., 2019) where the shakeup often allows the model to obtain new
global minimum loss. The similarity to the cyclic f-VAE is further
enhanced by automatically increasing f when there has been no change
for a large number of epochs (500 in our case). However, unlike a cyclic
P-VAE, § is only cycled if it has reached a stationary condition and A
and Ay are within limits. This helps both the unsupervised- and
semi-supervised instances of dynamic -VAE to latch on the historical
minimum of both L. and L.

The # dynamics introduced in Section 3.1 is also similar to adaptive
strategies used in models such as the controlVAE (Shao et al., 2020). A
controlVAE stabilizes the model by adjusting  to keep the regulariza-
tion loss (KLD) at a constant level. However, finding an appropriate KLD
level can be difficult as it could vary across datasets and downstream
tasks. In contrast, the dynamic B-VAE keeps the model stable by
constantly comparing both L. and L., with their historical minima. A
gain on either loss term, at the expense of the other, is counteracted by
adjusting p. This self-regulating # dynamics that is not dependent on
fixing KLD value is an advantage with our formulation.

Including the additional loss term scaling term 7O Lys in Eq. (9)
further improved the clustering performance of the model. In this
implementation y was cycled between 0.01 and 2 in order to keep the
contribution from L in a similar range as L. and L,,. A logical next
step could be to expand Eq. (4) to include a dynamically adjusted y® £
term. This would however make the model less generalized to other
tasks.

5.3. Performance comparison

Comparing the performance between the models reported in Table 2,
the dynamic f-VAE perform better than the baseline models. Adding
15% of labelled data from 8 different species to the training set further
improves the clustering performance. While using HCA on high
dimensional frequency spectra have been successfully used to identify
mosquito clusters in field data (Brydegaard et al., 2020) and biodiversity
evaluation (Kouakou et al., 2020), our results show better performance
for PCA + Kmeans. While the Kernel-PCA generally produced more
heterogeneous latent distributions, it did not show any significant im-
provements over the standard PCA.

The non adaptive -VAE showed large variation in its performance
but was on average comparable with the conventional methods. The
dynamic -VAEs kept # < 1 during most of the training, as exemplified in
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Fig. 1, and since a higher $ term favours a well generalised latent space
over good reconstructions, a reduction in clustering performance could
be expected. Additionally, the non-adaptive VAE was more cumbersome
to train as the model collapsed frequently during training.

5.4. Selection of number of clusters

In this work, the appropriate number of clusters was automatically
selected by maximizing the average silhouette score. However, when
manually evaluating the average silhouette score and comparing it with
commonly used empirical measurements, such as the elbow method
(Thorndike, 1953) and intra-cluster sum-of-squares, a user might typi-
cally identify a higher number of clusters. Having more clusters yield
more similar recordings within each cluster. An example is show in
Fig. 6a and b where the number of clusters were manually selected. As in
previous work by lidar-entomologists (Brydegaard et al., 2020), some
species groups can be identified from these clusters at this level by
comparing the average spectra of each cluster with known data. For
example a cluster of possible mosquitoes can be identified by their high
wing-beat frequency the lower right corner of Fig. 6b.

With the 3000 randomly chosen insect recordings from multiple sites
during summer, we expect the total number of species represented in the
test set to be one or several orders of magnitude larger. We tested a range
of 5 — 50 clusters as even reasonably coarse clustering will be useful for
quantifying biodiversity. Once fully deployed on a network of insect
sensors, a dataset recorded in an environment with high biodiversity
could yield more clusters than a dataset captured in a biologically poor
environment. This would allow the automated and optically recorded
insect data to be correlated with conventional monitoring methods and
greatly improve the ability to monitor insect biodiversity at scale.

5.5. Computation time and inference

Computation time for PCA + K-Means is significantly shorter
compared to HCA on the full spectra (Brydegaard et al., 2020; Kouakou
et al., 2020). While the initial training of the dynamic g-VAE takes a few
hours depending on the number of epochs, once trained, the inference
time for the model is comparable with that of using PCA + K-Means.
Once deployed in the field, the dynamic $-VAE model is not expected to
be retrained regularly but to be used as a dimensionality reduction
method. Therefore, inference time is a more important metric than the
initial computation time.

5.6. Exploring the latent space

Samples generated from the latent space of the semi-supervised
model are shown as a latent space cart-wheel in Fig. 5. Traversing
different lines in the latent space results in samples that smoothly
transition between different spectra types. As a side note, we point that
the two latent features do not appear to be entirely disentangled; this is
manifested as dense islands and sparse spaces of spectra in the latent
space. For our downstream clustering task, fully disentangled features
are not required. However, one could introduce an additional loss
component that enforces orthogonality between the different latent di-
mensions to achieve improved disentanglement.

The latent representation of the unsupervised model can be further
validated by comparing Fig. 3 with the average spectra of each group,
shown in Fig. 2. Species groups with similar spectra, such as Aleyrodidae
spp., Aphididae spp., Tortricidae spp. and Chrysopidae spp. are positioned
in similar areas. Similarily, all dipterans (Lucilia spp., Muscidae spp. and
Drosophila spp.) have overlapping clusters except the mosquitoes (Culi-
cidae spp.) which have a much higher WBF and are more isolated. In
Fig. 3, the model performs less well on the weevils (Ceutorhynchus spp.)
compared to the other species. It is likely due to a larger variation in
their WBF than for the other groups.
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Fig. 5. Latent space cart-wheel visualization. Samples from the latent representation of the semi-supervised dynamic g-VAE are shown with decoded latent samples
when the lines are traversed. While the two dimensions do not appear fully disentangled, the latent space is regularized and transitions between various areas are

smooth and gradual.
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Fig. 6. K-means clustering in the latent representation of unlabelled field data from the semi-supervised g-VAE into 15 clusters. The model is capable of generating a
low dimensional space where similar insect recordings are represented clustered together. The lower right cluster in (b) are likely to contain mosquitoes due to their

high WBF.
6. Conclusions

In this work, we have presented, to our knowledge, the first VAE
designed for clustering of optically recorded insect signals. The dynamic
B-VAE was developed in order to achieve a stable model, optimizing
both reconstruction- and regularization terms. When trained on unla-
belled data recorded during field conditions, the model is able to auto-
matically create meaningful clusters. The unsupervised clustering
performance was validated with labelled data collected in controlled

conditions showing promising results. By using 15% of labelled data
during the training process for semi-supervision, this clustering perfor-
mance is further improved. Already at this stage, it is possible to extract
easily identifiable insect groups such as mosquitoes from the automat-
ically identified clusters and we expect this capability to grow as the
collection of labelled reference data continues.

The future aim of our work is to further improve automatic identi-
fication of the number of clusters. In the near future, the model will be
deployed on several sensors in the field, and estimated cluster sizes and
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distributions will be compared to conventional methods. This will
greatly improve monitoring possibilities and decision support tools for
entomologists and agronomists. In order to mitigate the trend of
declining insect communities, the first step is to ensure adequate data
collection. In the near future, we believe methods based on the proposed
dynamic -VAE will be useful to quantify and, thus, help conserve insect
biodiversity.
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Abstract

Global ecosystems and food supply depend on insect biodiversity for key functions such as pollination and
decomposition. High-resolution, accurate data on invertebrate populations and communities across scales are
critical for informing conservation efforts. However, conventional data collection methodologies for
invertebrates are expensive, labor intensive, and require substantial taxonomic expertise, limiting researchers,
practitioners, and policymakers. Novel optical techniques show promise for automating such data collection
across scales as they operate unsupervised in remote areas. In this work, optical insect sensors were deployed in
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20 agricultural fields in Kansas, USA. Measurements were compared to conventional assessments of insect
diversity from sweep nets and Malaise traps. Species richness was estimated on optical insect data by applying a
clustering algorithm to the optical insect sensor’s signal features of wing-beat frequency and body-to-wing ratio.
Species richness correlated more strongly between the optical richness estimate and each of the manual methods
than between the two manual methods, suggesting sensors can be a reliable indicator of invertebrate richness.
Shannon- and Simpson indices were calculated for all three methods but were largely uncorrelated including
between conventional methods. Although the technology is relatively new, optical sensors that are calibrated
against known communities may provide next-generation insight into the spatiotemporal dynamics of
invertebrate biodiversity and their conservation.

Significance Statement

The implications of this research extend from the farm level to the regional level. Much of what scientists
understand about the decline of invertebrates comes from a small number of long-term studies that can be coarse
and correlational in nature. High-resolution biodiversity data sets on fields to landscapes may provide the insight
needed for the successful management and accounting of biodiversity by government, industry, and
communities. Such high-resolution data has potential to support global efforts and coordination of biodiversity
conservation.
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Introduction

Invertebrate biodiversity is fundamental to ecosystem processes, functions, and services (Yang & Gratton,
2014). Monitoring invertebrate populations and communities can inform management and policy at multiple
scales. Such data are critical to agriculture operations and sustainability (Landis et al., 2008). However,
invertebrate biodiversity is difficult to quantify (Geiger et al., 2016b; Shortall et al., 2009) and monitor at broad
spatial and temporal scales (Sanchez-Bayo & Wyckhuys, 2019; Tilman et al., 1994) '%!!, The difficulty is
largely due to the necessity of skilled labor required for taxa identification on which biodiversity quantification
relies (Wégele et al., 2022) and is both limited and prohibitively costly(Gardner et al., 2008) . Common
approaches to collecting insect inventories include sweep netting as well as Malaise-, pan-, and light traps. Each
method has its own bias toward certain insect groups (Montgomery et al., 2021; Morris, 1960) often resulting in
the concurrent use of techniques in studies and practice (LaCanne & Lundgren, 2018a).

There is a need for new technology to monitor invertebrate biodiversity in real time for agricultural systems.
Such a tool would provide data to support biodiversity-focused management at field, farm, and landscape scales
(LaCanne & Lundgren, 2018a) and allow for tracking of the impact of conservation measures, or the lack
thereof. Automation of systems has the potential to reduce labor, time, and costs. While many automated insect
monitoring tools are available for agricultural pest monitoring (Bick et al., 2023; Preti et al., 2021; Silva et al.,
2013), overall, these approaches are not suitable for assessing biodiversity as they focus on the identification of
indicator species, not communities eg. (LaCanne & Lundgren, 2018b; J. G. Lundgren & Fausti, 2015). The
automatic quantification of invertebrate biodiversity could improve the data available for monitoring and
evaluation of conservation efforts but currently, no method exists at scale(Wégele et al., 2022) despite calls for
such data and analytics to inform the assessment and management of ecosystems (Garcia et al., 2023a).

Concurrently collected real-time data on invertebrate biodiversity likely would improve our understanding of
insect population changes at a regional or even global scale, filling a gap in tracking of insect change. The
incorporation of ‘big data’ has been shown to help mitigate some methodological biases (Geiger et al., 2016a).
One such effort is the global malaise project that is using automated taxonomic identification from traps using
DNA, addressing the most labor-intensive part of this method (Krishna Krishnamurthy & Francis, 2012). It is a
highly promising ‘big data’ approach; unfortunately, the method over-represents known species, has an inherent
sampling bias towards flying insects, and emphasized species with large mitochondrial differences. Optical
entomological methods such as lidar, where an optical signal is recorded from insects flying through a beam of
emitted light, can record large numbers of insect flights without using a lure. However, it is unclear how optical
sensors compares to conventional methods in measuring population and communities(Garcia et al., 2023b;
Rydhmer et al., 2022).

The goal of this study is to determine if the measurement of an insect biodiversity metric can be automated with
the use of optical near-infrared insect sensors. In this work, we deployed sensors (Rydhmer et al., 2021) in 20
agricultural fields across six crops in Kansas, USA. The sensors were deployed alongside Malaise traps and the
sites were sampled with sweep nets. Each site was evaluated on two different occasions to capture seasonal
changes. Specifically, we compared manual methods to each other and with the novel biodiversity metric
utilizing unsupervised clustering of data collected by a lidar-based sensing method.

Materials and Methods
Data collection

Insect populations were monitored at 20 sites (Figure 1) in June and July of 2020 using sensors alongside
manual methods (Malaise traps and sweep nets). Representative agricultural crops of central Kansas were
sampled including three corn, three sorghum, six soybean, one alfalfa, two pasture, and five complex cover
crops. The complex cover crops consisted of approximately eight species of annual grass and forb cover crops.
An autonomous near-infrared sensor (described in (Rydhmer et al., 2021) and produced by FaunaPhotonics
ApS., Copenhagen SV, Denmark) was placed ~50 m from field margin and was monitored continuously for two
periods of three days in June and in July. The sensor uses light-emitting diodes to transmit infrared light (8§10
nm & 970 nm), creating a measurement volume between 5 and 70 L, depending on insect size (Rydhmer et al.,
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2021). Insects flying in front of the sensor back-scatter light, which is recorded by a photodiode as a time signal
and saved for further processing.
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Figure 1. Map of 20 field site location distributed around central Kansas. Fields are color coded by crop type.
Field A and B are separated slightly for readability. Map data from www.openstreetmap.org.

Insect recordings are automatically separated from noise originating from other sources (e.g. rain drops or plant
interference) using a proprietary neural network from the instrument manufacturer, similar to '*%. Additionally,
observations without clearly identified wingbeats or body-to-wing ratios were discarded. A total of 1,057,115
observations were recorded, of which 106,083 remained after filtering and were included in the study. A
recorded observation consists of a time series data from which information pertaining to the physical features of
the individual insect can be obtained (Rydhmer et al., 2021).

Sensors were compared with manual sampling of invertebrates (sweep nets and Malaise traps) in the same
fields. Foliar and low flying insects were captured using a sweep net (38 cm diam., Bioquip™, Rancho
Dominguez, CA, USA). Insects were collected at 50, 100, and 150 m from the field edge along a linear transect.
Sweeps (n = 50 per location) were performed perpendicular to the transect, parallel to the field edge. Insects
were transferred to a sealed plastic bag and were frozen until processed. In the laboratory, insects were thawed,
sorted from the plant material, and identified.

Malaise traps were deployed at each site to capture the aerial insect community. A single bi-directional,
Townes-style trap (dimensions 1.8 long; 1.8 m at its tallest height, and 1.2 m at its shortest height) was placed
100 m from the margin and adjacent to the ecosystem service sampling areas. The wall of the trap was parallel
with the field margin. The traps were allowed to operate for 24 h, and the insects captured in the collection vials
were preserved in ethanol.

All specimens collected by sweep net and malaise traps were identified to the lowest possible taxonomic unit
(i.e., species or morphospecies). Due to a lack of species identification knowledge and time limitations, thrips
(Insecta: Thysanoptera) were not identified beyond the family level and were not included in community metrics
analyses (abundance, species richness, and diversity). All immature insects were identified to family and
grouped together, except for lepidopteran larvae, which were categorized as morphospecies independent of the
adult stage due to their functional differences. All other specimens were identified to species using written and
online taxonomic keys. Specimens that were not able to be positively identified to species were separated into
distinct morphospecies. Voucher specimens of all taxa are housed in the Mark F. Longfellow Biological
Collection at Blue Dasher Farm, Estelline, SD.

Ecosystem services were evaluated for insect and weed seed predation. First, invertebrate predators were
isolated from both the soil and foliar communities. Additionally, predation rates in each field were assessed
using sentinel wax moths (Galleria mellonella L. [Lepidoptera: Pyralidae]) larvae following the (J. G. Lundgren
et al., 2006) Lundgren et al., 2006protocol, using 15 sentinels per plot arranged in three 5 x 3 7.5 m grid
orientations (n = 45 per field). Weed seed predation was assessed from isolating soil and foliar granivore
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communities and their services using seed cards as described in Lundgren et al., 2006. Granivore services were
measured on three abundant weed species (Johnsongrass (Sorghum halapense (L.) Pers.; Poaceae),
lambsquarters (Chenopodium album L.; Amaranthaceae) and redroot pigweed (Admaranthus retroflexus L.;
Amaranthaceae), V & J Seed Farms, Woodstock, IL, USA). Seeds were attached to 10 x 8 cm plastic cards
(Avery™ insertable plastic dividers; #11200; Brea, CA, USA) using 6 cm strips of double-sided tape (Scotch,
3M, St Paul, MN, USA). Each species (n =20 seeds of each species; 60 seeds per card) were placed on a 2 x 10
pattern each card. Fine quartz sand was spread over exposed areas of the tape to exclude visiting invertebrates.
To exclude granivorous vertebrates, a wire cage (14 x 12 cm cage, 1.4 x 1.4 cm mesh opening) was placed over
the card and placed >3 cm above it. Control cards were used to account for seed loss from environmental factors
such as wind or rain and contained 1.5 x 1.5 mm black glass beads (Cousin™ DIY, #AJM61215021, Largo, FL,
USA) of comparable size as the weed seeds (Lundgren et al., 2006). Each plot received three seed cards and one
control card (n =9 seed cards and three control cards per field), placed on the soil surface in the four corners of
each plot. Granivory was measured as the number of seeds removed or damaged per card after a 3 d. exposure.

Data analysis

The wing-beat frequency (WBF) and body-to-wing ratio (BWR) was calculated from all observations in similar
fashion to previous work by other groups(Gebru et al., 2018; Genoud et al., 2019; Kirkeby, Rydhmer, Cook,
Strand, et al., 2021). The signal from the insect body (o) and the diffuse and specular signal contributions were
the insect wings (caw and osy) are estimated and separated using sliding minimum, sliding median and sliding
maximum filters with a filter width corresponding to the wing beat period of the insect. The BWR is defined as
the closed ratio between the body and wing contributions according to equation (1). An example of an insect
signal is shown in Figure la.
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Figure 2. Example of an insect signal and clustering. a) An example of an insect recording from the sensor. The
wing beats are visible as modulations on top of the signal. The dashed red, solid magenta and dash-dotted blue
curves show the body, diffuse- and specular wing signals respectively. The BWR is the ratio between the
magnitude of the body- and diffuse wing signal. b) Clustered insect recordings from a soybean field (Field R) in
July. The grey events are too sparse to form clusters and are therefore discarded.

Insects of the same species exhibit similar physical properties, and therefore also similar signal features
(Kirkeby, Rydhmer, Cook, & Strand, 2021). Normalization of the feature space is a standard procedure prior to
clustering. While BWR values are bound between 0 and 1 by definition (equation 1), WBF values frequencies
typically vary between 20 Hz (Jansson et al., 2019) and 1 kHz (Jansson et al., 2019). WBFs were therefore
divided by 1000 to produce values falling predominantly between 0 and 1. For clustering, we used the
DBSCAN (Density-based spatial clustering of applications with noise) algorithm (Ram et al., 2010) due to its
suitability in identifying clusters without a Gaussian distribution assumption (Ester et al., 1996). DBSCAN uses
two parameters, the minimum number of insects needed to form a cluster (min_samples) and the merge distance
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€, to determine which observations to merge into clusters. Data points too far away from any cluster and too
sparsely distributed to form a new cluster are defined as outliers. This method was used to calculate the number
of clusters or distinct groups (i.e. richness) and diversity index of cluster groups based on Shannon and Simpson
indices.

All insects collected with Malaise traps and sweep nets were classified by order, family, and species when
possible. Then species richness (defined as the number of distinct taxonomic species present, independent of
abundance), Shannon index, and Simpson index were calculated on the insect samples from both conventional
methods for each field in June and July.

The data from the capture methods were randomly divided into two data sets: one used to optimize the
DBSCAN clustering algorithm, and the other used for testing. To have a sufficiently large test set, the
optimization set was limited to 30% of the data collected. During the optimization, € and min samples were
tuned to maximize the Spearman correlation between biodiversity metrics from the sensors and conventional
metrics using stochastic gradual descent. This process was repeated for the richness and Shannon and Simpson
indices for each of the trapping methods, plus an additional model fitted to the combined species richness from
both manual methods. Shannon and Simpson indices were not calculated on the combined dataset since these
indices rely on the relative abundance of species, which are not comparable between the two methods.

Optimal parameters could be found that produced significant correlation (p < 0.05) for four of the seven
comparative measures, however no parameters could be found which satisfactorily modelled the Shannon index
from the sweep netting nor the Simpson index for either trapping method.

Spearman-rank correlations between the clustering results calculated from the optical sensor data and the
biodiversity measures obtained with the two physical insect field-sampling methods were calculated.
Additionally, Analyses of Variance (ANOVA) and TukeyHSD post hoc analyses were conducted to evaluate the
impact of sampling month, crop type, and field on richness estimates.

Results

In total, 106,083 insect observations were recorded by the sensors. The Malaise traps collected 14,641 insects,
whereas sweep nets collected 15,858 insects. The optical sensors recorded 106 083 insect observations. (Table
1, Figure 3). Moreover, measured insect abundance was uncorrelated between both manual methods and sensors
(Figure 4; Malaise trap counts and sweep net counts r = 0.25, p =0.16, sensor observations and sweep net counts
r=0.05, p=0.78, sensor observations and Malaise trap counts r = 0.05, p=0.88).

SWEEP NET MALAISE TRAPS SENSORS
ALFALFA N=2, u=3416.5+4472.5 N=2, p=784.0+£1055.0 N=2, p=4483.0+1479.3

C. COVER CROP | N=8, u=434.4+232.2 N=10, p=351.0+242.2 N=9, u=3408.7+2157.2

CORN N=6, y=178.3+185.8  N=4, y=375.5+339.6  N=3, u=919.0+235.6
PASTURE N=3, u=411.0+2744  N=3, y=490.7+595.4  N=3, u=1676.0+537.8
SORGHUM N=6, p=131.3£163.2  N=6, p=451.0+5452  N=5, n=4862.2+2404.9
SOYBEANS N=10, p=245.9+2453  N=12, p=323.6+385.6 N=12, p=2861.9+1872.7

Table 1. Measured insect abundance per crop and monitoring method. Mean and standard deviation.
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Figure 3. The number of recorded insect signals (lower) and collected insects in Malaise traps (middle) and
sweep nets (lower) per field visit in June and July.

Comparing the relative insect abundance between orders in manual methods (Figure 5) shows differences in
capturing biases. Diptera were most frequently captured in Malaise traps, whereas Hemiptera then Diptera and
Psocoptera were more frequently captured with sweep nets. In general, less flight-active insects were more
prominent in the sweep net data.

There were no discernible differences in variation between time points from sensors (F = 0.155, Pr=0.71) and
sweep nets (F = 0.87, Pr = 0.36). However, Malaise trap abundance showed significantly greater insect densities
in July (un=76.9, F =8., Pr=0.007) than June (un = 43.3). Average abundance per crop is presented in table 1.
Crop type was found to impact sweep net abundance (F =3.367, Pr = 0.01) but not sensor (F = 1.76, Pr = 0.15)
or Malaise trap (F = 1.09, Pr = 0.44) abundance estimates. A series of TukeyHSD post hoc analyses found no
differences in abundance estimates between sample time points for each field.

For the sensors, the best correlation with the conventional method was found when optimizing the correlation

between the number of clusters in the sensors and the combined richness of malaise and sweep nets. The
correlation between the sensor estimates and each of the comparative biodiversity metrics are shown in Table 2.
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Figure 4. Scatter plots of measured insect abundance comparing the monitoring methods on a logarithmic
scale. a) Scatter plot of the number of insects captured with sweep nets and Malaise traps. b) Scatter plot of the
number of insects captured with sweep nets and the number of insect observations recorded by the sensor. c)
Scatter plot of the number of insects captured with Malaise traps and the number of insect observations
recorded by the sensor. There are no significant correlations between any of the methods.
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Figure 5. The number of insects collected with sweep net sampling and Malaise trap monitoring, aggregated by
order.

Per field, the maximum number of clusters was 85 (N=34, u=41.1, 6=19.2). The Malaise traps had a maximum
richness of 159 species (N =37, u = 60.5, 6=39.1) and contained 10 orders, 146 families, and 709 species. The
maximum richness observed in the sweep nets was 132 (N=35, u =47.4, 6=32.7) and contained 11 orders, 149
families, and 664 species. Combined, the collected samples with both field-sampling methods contained 941
different species distributed over 183 insect families and 11 orders.

The three models fitted on sweep net, Malaise and combined species richness are generally comparable (e:
p=8.71-103, 6=8.87:10 *, min_samples: u=5.67, 6=0.94). Identical DBSCAN parameters were calculated when
the models were fit on the Malaise trap richness and Shannon index. A full list of model parameters is provided
as supplementary material (supplementary table 3). As the model fitted on combined richness showed the best
correlation with the conventional methods, it was used in the following results.

All species richness metrics were correlated (Figure 6). The weakest correlation was between Malaise trap and

sweep net richness metrics (R = 0.36, p = 0.046). The correlation between the number of clusters found in the
sensor data and the conventional models was strongest for the combined richness, which was what the model
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was fitted on (R=0.55, p = 0.012; Figure 6d). Significant yet weaker correlations were also found between the
model and the Malaise trap and sweep net richness respectively (R = 0.52, p=0.014; R =0.48, p = 0.028).

Fitting data Correlation coefficients (R, p-value)
Richness Shannon Simpson
Malaise Sweep Combine | Malaise Sweep net | Malaise Sweep net
trap net d trap trap
Richness Malaise 0.42, 0.26, 0.37, 0.44, -0.22, 0.35, 0.01,
0.050 0.246 0.112 0.044 0.359 0.114 0.964
Richness sweep net | 0.45, 0.44, 0.47, 0.11, 0.20, 0.09, 0.16,
0.035 0.046 0.035 0.612 0.378 0.702 0.475
Richness combined | 0.52, 0.48, 0.55, 0.21, 0.20, 0.14, 0.14,
0.014 0.028 0.012 0.344 0.394 0.534 0.537
Shannon Malaise 0.42, 0.26, 0.37, 0.44, -0.22, 0.35, 0.01,
0.050 0.246 0.112 0.044 0.359 0.114 0.964
Shannon sweep net | 0.45, 0.37, 0.46, 0.27, 0.22, 0.17, 0.08,
0.037 0.097 0.040 0.221 0.339 0.459 0.733
Simpson Malaise 0.44, 0.32, 0.43, -0.16, 0.03, 0.02, 0.06,
0.041 0.159 0.061 0.484 0.893 0.913 0.797
Simpson sweep net | 0.05, -0.13, -0.07, -0.73, 0.07, -0.04, 0.12,
0.837 0.569 0.774 0.005 0.817 0.846 0.598

Table 2. Correlations between the automated sensors biodiversity metrics and those obtained from Malaise trap
and sweep net collections on the test set. Rows in the table denote which data was used to fit the clustering
algorithm, whereas columns indicate which parameters the obtained correlations refer to. Significant
correlations with a p-value below 0.05 are marked in bold.

No correlation was found when comparing sensor richness to any ecosystem services (Table 3). Manual
sampling methods were typically not correlated with ecosystem services with one exception. Sweep net species
richness was correlated with the percent of waxworms predated.

Richness %

metrics Waxworms | Total # of Johnsongrass | Pigweed Lambsquarter | All seed
Predated predators predation predation predation predation

Sweep net 0.49, 0.04 0.34,0.17 -0.37,0.13 0.05, 0.85 -0.04, 0.89 -0.07,0.78

Malaise trap | -0.16, 0.52 -0.13,0.61 -0.16, 0.52 -0.36, 0.15 -0.40, 0.10 -0.45, 0.06

Total -

richness 0.21, 0.43 0.16, 0.56 -0.39,0.14 -0.26, 0.33 -0.32, 0.23 -0.41,0.11

Sensor

clusters -0.11, 0.66 -0.26, 0.29 0.14, 0.56 -0.11, 0.66 -0.15,0.54 -0.11, 0.66

Table 3. Correlation table between richness metrics calculated from sweep nets, Malaise traps, combined
conventional methods, and sensor clusters (novel biodiversity metric) compared to ecosystem services of
percent waxworm predation, total number of predators, Johnsongrass predation, Pigweed predation,
Lambsquarter predation, and all seed predation.
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308 Figure 6. Scatter plots and Spearman correlations for the richness estimations across all models. The sensor
309 results are from the model fitted to the total richness in both Malaise traps and sweep nets. a) Malaise traps vs.
310 sweep net samples, b) Sensors vs. sweep net samples, c) Sensors vs. Malaise trap samples, and d) Sensors vs.
311 total richness across traps and sweeps.
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Discussion

The sensor recorded a greater total number of insects observations, almost one order of magnitude, than both
Malaise traps and sweep nets. This difference in measurement rate may be explained as a combination of two
factors: measurement period and measurement methodology. Firstly, the sensors continuously monitored each
field for three times longer than the Malaise traps, the other continuous monitoring method. Since sweep nets
provide point-in-time measurements, the methods are not directly comparable. Secondly, the sensor does not
rely on trapping to record an insect signal. This means both that individual insects may be measured more than
once as they fly in front of the optical sensor. Both factors may result in a higher insect measurement rate of
sensors compared to conventional methodologies. This tendency has been observed in previous work, for
example a similar sensor reported 19 times as many insects as water traps collecting over the same period
(Rydhmer et al., 2021), and optical sensors with greater measurement volumes report recording tens of
thousands of insect flights per day (Brydegaard et al., 2020).

One challenge with the sensor’s dataset was the high proportion of noise signals, primarily thought to be caused
by plant interference. Of the total 1,057,115 signals recorded by the sensor, only ca 10% were classified as
insect signals and included in the analysis. We therefore expect that the reported number of insect observations
is artificially increased. The signals generated by insects and plants moving through the sensor’s measurement
volume are very different. While we believe the proprietary neural network model used to filter observations is
highly accurate, even a small percentage of misclassifications of large number of noise events will inevitably
inflate the total count. Most of these misclassified events have do not show any modulations in time, (since plant
interference has no high frequency components) and are therefore assumed to be removed by filtering the data
on frequency, and body-wing-ratio. Despite these efforts, it is likely that some noise remains. However, we also
believe that the strong signals generated by vegetation will obscure weaker signals generated by small insects.
This would in contrast reduce the total insect count.

Our results suggest that the sensor-derived metric is correlated with conventional estimates of biodiversity. This
indicates that metrics derived from optical sensors have the potential to provide accurate and autonomous
measurements of insect species richness. Still, future work is needed to evaluate the extent to which the metric
may be generalized across agroecosystems outside our study area and to other terrestrial ecosystems. While a
species metric that does not characterize the composition of the insect community presents some added
difficulty to stakeholders in formulating a targeted response, significant and growing evidence suggests that
biodiversity itself is correlated with greater ecosystem functions such as pest control (J. G. Lundgren & Fausti,
2015).

The lack of correlation of abundance and the three methods (Figure 4) is surprising as previous work has shown
correlations between sensor measurements and water traps for insect abundance (Rydhmer et al., 2021).
However, while sweep netting occurred in conjunction with setting up or taking down the Malaise traps, these
efforts were substantially less correlated with the setup of the optical sensors: to the nearest 3 days in June and
nearest 22 days in July. The lack of abundance correlation between the Malaise traps and the sensors may be
due to the long period between the monitoring sessions at each site. Insect flight activity is heavily influenced by
the weather, or the seasonal differences between the beginning and end of July — both of which may also explain
the significance of month on Malaise trap data. An additional factor may be the previously mentioned high noise
composition of the recorded signals due to plant interference. During cleaning of this dataset, it is possible that
variations in the relative degree of noise signals between fields (e.g. because of different crop heights and
stiffness) has resulted in more data loss from noisier fields, thus introducing a systematic error in abundance
measurements for the sensor data.

Due to the similarities between the sensors and Malaise traps (both monitoring flying insects over extended
periods of time), we expected stronger correlations between the sensors and Malaise traps compared to the
sensors and sweep nets. However, those results were comparable. The results were less clear for the correlations
between species diversity indices (Shannon and Simpson). The models fitted on malaise trap data yielded
identical models for the richness and Shannon index. This is most likely due to the co-correlation between the
richness and Shannon index in the malaise trap (R=0.6, p=0.01, Supplementary table 2). Other curiosities, such
as the negative correlation with the Malaise trap Shannon index achieved when fitting on the sweep net Simpson
index are also assumed to be the results of co-correlations between the conventional methods. A full table of all
co-correlations is included as supplementary material.

An entomological radar group called BioDAR is aiming to use libraries of insect radar signals for functional
group classifications for high flying migratory insects at a regional scale (Lukach et al., 2022). Similar estimates
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of insect functional groups might be similarly inferred from optical sensor recordings for all flying insects on a
field scale. Similarly, vertical looking radar is used to classify insects into higher level taxonomic groups such as
Order or even Genus (Chapman et al., 2002; Stefanescu et al., 2013; Wood et al., 2009). It seems likely that
similar or even higher precision can be achieved by further analysis of optically recorded data. Future work
could focus on identifying these groups, determining functional biodiversity, and quantifying their ecosystem
services.

The current study shows a single instance of correlation between richness and a measure of ecosystem services.
Greater species richness does not always translate into an increase in functional biodiversity or ecosystem
services, as there is often ecological redundancy (Greenop et al., 2018). The lack of a relationship may also
reflect different ecological interactions among species in the upper canopy versus above canopy level. These
questions can be further explored in future work when the sensors ability to estimate functional biodiversity has
been developed.
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511  Supplementary material

512
Sensor Malaise trap Sweep net
Field Crop type June July June July June July
name
A ALFALFA 5529 3437 38 1530 | 254 6579
B CORN - 1158 - - 79 62
C CORN 5739 2244 108 828 169 546
D CORN - 687 561 93 525 172
E CORN - 912 761 87 13 219
F HAYLAND 3718 704 493 303 626 583
G ANNUAL PASTURE | 1657 4162 7 278 12 68
H ANNUAL PASTURE | 5454 4290 51 398 303 81
I ANNUAL PASTURE | 6008 2281 243 636 427 740
J SORGHUM 4845 3080 239 1437 8 24
K SORGHUM 8492 5545 68 64 45 375
L SORGHUM 2349 - 155 743 32 304
M SORGHUM 7524 2310 144 948 254 80
N PERENNIAL - 1993 195 1176 708 167
PASTURE
0] PERENNIAL 1980 1055 - 101 358 -
PASTURE
P SOYBEAN 865 1349 3 225 14 -
Q SOYBEAN 1349 4679 32 1090 77 354
R SOYBEAN 2443 3442 41 160 713 -
S SOYBEAN 2696 1867 184 771 307 580
T SUDANGRASS - 240 258 192 - -

513 Supplementary Table 1. Crop type and insects abundance observed in each field in June and July across all
514 three methods.
515
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516

Simpson 0.42,0.07 |0.34,0.13  (0.18,0.44 |0.14,0.54  0.42,0.05 (0.28,0.2 0.14,0.53  0.62,0.0 0.95,0.0

Sensor

Shannon 0.41,0.07  10.3,0.19 0.2,0.39 0.2,0.39 0.41,0.06  10.21,0.34 0.1, 0.65 0.67,0.0

Sensor 00 °S6°0

No. clusters [0.55,0.01  |0.48,0.03  [0.36,0.11 (0.2,0.4 0.52,0.01 |0.26,0.25  0.05,0.82 0.67,0.0

sensor 00°C9°0

Simpson -0.23,0.22 }-0.21,0.24 |-0.31,0.09 }-0.17,0.34 [0.03,0.87 (0.61,0.0 -0.05,0.82  |0.1, 0.65

Malaise €50 ¥1°0

Shannon 0.4, 0.02 0.16,0.39  |-0.14,0.45 0.33,0.07 10.59,0.0 0.61,0.0 0.26,0.25 |0.21,0.34

Malaise T0°8T0,

Richness 0.85,0.0 0.36,0.05  [0.08,0.68  |-0.14, 0.45 0.59, 0.0 -0.03,0.87 10.52,0.01  (0.41,0.06

Malaise S0°0 ‘TP 0

Simpson -0.06,0.74 10.02,0.89  0.72,0.0 -0.14,0.45 -0.33,0.07 0.17,0.34 0.2,0.4 0.2,0.39

sweepnet RIR

Shannon 0.35,0.05  |0.58,0.0 0.72,0.0 0.08,0.68  |-0.14,0.45 [0.31,0.09 [0.36,0.11 0.2, 0.39

sweepnet ¥r°0 ‘81°0

Richness 0.73,0.0 0.58,0.0 0.02,0.89  |0.36,0.05 [0.16,0.39  -0.21,0.24 0.48,0.03  (0.3,0.19

sweep net €1°0 ‘v€0

Richness 0.73,0.0 0.35,0.05  }-0.06,0.74 |0.85,0.0 0.4,0.02 -0.23,0.22  0.55,0.01  (0.41,0.07

combined LO0TH0
Richness Richness Shannon Simpson Richness Shannon Simpson No. clusters [Shannon J0SUDG
combined  |sweepnet  |sweepnet sweepnet Malaise Malaise Malaise sensor Sensor uosdug

517
518
519
520

Supplementary Table 2. Co-correlations of all biodiversity metrics.
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521
522
523
524

525
526

527
528
529

Fitting Richness Richness Richness Shannon Shannon Simpson Simpson
data Malaise sweep net = combined | Malaise sweep net = Malaise sweep net
€ 0.007467 0.009467 0.0092 0.007467 0.0104 0.0084 5.33E-04
min_ 7 5 5 7 3 3
samples
Supplementary Table 3: Optimal model parameters for each fitted biodiversity metric.
® COMPLEX COVER CROP SOYBEANS « SORGHUM ¥ CORN ALFALFA PASTURE
June July
R: 0.46, p: 1.84e-01 R: 0.52, p: 1.02e-01
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Supplementary Figure 2. A scatterplot depicting the correlation of the species richness metrics at each field,

separated by the June and July timepoints.
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Abstract

To mitigate the ongoing declines in insect biodiversity, there is a need of efficient yet accurate
monitoring methods. The use of traditional catch-based survey methods is constrained by the
costs and the need for expertise for manual taxonomic identification. Emerging methods, such
as eDNA and robotic sorting, have the potential to reduce workload, but still requires resource-
intensive sample collection in the field. Recently, remote sensing methods such as photonic
sensors have shown promise for recording large numbers of insect observations. However,
accurately determining species composition in the collected data remains challenging.

In this study, we investigate the potential of photonic sensors for quantifying species richness
in the field and compare the results with estimates based on conventional Malaise traps at five
sites. Firstly, we evaluated two unsupervised clustering methods using a library of measured
insect signals from known species. Then we correlated the estimated number of clusters with
the species richness assessment by the Malaise trapping. Our results demonstrate that both
clustering methods perform well when compared to the Malaise traps, indicating the potential
of automated insect biodiversity monitoring. This offers the possibility of more efficient but
still accurate methods for studying insect biodiversity with broader temporal and spatial
coverage.

Keywords: Insects, Biodiversity, Clustering, Photonics, Entomology, Ecology, Modulation
Spectroscopy
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1. Introduction/Background

Declines of terrestrial insects in response to anthropogenic drivers [1]-[4] [5], [6] calls for
documentation of trends and drivers. Rapid assessment of insect communities is needed to
document such declines of insect biomass and diversity, understand its drivers, and evaluate
strategies to mitigate them.

Safeguarding insect abundance and diversity is important for many reasons. Negative
population trends may ultimately result in the loss of species, violating the conservation
promises in the Convention of Biological Diversity [7]. Insects are entangled in trophic webs
and vital for ecosystem functions[8]. Additionally, insects contribute with ecosystem services
important to humans, such as pollination, biological pests control, decomposition, and
recreational values [9], [10]. These functions and services depend on specific species and thus
their abundance, but are also often enhanced or stabilized by higher diversity [10], [11].
However, insects also play other roles, by acting as pests [12] or disease vectors of human
diseases [13].

Conventional catch-based survey methods, such as sweep netting or Malaise traps, are time
consuming and resource intensive, both during data collection and the following taxonomic
identification [13], [14]. The taxonomical identification to family or species level has
historically been dependent on microscopic morphological taxonomic identification by experts.
This laborious process hampers rapid evaluation of mitigation measures, and the sampling time
resolution is insufficient to capture species weather preferences. Promising methods are in
development including robotic sorting [15], [16] and meta-barcoding [17], [18], although these
methods still require time-consuming collection of specimens. A challenge for eDNA methods
is also to provide abundance estimates [19], although quantitative techniques are emerging
[20]. In protected areas where there is an increasing need for monitoring, the destructive nature
of catch based methods might also make them difficult to implement [21].

Automated monitoring approaches can provide data with high temporal resolution at low cost
[4], [22]. Emerging technologies include e-traps [23], [24], as well as non-destructive methods
such as acoustic [25], [26], machine vision [16], [27], [28] and photonic sensors [29]-[32].
Photonic monitoring of insects has been demonstrated over seasons [32], [33] and through
wingbeat modulation characteristics, dozens of insect groups can be differentiated in situ [34],
[35]. Some of these methods could allow efficient retrieval of data with high temporal and
spatial resolution across families, but it is important that their ability to accurately reflect true
variation in insect abundance and diversity is evaluated.

In this work, we aimed to demonstrate the utility of photonic sensors to generate proxies of
biodiversity. We used commercial photonic sensors that emit modulated infrared light and
records the backscatter from insects flying through the measurement volume. Using two
different clustering algorithms, we estimated the number of unique signals. We developed
models using data from from flight cages with known species and evaluated their performance
by comparing online in situ field estimates at five different sites with concurrent results derived
from catches by conventional Malaise traps. The structure of the study is outlined in Fig. 1.
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Figure 1. Experiment flowchart. The algorithms were tuned on a dataset of signals from known
species in flight cages. The best clustering algorithm parameters were then evaluated on data
collected from sensors in the field, alongside Malaise traps. The number of clusters found by
the algorithms in the sensor data was compared to the number of taxonomic families in the
Malaise traps.

2. Experiment design and material

In this study, we evaluated two clustering methods of photonic sensor data for their potential
use in biodiversity monitoring. To tune and validate the two clustering methods, we used a
library of insect signals from known species recorded in flight cages. Subsequently, the tuned
clustering methods were applied to data recorded at multiple field sites. In the same sites, we
concurrently captured insects using Malaise traps that were emptied weekly. The richness
estimates from photonic data, i.e. the number of identified clusters, were finally evaluated
against the family richness (number of insect families present in the sample) estimated through
morphological analysis of catches from Malaise traps.

2.1. Insect sensor

The study is based on a recently developed commercial insect sensor (Volito, FaunaPhotonics,
Denmark), previously described by Rydhmer et al. [29]. The sensor emits modulated infrared
light at 810 and 970 nm and records the backscatter from insects flying through the
measurement volume with a quadrant photodetector. The instrument has a sampling bandwidth
of 5 kHz and the measurement volume extends around 1 m from the sensors and comprise up
to 70 1 of air. Recorded insect observations are automatically extracted by the sensor and
transmitted to a cloud platform via 4G mobile network for further analysis.

100



In the cloud platform, a proprietary neural network is used to classify each recording as either
an insect observation or noise. The classification algorithm is applied to each quadrant and
band individually as described more extensively in the supplementary material.

2.2. Collection of signals from single species cages

Labelled reference data was recorded in flight cages with an approximate volume of 1 m®.
During recordings, up to 100 insects from one species at a time, depending on flight activity,
were inserted in the cages and recorded over several days. Water and species appropriate
nutrients were present in the cages. In this work, we included 84779 individual insect
observations from 42 different species, representing 27 families.

We selected reference species for the flight cages with the aim of representing a wide range of
morphological and taxonomic diversity, but selection was constrained by commercial and
seasonal availability. Insects were collected in the field, provided by academical partners or
acquired from commercial sources. The number of unique observations from each species
varied from 653 to 5021 with an average of 2018 observations per species. A table of the
included species is provided as supplementary material.

2.3. Field data collection

Sensors were installed within 5 m of conventional Malaise traps (BT1001, Megaview Science
co. LTD, Taiwan) at five sites in Denmark and southern Sweden (Table 2). The habitats
included an oilseed rape field [29], grazed pasture grasslands [36], protected spruce forest [37],
a moist meadow surrounded by deciduous forest [38]. The measurements spanned from April
2020 to November 2020, however, with multiple interruptions resulting from technical or
logistical challenges. Malaise traps were emptied weekly and collected insects were stored in
ethanol until identification. An overview of the field sites is presented in table 3. During
identification, the catch was randomly subsampled by a factor 6 and identified to family level
by the authors using microscope and taxonomic keys.

We collected 78 Malaise trap samples from the field sites, but limited the number of samples
identified to match available resources. We initially selected 50 samples covering a wide range
of abundances. However, 10 samples were later discarded due to technical problems with the
sensors, leaving 40 samples available for time-matched comparisons between sensors and
traps.

3. Photonic signal processing

3.1 Signal features

Insect signals were recorded as dual-band time series sampled at 20 kHz (5 kHz bandwidth).
An example of a recorded insect observation from one detector quadrant is presented in Figure
2. From these observations, we isolated the contribution from the insect body (/) from the
diffuse and specular wing reflections (Ipw, Isw). Using these signals, we could estimate
morphological and behavioural properties.

The calculated features used in this study are presented in Table 1 and a formal mathematical
formulation of the features extraction algorithms are included as supplementary material. An
overview of the median and inter quantile range (IQR) of the extracted features from individual
insect observations, aggregated by family level, is presented in Figure 3.
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Figure 2: Example of an insect recording of a solitary bee (Andrenidae vaga) by the sensor.
Wingbeats are visible as a modulation on the signal. The body-, wing- and specular
contributions are isolated by moving average and maximum filters. In this case, the insect body
has a higher reflectance at 970 nm in b) than for 808 nm in a), while the amplitude of the wing
signal is similar. This indicates a melanised body. A zoomed in view of the specular and diffuse
wing envelopes is shown in c).

Table 1. Calculated features from insect observations. All features, except the wing beat
frequency, are defined as ratios between zero and one.
Feature Variable | Values Unit | Definition Ref
Wing beat WBF 20..1000 Hz [39]42]
frequency
Body to wing BWR 0..1 - Is/(Is + Ipw) [39], [43]
ratio
Specular to SWR 0..1 - Isw/(Ipw + Isw) [39], [43]
diffuse wing ratio
Body to specular | BSR 0..1 - Is/(Is + Isw) [39], [43]
wing
Body BM 0..1 - Is-970/(I8-808+ I8-970) [39], [43]
melanization
Wing WM 0..1 - Iow-970/(Ipw-sos+Ipw- | [39], [43]
melanization 970)
Specular ratio SR 0..1 - Isw-g08/(Isw-sos + Isw- | [39], [43]
970)
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Figure 3

3.2 Oscillation power spectra

As a high dimensional complement to the low dimensional feature representation of the time

signals, we calculate the oscillatory power spectra for each insect observation. These oscillation
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powers and overtones are estimated by [44] and are contributed by the body, wing movements
and specular reflections of glossy wings [30]. The calculation result in 100 frequency bins from
0 to 2 kHz with 20 Hz steps for both wavelengths. The modulation spectra were subsequently
concatenated and auto-normalized. The median- and IQR power spectra are presented for each
family in Figure 4.
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Figure 4: Frequency power spectra from the caged single species recordings aggregated on
family level. The median is plotted as a solid line and the 25-75% IQR as a shaded area. The
zero Hz intercept correspond to body size, and the first peak is the fundamental wingbeat
frequency. Following peaks are the overtones and a large number of overtones correspond to
sharp, specular reflexes from the wings. For example, Hymenoptera Megachilidae have a
wingbeat frequency around 230 Hz and several overtones at 460, 690 and 920 Hz.
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4. Clustering insect data

We evaluated two unsupervised clustering methods, with the aim of using the estimated
number of clusters as an indicator for species richness. The first method was Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) [45] and the second method was
Hierarchical Clustering Analysis (HCA) [46].

In the DBSCAN algorithm, a random insect observation is selected as a starting point and all
data points within a certain radius, ¢, in the parameter space are added into its cluster. If less
than MinPts data points are found within &, the observation is discarded as noise and the
algorithm continues with a randomly selected new observation until all data points are treated.
The time signal features shown in figure 3 were mean scale normalized and clustered using
DBSCAN and an estimated number of clusters, Rpascan, is obtained. We used the scikit-learn
package implementation in Python [47].

In HCA, all observations starts as individual clusters. The pairwise Euclidian distances in the
parameter space, and the corresponding linkage vector, between all insect observations are
calculated and used to merge all clusters sequentially until only a single cluster remains. The
linkages were calculated using Ward’s method [46] which merges clusters by minimizing the
variance in each cluster. Pairwise distances and linkage vectors were calculated using the
scikit-learn and fastcluster packages in Python [48]. HCA has previously been used to cluster
insect observations in entomological lidar and to estimate the number of insect groups [34],
[35]. In similar fashion, we applied the HCA to the logarithmized oscillatory power spectra.
The linkage vectors contain information on the diversity of power spectra various methods can
be applied to determine the appropriate number of clusters from it [49]-[51]. As the previously
used elbow method [49] performed poorly, we developed a novel threshold according to:
Ryca =X (5—% > Ponp1> (1)

where L, contains the linkages, N is the number of observations, n€{1...N-1}, po and p; are
tuning parameters.

4.1 Performance tests on flight cage data
During method development we defined two tests to evaluate the performance of the two
clustering algorithms.

Richness test

The first test investigates the correlation between the estimated number of clusters (Rpascan,
Ruca) and true number of included species, Rypec. We generated a selection of 1000 observations
evenly distributed among Rye. € {1...42}, by random selection without replacement. The
observations were fed into the two algorithms and the number of clusters calculated. The
correlation between the logarithmized number of clusters, Rpascan, Ruca, and Rspec Was
calculated by linear regression where

Rspec = ﬁO Reiuse + ﬁl (2)
and the corresponding Pearson correlation p was measured. To improve the dynamic range and

punish configurations that yielded a very low number of clusters, despite yielding high values
of p, the performance metric Qyic» was defined as
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Qrich = ,0( Rspec, Rclusl) ,BO (3 )

Abundance insensitivity test

The second test investigates whether the number of found clusters Rcuss was related to the
number of included insect recordings, Noss. A new randomized dataset was created by randomly
selecting one species and linearly increasing the number of insect observations from 100 to
1000 in 20 steps. As Rspec Was kept at one species during the entire test, the quality metric was
defined as

Qﬂat = M(Rclust)/ G(Rclust) (4)

Where p and o is the mean and standard deviation respectively.

4.2 Clustering parameter tuning
To compare the performance of both tests, a quality criterion Q was defined as

Q = Qrich * Qﬂat (5)

Where higher is better and Qi and QOpnas were truncated at 0 to remove any negative
correlations. The tests were conducted on random samples of the data, as described below.
Each test was repeated on 50 randomized permutations for both methods. The best performing
parameters were found by a grid search at 450 points for DBSCAN and 314 points for HCA
and used in the field evaluation.
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Figure 5: Optimization landscape for the two clustering algorithms. Both methods find a
clearly defined optimum.
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4.3 Field validation

The best performing configurations of the DBSCAN and HCA methods on the flight cage data
were applied to the data recorded in the field. Insect observations from each sensor were
aggregated by the weekly emptying schedule of the corresponding Malaise trap. The
aggregated data was fed to the clustering algorithms and the number of found clusters was
compared to the number of families identified in the corresponding Malaise traps. Due to the
non-normal distribution of the data, the number of clusters and family richness were
logarithmized before calculating the Pearson’s correlation.

5. Results

5.1. Labelled data tests

The optimization landscapes for both methods are presented in Figure 5. The best performing
parameters were £=0.67, MinPts = 2 for the DBSCAN method and ps=1.58, p; = -0.3 for the
HCA. The individual test results for the best performing parameters are presented in Figure 6.

Richness test Abundance insensitivity test
N = 1000 observations N € {100...1000} observations
Rspec € {1...42} species Rspec = 1 species
120 1 1 Permutations
—— Median
100 A 1 ---- IQR

Reiust (# Clusters) DBSCAN

Reust (# Clusters) HCA

T T

10 20 30 40 200 400 600 800 1000
Rspec (# Species) N (# Observations)
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Figure 6: The results of the richness and abundance insensitivity tests for the best performing
parameters of the DBSCAN (upper) and HCA (lower) methods. Individual clustering
permutations are plotted as dots. The median is plotted in red and 25, 75% quantiles in dashed
grey. In the richness test (left column), each dot represents a dataset with 1000 insect
observations and the ideal result is a linear relationship between Rspec and Rcus. In the
abundance insensitivity test (vight column), each dot represents a dataset from a single species
and the ideal result is a constant, low number of clusters.

5.2. Field validation

After sub-sampling the Malaise trap catch samples, a total of 9503 insects from 11 orders and
195 families were morphologically identified. The most prevalent orders were Diptera and
Hymenoptera, accounting for 75% and 15% of all identified insects, respectively. Among the
families, Diptera Sciaridae sp. was the most common, accounting for 25% of all identified
insects. Figure 9 shows the sample times and abundance in each trap .

The sensors were active for a total of 75 weeks and recorded 2,402,345 observations. After
removing observations caused by rain and dust (2,113,737) or where the feature extraction
algorithms failed to estimate features (50,024), 238,584 observations remained available for
clustering.

Table 2. Overview of field samples for Malaise traps and sensors.

Biotope Measurement  Location Collected  Identified No. Used in

period trap trap Weeks comparison
samples samples Sensors

Spruce forest | 16/3-20/7 & 56°20'08.1"N 28 20 27 16
3/8-2/11 14°23'09.4"E

Deciduous 8/6 -9/11 55°41'46.4"N 18 15 20 12

forest 13°26'51.5"E

Grazed 1/4-1/7 55°49'404"N 10 2 13 1

grassland 1 11°26'10.7"E

Grazed 8/4 —10/6 55°48'07.0"N 17 8 8 6

grassland 2 11°23'18.1"E

Oilseed rape | 1/4—-27/5 55°29'03.1"N 5 5 7 5

11°29'32.6"E

For the 40 weeks were both sensor and trap data were available, the family richness in the
Malaise traps was correlated with the number of clusters. Due to the non-normal distribution
of the data, all measures were logarithmized. The Pearson correlation show that the sensor
methods explain close to 40% of the variation in time and space of abundance and 30 to 45%
of that of diversity (Figure 7, Table 3). The correlation between abundance and richness
estimates is strong for all methods, including the traps, but especially for the HCA method.
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Table 3. Pearson correlations between logarithmized biodiversity estimates. Calculated for
the weeks were both trap and sensor data were available. All correlations are significant with

p < 0.05.
N trap Rtrap Nvensor RDBS CAN RH CA
Nirap 1 0.73 0.55 0.54 0.63
Rurap 0.73 1 0.59 0.54 0.67
Nsensor 0.55 0.59 1 0.69 0.97
Rppscan 0.54 0.54 0.69 1 0.75
Ruca 0.63 0.67 0.97 0.75 1
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Figure 7. Relationship between measured and estimated abundance and biodiversity. a) The
number of clusters found by the DBSCAN vs. the trap richness. b) The number of clusters found
by the HCA vs- the trap richness. c) The trap richness vs the number of insect observations
recorded by the sensor. d) The richness vs the number of caught insects in the Malaise traps.
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Comparing insect abundance and richness evaluated by traps and sensors over the full
experiment period, the sensors in general yield one order of magnitude more observations per
week. However, the reported number of insects from the traps are sub-sampled by a factor 6.
Both sensors and traps find the highest biodiversity and insect abundance at the meadow site
during summer as shown in figure 8.
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Figure 8: Sensor and Malaise trap data from the full measurement period. Upper figures show
the number of insects per week in Malaise traps (left) and sensors (right). Lower row show the
measured family richness in the Malaise traps, and the number of clusters found by the
algorithms. Due to hardware and connectivity issues, some data points are missing from the

sensor data.
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6. Discussion

Both unsupervised clustering methods of categorizing optically recorded insect signals
correlate well with estimates obtained by Malaise traps. This suggests that the optical sensors
and similar instrumentation are viable tools for monitoring not only insect abundance, but also
richness. Both algorithms yielded higher numbers of clusters than the measured family richness
in the traps, but that may reflect that our clustering method had a higher resolution than our
identification to family level of Malaise trap catches [52]. However, the match was not perfect,
with correlations of 54% and 67%, which may be caused by how both the photonic and the
Malaise trap methods are both estimates of the true biodiversity of insects [53].

While correlated, it is difficult to relate the number of clusters to an absolute number of species
in the field. Many species have distinct differences in wing beat frequency between sexes [39].
It is also known from literature that even a single species and sex can produce distinct optical
signals depending on observation aspect [39], [54]. Therefore, photonic insect recordings can
be challenging to differentiate due to overlapping features in the parameter space [39], [43],
[55], [56]. While various machine learning methods still can perform very well, any photonic
insect sensor will ultimately have a limit for the distinguishable number of species, depending
on the instrument complexity. Despite these arguments, there is an expectation that a more
diverse composition of species will produce a more diverse composition of optical signals,
which is confirmed in this work.

The number of observations recorded in the field was generally higher than the number of
observations included in the caged data tests. We believe this raises some noticeable
differences. The abundance insensitivity test was designed to minimize the correlation between
the number of observations and the number of clusters. However, as seen in figure 6, In this
test, the DBSCAN show a slow increase in the number of clusters while the HCA shows the
opposite. However, on the field data the HCA is 97% correlated with the number of
observations. We believe that a tuning of the parameters optimized on the caged data using
data from the field would reduce this correlation but to reduce the risk of overfitting, we have
avoided such adjustments in this work.

In the field data, the number of observations recorded by the sensor is more correlated with the
trap richness than the estimated richness by the DBSCAN. While the richness and abundance
also were strongly correlated in the Malaise traps we do not believe abundance can be used as
a biodiversity measure alone as this study primarily included protected areas where the insect
abundance and richness were strongly correlated.

The number of observations in each cluster were not well correlated with the distribution of
families in the traps. It is therefore difficult to compare measures such as Shannon’s or
Simpson’s index between the clustering methods and traps. The correlation between the sensors
and traps of these indices are included as supplementary material.

Comparing the methodology of all methods, the task of richness estimation closely resembles
the challenge of finding and counting rare outliers. In identification of trap catches, single
species observations could account for up to 30% of the identified richness [57], [58]. As
DBSCAN cannot support clusters with single members, a larger number of observations per
species are required in order to provide a meaningful estimate. In future work, the number of
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singletons could be included in the richness estimate, but as the number of singletons can be
large, there is a risk that they would outweigh the number of clusters and drive the entire metric.

7. Outlook and conclusions

Photonic methods have a high potential to benefit applied insect science and management for
several reasons. First, it enables cost-efficient collection of data with a resolution in time and
space that is hard to achieve using manual methods based on catches. This makes it an ideal
method both for long-term monitoring and for detecting consequences of management
interventions such as use of pesticides where local effects may be transient yet consequential.
Second, it allows for monitoring inside protected areas, where destructive sampling may be
non-ethical or legally prohibited. However, as a method, its value will be related to its accuracy
and taxonomic resolution, while further development and quality controls are warranted.

In this work, we have shown that photonic sensors in combination with unsupervised clustering
algorithms are able to measure the species richness in situ. We tested two different algorithms,
DBSCAN and HCA, on a low and high dimensional representation of the insect recordings
respectively. Both methods showed a correlation between the number of clusters and the
species richness in flight cage experiments. Further, comparison to diversity measures
determined from conventional trapping yielded good correlation between sensors and Malaise
traps richness on family level. This shows that photonic sensors can successfully be used for
monitoring not only insect abundance but also diversity.
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Appendix A — Data processing and feature extraction

Insect observations are recorded as dual band signals in four segments, yielding a time signal
with eight channels. Each segment covers a different volume in front of the sensor. To reduce
artefacts from very weak signals, each channel is filtered individually, and empty channels are
removed from further analysis.

The filtering consists of an intensity threshold and a classification step. The intensity
thresholding asserts that channel has a maximum intensity above 20 counts. The classification
step applies a proprietary noise classifier. Unless an insect signal is observed in all segments,
the channels from empty segments are discarded. We believe the design of this classifier is out
of scope for this work, but it can be summarized as a one-dimensional convolutional neural
network trained on manually annotated data from both cages and the field.

The insect body, diffuse and specular wing contributions was estimated from the time signal

I(t, ) by running a moving minimum, average and maximum filter over the signal in each
channel, using the extracted wingbeat period as filter width according to
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To cut away the signal rising and falling flanks of the signal, a centre time, f9, and transit time,
At, was calculated accordingly:
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Scalar estimates were obtained by calculating median values within a time window of 7+ 4t:
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Calculated features are averaged over all non-empty channels. Dual band features (body and
wing melanization and specular ratio) are averaged over all non-empty segments. For single
band features (BWR, SWR, BSR) we chose the features recorded in the 808 nm band to limit
the number of features used in the model. For the wingbeat frequency, we calculated the
median across all non-zero channels.
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Appendix B — Labelled data species:

Order
Coleoptera
Coleoptera
Coleoptera
Coleoptera
Coleoptera
Diptera
Diptera
Diptera
Diptera
Diptera
Diptera
Diptera
Diptera
Diptera
Diptera
Diptera
Diptera
Diptera
Diptera
Hemiptera
Hemiptera
Hemiptera
Hemiptera
Hemiptera
Hymenoptera
Hymenoptera
Hymenoptera
Hymenoptera
Hymenoptera
Hymenoptera
Hymenoptera
Hymenoptera
Hymenoptera
Hymenoptera
Hymenoptera
Hymenoptera
Hymenoptera
Lepidoptera
Lepidoptera
Lepidoptera
Neuroptera
Odonata

Family
Chrysomelidae
Chrysomelidae
Curculionidae
Nitidulidae
Rutelidae
Anthomyiidae
Calliphoridae
Calliphoridae
Cecidomyiidae
Cecidomyiidae
Cecidomyiidae
Culicidae
Drosophilidae
Muscidae
Muscidae
Syrphidae
Syrphidae
Tephritidae
Tipulidae
Aleyrodidae
Aleyrodidae
Cicadellidae
Pentatomidae
Pentatomidae
Andrenidae
Apidae

Apidae

Apidae

Apidae

Apidae

Apidae
Braconidae
Braconidae
Megachilidae
Tenthredinidae
Tenthredinidae
Vespidae
Plutellidae
Tortricidae
Yponomeutidae
Chrysopidae
Coenagrionidae

Species

alni
chrysocephalus
pallidactylus
aeneus
japonica
antiqua
sericata
vomitoria
acarisuga
aphidimyza
brassicae
aegypti
melanogaster
aenescens
domestica
corollae
rueppellii
oleae
oleracea
proletella
vaporariorum
titanus

halys
italicum
vaga

mellifera carnica

mellifera iberica

mellifera ligustica
mellifera ligustica x

pascuorum
terrestris
colemani
matricariae
rotundata
pectinicornis
rosae
vulgaris
xylostella
botrana
padella
carnea
elegans

Number of observations
1310
1564
1277
2678
3674
1733
4798
3443
653
1307
1089
900
2676
3540
3617
1534
1759
2923
2534
740
1060
1596
1534
1596
1560
1552
3334
2935
1595
1831
5021
1047
1074
1721
1517
1516
1456
1383
1193
1618
3147
1735

Supplementary Table 1. The number of observations available from the flight cage recordings
and used for method development.
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Supplementary figure 1. Correlation of Simpson’s and Shannon’s diversity indices (D and H)
respectively- The DBSCAN method is negatively correlated with the traps in both metrics as
seen in a) and c). While the HCA methods number are much higher, they show good correlation
with the traps b) & d).
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An apparatus for determining an index of insect biodiversity,
comprising: a plurality of optical insect sensor devices
configured to be individually positioned within a geographic
area, each insect sensor device configured to: monitor insect
activity within a detection volume extending outside the
insect sensor device by detecting light from the detection
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METHOD AND APPARATUS FOR
DETERMINING AN INDEX OF INSECT
BIODIVERSITY, AN INSECT SENSOR AND A
SYSTEM OF INSECT SENSORS

TECHNICAL FIELD

[0001] The present disclosure relates to a method and to an
apparatus for determining an index of insect biodiversity.
The present disclosure further relates to an insect sensor and
a system of insect sensors.

BACKGROUND

[0002] Insect decline, in particular loss in insect biodiver-
sity is one of the top challenges facing the world today and
considered one of the greatest risks of the 21st century.
[0003] A recent OECD report entitled “Biodiversity:
Finance and the Economic and Business Case for Action,
May 2019” states: “Biodiversity loss is one of the greatest
risks of the 21st century. It undermines human health and
well-being, societal resilience and progress towards the
Sustainment and development goals. It places severe costs
on our economies and makes addressing other global chal-
lenges, such as climate change, much more difficult.”
[0004] “The planet is facing its sixth mass extinction, with
the current rate of species extinction estimated to be as high
as 1000 times the background (pre-human) rate. In addition,
widespread and rapid population declines are affecting even
common species that are fundamental to ecological pro-
cesses: since 1970, the world has lost 60% of its global
vertebrate population, and more than 40% of insect species
are declining rapidly”.

[0005] When addressing problems related to insect
decline, the current lack of precise and accurate data is a key
problem for research, businesses and decision makers.
Therefore, there is an urgent need for precise data that may
guide and facilitate proper actions and legislation to ensure
sustainable environments and use of chemicals, while allow-
ing sufficient food production to support a growing popu-
lation. Current methods for studying and monitoring biodi-
versity and insect behaviour rely on laborious methods
where insects are collected with nets and manual traps and
subsequent analysed via microscopic and genetic analysis.
[0006] It is thus desirable to provide efficient yet precise
methods and apparatus for determining an index of insect
biodiversity that allows the collection of comprehensive data
to support decision-making processes and that provides
industry with a tool for balancing production with sustain-
ability. It is further desirable to provide cost-efficient and
reliable insect sensors for measuring insect activity.

[0007] The number of insects in a geographic area may
vary over time but also across a given area. These temporal
and spatial variations make accurate determination of reli-
able and consistent measures of insect activity and, in
particular, insect biodiversity challenging. In particular,
insects are often non-uniformly distributed across an area
and hot spots of locally high insect concentrations may
occur. Moreover, the location of such hot spots may change
over time.

[0008] Yet further, traditional methods for quantifying a
biodiversity index rely on accurate identification of insect
species, thus rendering traditional methods labour intensive,
sensitive to variation in expert knowledge and error prone.
This in turn reduces the scalability of traditional methods
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and may reduce their comparative value when calculated for
different geographic areas inhabited by different species
and/or classified by different human experts. For example,
the Institute for European environmental policy summarized
the research situation in Denmark in 2017 as follows: “There
is a very small number of wild bee experts in Denmark and
a significant lack of knowledge on species abundance,
distribution and trends” (see E. G. Evelyn Underwood,
Gemma Darwin, “Pollinator Initiatives in EU Member
States: Success Factors and Gaps,” 2017.) Today, research
and monitoring are thus hampered by very expensive and
labour-intensive practice when studying insects, typically
involving sweep-netting, trapping and identification.
[0009] Trapping can be done with various methods
depending on the target insect, as each trap type is biased
towards different species. The total number of collected
insects, N, may be identified by a taxonomist typically using
a microscope or DNA sequencing of each individual col-
lected insect.

[0010] From this type of taxonomy, insects may be sepa-
rated into different groups. The number of groups is typi-
cally referred to as the richness of the population, R, while
the number of insects in each group is referred to as the
abundance, r;, of insects within a certain group. From these
data a biodiversity index can be constructed in various ways
such as, the Shannon biodiversity index, H:

R
H =" rln()
=1
[0011] or the Simpson biodiversity, D

R -1

D=1-
NV -1

[0012] An important point is that the grouping of insects
is not a standardised process but rather depends strongly on
the context of a specific study. As examples, species delimi-
tation can be according to order (flies), family (hoover files)
and even genus type within a family. Also, studies are
performed where the biodiversity is defined according the
bio services various groups provide to an ecosystem, e.g.
pollination.

[0013] Using the approach outlined above the ability to
obtain highly temporally and spatially resolved data is
usually very limited and studies are either done intensively
over a short period or at low intensity over a long period. For
example, a recent insect decline study (see C. A. Hallmann
et al., “More than 75 percent decline over 27 years in total
flying insect biomass in protected areas,” PLoS One, vol. 12,
no. 10, 2017) involved malaise traps being emptied on
average every 11 days, after which each insect sample was
manually dried and weighed. Simply monitoring the flying
biomass is therefore a massive task and hard to repeat across
different habitats.

[0014] In order to reduce the labour associated with the
monitoring of insects, attempts have been made to introduce
technical solutions.

[0015] For example, U.S. Pat. No. 9,585,376 describes a
system of electronic insect monitoring devices (EIMDs).
The EIMDs each comprise a lure for attracting at least one
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target insect species, one or more sensors that generate one
or more output signals in response to an insect approaching
the lure, and an electronic controller configured to determine
if the insect approaching the lure belongs to the at least one
target insect species using the one or more output signals. In
some embodiments, this prior art system may comprise a
plurality of EIMDs configured to communicate over a
wireless network shared by the plurality of EIMDs. How-
ever, lures typically only attract certain species and are
therefore unsuitable for monitoring the biodiversity of the
total insect population in a given area.

[0016] In a different field, U.S. Pat. No. 5,956,463
describes an automated system for monitoring wildlife audi-
tory data and recording same for subsequent analysis and
identification. The system comprises one or more micro-
phones, which may be located at various locations in the
field, coupled to a recording apparatus for recording wildlife
vocalizations in digital format. The resultant recorded data is
pre-processed, segmented, and analyzed by means of a
neural network to identify the respective species. In particu-
lar classification of the species is used to discriminate
wildlife calls and to identify the animal from which a
selected call originated. Even though this prior art system
minimizes the need for human intervention and subjective
interpretation of the recorded sounds, its usability for deter-
mining insect biodiversity is limited. Firstly, audio-based
instruments are sensitive to audio noise, which may mask
sounds generated by insects, thus limiting the detection
range of the system and its usability in urban areas, along
roads or in the vicinity of other sound sources. Moreover,
classification of species based on wildlife calls is not suit-
able for the majority of insects. Finally, training a neural
network classification system that determines species still
requires laborious collection and classification of training
data.

[0017] The value in monitoring biodiversity is significant
for both agriculture and ecology and the inventors are not
aware of known tools which can provide a standardised
measure of flying insect diversity. It is thus generally desir-
able to provide a method and apparatus suitable for deter-
mining insect biodiversity. In particular it is desirable to
provide a method for determining insect biodiversity that is
scalable, accurate and efficient. It further remains desirable
to provide an apparatus that is low complex, durable,
reliable and accurate. Yet further, it is desirable to provide an
apparatus that is largely non-intrusive, that allows for a
substantially unbiased detection of a large variety of types of
insects and that only minimally affects the insect activity, as
this allows for a more accurate determination of a biodiver-
sity index.

SUMMARY

[0018] Disclosed herein are embodiments of a method and
an apparatus for determining an index of insect biodiversity
as well as embodiments of an insect sensor and of a system
of insect sensors.

[0019] According to a first aspect, embodiments of an
apparatus for determining an index of insect biodiversity
comprise:

[0020] a plurality of optical insect sensor devices config-
ured to be individually positioned within a geographic area,
each insect sensor device configured to:
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[0021] monitor insect activity within a detection vol-
ume extending outside the insect sensor device by
detecting light from the detection volume, and to

[0022] output detector data indicative of one or more
optically detected attributes associated with respective
detected insect detection events, each insect detection
event being indicative of one or more insects being
present in the detection volume;

[0023] a data processing system communicatively coupled
to the plurality of optical insect sensor devices and config-
ured to:

[0024] receive detector data from respective ones of the
plurality of optical insect sensor devices, the detector
data being indicative of one or more optically detected
attributes associated with respective detected insect
detection events, and to

[0025] compute, from the received detector data, an
index of insect biodiversity indicative of insect biodi-
versity within the geographic area.

[0026] As the insect sensor devices optically detect attri-
butes associated with insect detection events in a detection
volume outside the insect sensor devices, the apparatus is
non-intrusive to the environment in the sense that it does not
rely on and, consequently, is not biased by pheromones or
other means of attracting, trapping or killing insects. In
particular, insects may be detected in their natural environ-
ment regardless of their affinity to a certain lure or trap
technology, thus reducing the sensitivity of the measurement
results to different trapping techniques for different insect
species. To this end, the detection volume is preferably an
enclosure-free void/space allowing unrestricted movement
of living airborne insects into and out of the void/space.
[0027] According to a second aspect, embodiments of an
apparatus for determining an index of insect biodiversity
comprise:

[0028] one or more optical insect sensor devices config-
ured to be individually positioned within a geographic area,
each of the one or more insect sensor devices configured to:

[0029] monitor insect activity within a detection vol-
ume to detect one or more insect detection events, each
insect detection event being indicative of one or more
insects being present in the detection volume; and to

[0030] output detector data indicative of one or more
optically detected attributes associated with respective
detected insect detection events,

[0031] a data processing system communicatively coupled
to the one or more optical insect sensor devices and con-
figured to:

[0032] receive detector data from the one or more
optical insect sensor devices, the detector data being
indicative of one or more optically detected attributes
associated with respective detected insect detection
events, wherein the detected insect detection events are
taxonomically unclassified, and to

[0033] compute an index of insect biodiversity directly
from the optically detected attributes associated with
the taxonomically unclassified detection events.

[0034] Accordingly, the data processing system is config-
ured to compute the biodiversity index directly from the
optically detected attributes, i.e. without an intermediate
taxonomical classification of the individual detected insects,
i.e. without mapping the detected insects to known groups of
insects, e.g. to known families or species. In other words, the
step of insect taxonomic classification is avoided and the
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biodiversity index is calculated directly from the collected
data samples instead. Embodiments of the apparatus may
thus automatically collect and process detector data in a
standardized way, thereby increasing comparability of the
results across different geographic areas. Moreover, the
process reduces the influence of misclassifications, e.g. due
to human errors, on the resulting index of insect biodiversity.
Yet further, the apparatus is capable of computing an index
of insect biodiversity even in cases where the insect species
of the population are not known or where the optically
detectable attributes have not previously been classified to
known groups of insects.

[0035] Generally, embodiments of the apparatus accord-
ing to one or both of the above aspects allow a more uniform
detection of a large variety of insects, regardless of the
specific insect species. Hence, embodiments of the apparatus
provide a computation of a more accurate measure of insect
biodiversity. As the apparatus automatically computes the
index of insect biodiversity from the acquired detector data,
the apparatus is less sensitive to researcher bias or variation
in classification technique.

[0036] Embodiments of the apparatus described herein
can provide a standardised measure of insect biodiversity to
allow comparison of biodiversity over time and between
different geographic locations. Embodiments of the appara-
tus may be operated in a fully automated manner, thus
facilitating assessment of insect biodiversity in real time,
day by day, hour by hour and even minute by minute.
[0037] The computation of the index of insect biodiversity
directly from the detector data may be done in a number of
ways.

[0038] In particular, computing the index of insect biodi-
versity may comprise computing the index of insect biodi-
versity from the optically detected attributes, which are
associated with respective ones of a set of detected insect
detection events. In some embodiments, each element of the
set of detected insect detection events may be associated
with a plurality of attributes of different types, e.g. a wing
beat frequency and a melanisation ratio and/or other attri-
butes associated with the insect detection event. For
example, each insect detection event may have associated
with it an n-tuple. Each n-tuple represents n attributes
associated with the corresponding insect detection event.
The process may use different numbers of attributes, i.e. n
may be an integer larger or equal than 1, e.g. n may be equal
to 1, 2, 3, 4 or larger. For example, in one embodiment n=2
and each n-tupel includes a wing beat frequency and a
body-wing ratio. The set of detected insect detection events
from which the index of biodiversity is calculated includes
a plurality of insect detection events, such as at least 50
insect detection events, e.g. at least 100 insect detection
events, such as at least 500 insect detection events.

[0039] In some embodiments, computing the index of
insect biodiversity comprises computing the index of insect
biodiversity as a measure of variability of the optically
detected attributes associated with respective ones of the set
of detected insect detection events. In particular, the data
processing system may compute the measure of variability
by performing a statistical analysis of the optically detected
attributes associated with the set of detected insect detection
events, in particular a multi-variate analysis. For example,
the data processing system may compute one or more
measures that represent the diversity of the set of n-tuples.
Example measures of variability include but are not limited
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to a covariance trace (total variance), a covariance entropy,
a covariance determinant and a summed standard deviation,
or a combination thereof.

[0040] In some embodiments, computing the measure of
variability includes performing a clustering of the detected
insect detection events according to at least the optically
detected attributes associated with the respective detected
insect detection events. The clustering may result in a set of
clusters, each cluster including one or more of the detected
insect detection events. Example clustering approaches
include DBSCAN and Gaussian Mixture Models. Useful
outputs of clustering-based approaches include but are not
limited to the number of clusters, required parameters to
achieve a given number of clusters or features of the Akaike
or Bayesian information criterion.

[0041] There are a number of ways the process may
compute an index of insect biodiversity from an output of an
unsupervised clustering process. For example, the index of
insect biodiversity may be computed from the number of
resulting clusters, by computing a Shannon or Simpson
index from the resulting clusters, by applying a Gaussian
mixture method, by applying a Gaussian mixture AIC gra-
dient approach, etc., or a combination thereof.

[0042] Using for example the DBSCAN clustering pro-
cess, the number of clusters found is one of the output
parameters of the clustering process. This number of clusters
can be used as a biodiversity index as a number reminiscent
of species richness (i.e. the number of different species
present in an area).

[0043] Other clustering models, such as Gaussian Mixture
Models, require the number of clusters to be pre-defined
before training, and therefore do not a priori provide a
richness-like measure. One approach here is to pre-define a
range of possible clusters (e.g. between 1 and 100 with a step
of 1) and then fit the model for each cluster number. The
goodness-of-fit of these models can be described by an
external function for example the Bayesian Information
Criterion or the Akaike Information Criterion. Thus, a simi-
lar “best” number of clusters can be determined by identi-
fying the minimum point in the generated distribution of
goodness-of-fit values.

[0044] The Shannon and Simpson indices are methods
used to quantify the diversity of a population which can be
divided into discrete groups. In conventional ecology these
groups are generally aligned with taxonomic levels, such as
species, genus or family. However, in an unsupervised
approach to biodiversity quantification, the optimum num-
ber of clusters—e.g. determined as discussed above—may
be used. In this case, the input parameters to the Shannon
and Simpson indices would be the number of clusters, and
the number of individuals sorted into each cluster.

[0045] The BIC and AIC are not infallible methods, and
sometimes do not produce a single, or reliable, minimum
value. However, in the case of the BIC the distribution at
some point always crosses the x axis at a value which
changes with the number of ideal clusters. The more clusters
present in the data, the higher the distribution crosses the x
axis. This approach always results in a single value (the x
axis is only crossed once) and the value is much higher than
the predicted number of clusters which allows for some
additional nuance. This approach has been found by the
inventors to produce values which correlate well with the
ground truth data with a correlation coefficient of R2=0.90.
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[0046] The AIC gradient approach is an attempt to
improve on the Akaike Information Criterion approach to
assessing the optimal number of clusters. The AIC function,
when applied to a dataset descriptive of insect detection
events, often takes the form of an oblique elbow, where the
criterion drops sharply as the number of clusters increases,
and then at some inflection point the gradient sharply
decreases and the criterion continues to decline. This means
that there is no defined minimum point. The gradient of the
AIC appears to correlate with the point that the elbow
inflection lay, so this approach quantifies the gradient of the
initial linear decline.

[0047] Other examples of methods for computing a mea-
sure of variability of the optically detected attributes asso-
ciated with respective insect detection events include a
statistical description of raw events using auto-encoding or
similar techniques and dimensional reduction of the opti-
cally detected attributes.

[0048] In some embodiments, the computation of the
index of insect biodiversity is based on a mathematical
model that directly maps the optically detected attributes
associated with respective detected insect detection events to
an index of insect biodiversity. In particular, the mathemati-
cal model may be a machine learning model such as a
supervised machine learning model. For example, when
applying a supervised machine learning model, the data
processing system is configured to implement a trained
machine learning model, in particular a model trained by
supervised learning. The supervised learning may involve
applying a training set to train a machine learning model to
predict the biodiversity of an input either as a number such
as an existing or novel index, or into one or more categories.
The training data may comprise detector data from one or
more insect sensor devices and known biodiversity mea-
surements from either field trials or simulated data.
Examples of machine learning models include a convolu-
tional or fully-connected neural network, a decision tree, or
the like.

[0049] Generally, the index of insect biodiversity refers to
a suitable numerical measure of insect biodiversity, in par-
ticular airborne insects such as flying or jumping insects. For
the purpose of the present description an index of insect
biodiversity will also be referred to as insect biodiversity
index or merely biodiversity index. The index of insect
biodiversity mat be represented as a number, e.g. a number
between O and 1, or in another suitable way, e.g. as a
categorization into Dbiodiversity classes, e.g. “low’,
“medium”, “high”, etc. In some embodiments, the compu-
tation of the index of insect biodiversity may comprise
correlating the optically detected attributes associated with a
set of detected insect detection events to a known biodiver-
sity metrics such as, but not limited to, the Simpsons or the
Shannon biodiversity index.

[0050] Each insect sensor device may be mounted at a
stationary detection site or non-stationary, e.g. mounted on
a vehicle. The vehicle may be a ground vehicle, i.e. a vehicle
that operates while in contact with the ground surface. A
ground vehicle may e.g. drive on wheels or the like. For
example, the ground vehicle may be a tractor or other
farming vehicle. Other examples of vehicles include aerial
vehicles such as an airplane, a helicopter or the like. The
vehicle may be a manned vehicle or an unmanned vehicle.
[0051] Each insect sensor device may comprise an illu-
mination module configured to illuminate the detection
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volume, in particular the entire detection volume. Each
insect sensor device may comprise a detector module com-
prising one or more detectors configured to detect light from
the detection volume, in particular from the entire detection
volume. The detector module may thus output a sensor
signal indicative of the detected light, e.g. indicative of a
detected light intensity as a function of time.

[0052] In some embodiments, each insect sensor device
comprises an illumination module and a detector module.
[0053] The apparatus may comprise one or more process-
ing units configured to receive a sensor signal from a
detector module of at least one of the insect sensor modules
and to process the received sensor signal so as to detect one
or more insect detection events and to extract one or more
optically detectable attributes associated with the detected
insect detection events. The processing unit may be imple-
mented as a local processing unit, integrated into an insect
sensor device and configured to process sensor signals of the
detector module of said insect sensor device into which the
processing unit is integrated. In other embodiments, some or
all of the processing steps are performed by a processing unit
external to the insect sensor device, i.e. the processing unit
may be implemented in a device external to the insect sensor
device or it may be distributed between a local processing
unit of the insect sensor device and a remote processing unit,
separate from the insect sensor device

[0054] In some embodiments, the illumination module
comprises a light source that is configured to emit incoherent
light. Suitable light sources include light-emitting diodes
(LEDs) and halogen lamps, as these are able to simultane-
ously illuminate a large detection volume with sufficient
light intensity. Further, incoherent light sources are useful to
provide a homogeneous, speckle free, illumination of the
detection volume, in particular a simultaneous illumination
of a large detection volume without the need for any
scanning operation. This reduces the complexity of the
optical system and allows reliable detection of wing beat
frequencies and/or trajectories even of fast-moving insects.
[0055] Nevertheless, other light sources, including coher-
ent light sources, such as lasers, may be used instead. In
some embodiments, the light source is configured to output
light continuously while, in other embodiments, the light is
turned on and off intermittently, e.g. pulsed.

[0056] In some embodiments, the illumination module is
configured to emit light with varying intensity, in particular
pulsed or otherwise modulated at one or more modulation
frequencies.

[0057] Some embodiments of the apparatus include one or
more insect sensor devices disclosed in the following, in
particular one or more embodiments of the insect sensor
device according to the third aspect described below and/or
a system of insect sensor devices according to the fourth
aspect described below.

[0058] According to a third aspect, disclosed herein are
embodiments of an optical insect sensor device for detecting
insects in a detection volume, the insect sensor device
comprising:

[0059] an illumination module configured to illuminate
the detection volume with illumination light comprising
light at a first wavelength band modulated at a first modu-
lation frequency and light at a second wavelength band;
[0060] a detector module comprising a detector configured
to detect light from the detection volume;
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[0061] a processing unit configured to receive sensor
signals from the detector module and configured to filter the
received sensor signal to extract a first sensor signal modu-
lated at the first modulation frequency and, based on at least
the first sensor signal, to detect at least one insect in the
detection volume and to determine at least one optically
detectable attribute of the detected insect, such as a mela-
nisation ratio and/or a direction of movement.

[0062] Embodiments of the insect sensor device provide
accurate measurements while maintaining a low optical
complexity of the insect sensor device. Embodiments of the
insect sensor device allow accurate measurements of spec-
tral reflectivity at one, two or more wavelengths, largely
unaffected by background illumination such as sunlight,
while still allowing a high temporal fill factor in one, two or
more channels. Accordingly, embodiments of the insect
sensor device are particularly useful for measuring insect
biodiversity or for performing other insect measurement
tasks, as multiple relatively low-cost sensors can be
deployed and operated in a large variety of environmental
conditions, thus allowing data to be collected from a large
total detection volume.

[0063] The insect sensor device may be mounted at a
stationary detection site or non-stationary, e.g. mounted on
a vehicle, e.g. as described above.

[0064] The illumination module may be configured to
illuminate the detection volume with illumination light and
the detector module may be configured to detect a backs-
cattered portion of the illumination light, the backscattered
portion being backscattered by insects moving about the
detection volume. The inventors have found that a reliable
detection and/or identification of insects can be performed
by detecting and analyzing light, in particular backscattered
light, from illuminated insects. In particular, the detector
module may be configured to record a temporal profile of the
reflected/backscattered light, as the temporal profile of the
reflected/backscattered light is a fingerprint of the insect
which can be used to distinguish between different types of
insects.

[0065] The detection volume is a 3D volume from which
the insect sensor device obtains sensor input suitable for the
detection of insects. The detection volume may thus com-
pletely or partly be defined by the field of view and depth of
field of the detector module. In embodiments where the
detection volume is illuminated by an illumination module,
the detection volume may be defined as an overlap of the
volume illuminated by the illumination module and by a
volume defined by the field of view and depth of field of the
detector module.

[0066] The detection volume may have a predetermined
shape, size and position relative to the illumination module
and/or relative to the detector module, e.g. relative to an
aperture and/or an optical axis of the detector module. In
particular, the detection volume may, during the entire
detection process, be stationary relative to the detector
module and to the illumination module. Accordingly the
detector module may comprise one or more lenses that
define an optical axis of the detector module and and/or that
define a focal length. The focal length may be fixed during
the entire detection process. Moreover, the optical axis may
be fixed, during the entire detection process, e.g. relative to
the illumination module and/or relative to a housing of the
insect sensor device. However, it will be appreciated that the
insect sensor device may allow the size, shape and/or
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relative position of the detection volume to be pre-config-
ured and adapted to a specific measurement environment,
e.g. by changing a relative position and/or orientation of the
illumination module and the detector module. The detector
module may further comprise an aperture.

[0067] The detection volume may have a variety of shapes
and sizes, such as box-shaped, cylindrical, ball-shaped,
cone-shaped, pyramidal, frusto-conical, frusto-pyramidal,
etc. In some embodiments, the detection volume has a size
of at least 10 1, such as at least 20 1, such as at least 0.2 m?,
such as at least 0.5 m?, such as at least 1 m?, such as at least
2 m?, such as at least 3 m>. Even when each individual insect
sensor device has a relatively small detection volume, e.g.
less than 100 1, a system of several individual insect sensor
devices may be deployed so as to provide a larger total
detection volume in which insect activity can be monitored
by the system of such insect sensor devices.

[0068] In some embodiments, the detection volume has a
size of less than 20 m?, such as less than 10 m>, such as at
less than 5 m?, such as less than 1 m>, such as less than 100
1, thereby facilitating uniform illumination at high brightness
of the entire detection volume while allowing for reliable
detection of e.g. trajectories and/or wing beat frequencies of
insects.

[0069] In some embodiments, the detection volume has an
aspect ratio, e.g. defined as a ratio of a largest edge to a
smallest edge of a minimum bounding box of the detection
volume. In some embodiments, the aspect ratio is no larger
than 10:1, such as no larger than 5:1, such as no larger than
3:1, such as no larger than 2:1. For example, the aspect ratio
may be between 1:1 and 10:1, such as between 1:1 and 5:1,
such as between 1:1 and 3:1, such as between 2:1 and 3:1.
A low aspect ratio of the detection volume allows moving
insects to be tracked over a relative long period of time,
regardless of the direction of travel of the insects, thus
allowing more accurate detection of different insects, e.g.
flying or jumping insects, insects moving at different speeds,
etc. Moreover, a relatively long observation time also
increases the accuracy of the determined optically detectable
attributes such as wing beat frequency, etc. The minimum
bounding box may have a vertical and two horizontal edges.
The vertical edge may be the smallest edge of the minimum
bounding box. For example, a ratio between each of the
horizontal edges and the vertical edge may be between 2:1
and 10:1, such as between 2:1 and 5:1, such as between 2:1
and 3:1.

[0070] Each insect sensor device may be configured to be
deployed in a geographic area such that the detection
volume may be elevated above the ground surface by a
minimum vertical offset. To this end, the insect sensor
device may include or otherwise be configured to be
mounted on a stationary or movable support structure. In
some embodiments, the insect sensor device and/or the
support structure is/are configured such that the detection
volume extends from a top of a vegetation canopy upwards.
Accordingly, interference of the vegetation with the insect
sensor device, e.g. by blocking the light path, is thus avoided
or at least reduced. To this end, the minimum vertical offset
may be predetermined, e.g. configurable prior to use. To this
end, the support structure may be adjustable so as to adjust
a mounting height of the insect sensor device, so as to adapt
the minimum vertical offset to the vegetation in vicinity of
the insect sensor device. For example, the insect sensor
device may be mounted such that the vertical offset of the
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insect sensor device above the ground surface is adjustable
and/or such that the orientation of the insect sensor device
relative to the ground surface is adjustable. The size of the
vertical offset may depend on the height of the vegetation
growing in the area of land where the insect sensor device
is deployed. The vertical offset may be chosen to be larger
than a height of the vegetation, e.g. larger than a maximum
height of population of plants making up the vegetation in
the area of land where the insect sensor device is deployed,
or larger than a median height of population of plants in the
area of land where the insect sensor device is deployed. For
example, the minimum vertical offset may be chosen
between 10 cm and 5 m, such as between 20 cm and 3 m,
such as between 20 cm and 2 m, such as between 50 cm and
2 m. In some embodiments, when a system or apparatus
comprises a plurality of insect sensor devices, the vertical
offset may be chosen to be substantially the same for all
insect sensor devices of the system or apparatus.

[0071] In some embodiments, the detection volume is
located in a proximity of the insect sensor device. In
particular, the detection volume may extend between a
proximal end and a distal end of the detection volume,
relative to the insect sensor device, e.g. relative to an
aperture or other optical input port of the detector module.
In some embodiments, the distal end may be no more than
5 m from the insect sensor device, such as no more than 4
m, such as no more than 3 m. The proximal end may be
separated from the insect sensor device, e.g. from an aper-
ture or other optical input port of the detector module, by 1
cm or more, such as by 10 cm or more, such as by 20 cm or
more, such as by 30 cm or more.

[0072] Embodiments of the insect sensor device described
herein are particularly suitable for detecting airborne insects,
such as flying or jumping insects. Embodiments of the insect
sensor device described herein allow for detection of insects
moving within the detection volume during sufficiently long
observation times so as to reliably identify and distinguish
different optically detectable attributes, e.g. wing beat fre-
quencies and/or a trajectories and/or body wing ratios and/or
melanisation ratios. Such techniques have been found to
allow reliable computation of an index of insect biodiversity
when individual insects remain in the detection volume
sufficiently long.

[0073] Using a wide volume (in particular a volume
having a large cross-sectional area when viewed along an
optical axis of the detector module) close to the insect sensor
device rather than e.g. a narrow beam extending far away
from the insect sensor device provides a number of advan-
tages:

[0074] Optical alignment is less sensitive, allowing the
insect sensor device to operate for extended periods of
time without continuous calibration.

[0075] Lower light intensity is required, which makes
the insect sensor device eye safe and therefore capable
of unsupervised operation in the field.

[0076] As the received intensity from an insect
decreases with distance, a better size estimation can be
done based on the amplitude of the received signal.

[0077] Only a low spatial resolution is needed (fewer
“pixels”) to adequately focus the illuminated volume
onto an image sensor. While long-range instruments
depend on pulsed light and use very expensive and
sensitive photo multiplier tubes to collect the light, or
for the geometrical Scheimpflug configurations CMOS
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line arrays with thousands of pixels, embodiments of
the insect sensor described herein are capable of col-
lecting the light on few, e.g. four, photodiodes where
each diode sub-samples the beam. This in turn allows
use of very high sampling frequencies. The high sam-
pling frequency (MHz range) allows the use of lock-in
amplification which enables the ability to record two
wavelengths on one diode and/or to suppress back-
ground illumination. This reduces the optical complex-
ity of the insect sensor device and allows accurate
measurements of spectral reflectivity at one, two or
more wavelengths, unaffected by background illumi-
nation such as sunlight, while still allowing a high
temporal fill factor in two (or more) channels.

[0078] Insect movement in the volume may be moni-
tored in multiple, e.g. 4, sensors with non-overlapping
field of view. This means that it is possible to monitor
flight direction and speed.

[0079] A wider beam yields longer transit times and
insect events which improves data quality.

[0080] In some embodiments, the illumination module
comprises a light source that is configured to emit coherent
or incoherent visible light and/or infrared and/or near-
infrared light and/or light in one or more other wavelength
bands. Infrared and/or near-infrared light (such as light in
the wavelength band between 700 nm and 1500 nm, such as
between 700 nm and 1000 nm) is not detectable by many
insects, and thus does not influence the insect’s behavior.
[0081] In some embodiments, the illumination module is
configured to selectively illuminate the detection volume
with light of two or more wavelength bands, in particular
two or more mutually spaced-apart wavelength bands. In
some embodiments, the illumination module is configured to
emit an illumination beam that includes a homogenous mix
of light consisting of two or more wavelength bands (e.g. at
808 and 970 nm, respectively). To this end, the illumination
module may include a first light source, e.g. comprising one
or more LEDs, configured to selectively emit light of a first
wavelength band. The illumination module may further
include a second light source, e.g. comprising one or more
LEDs, configured to selectively emit light of a second
wavelength band, which may be spaced-apart from the first
wavelength band. The illumination module may further
include one or more further light sources, e.g. comprising
one or more LEDs, configured to selectively emit light of
one or more further second wavelength bands, which may be
spaced-apart from the first wavelength band and/or second
wavelength band. The detector module may be configured to
selectively detect the selected wavelength bands. In one
embodiment, the illumination module is configured to emit
light at a first wavelength band at 808 nm+/-25 nm and light
at a second wavelength band at 970 nm +/-25 nm. Such a
multi-spectral illumination system facilitates color detection
of moving insects.

[0082] Using more than one wavelength introduces the
possibility to measure “colour”, or melanin content of tar-
gets. Melanin absorption decreases with increasing wave-
lengths. By using two, or more, channels at well-separated
wavelengths, and comparing the ratio of the received inten-
sity at these two wavelengths, the melanin content can be
estimated. For example, a possible measure indicative of the
melanisation ratio may be expressed as the ratio I, ,/(I, ,+1,,)
or another measure of the relative detected intensity (de-
noted I,, and [, ,, respectively) at two wavelength bands

135



US 2023/0106933 Al

around wavelengths A, and A,, respectively. In one embodi-
ment A,=808 nm and A,=970 nm.

[0083] In some embodiments, the apparatus further sepa-
rates the body and wing contribution of the recorded signal.
Accordingly, the apparatus may determine both body and
wing melanisation in the insect. It also allows the apparatus
to more accurately estimate other features such as wingbeat
frequency, since the apparatus can treat the signal received
in each wavelength independently and get two separate
measurements on the wingbeat frequency. If they for some
reason do not agree, that insect detection event can e.g. be
discarded as noise.

[0084] In some embodiments, the illumination module is
configured to illuminate the detection volume with illumi-
nation light at the first wavelength band modulated at the
first modulation frequency and light at a second wavelength
band, different from the first wavelength band, modulated at
a second modulation frequency, different from the first
modulation frequency. In one embodiment the light at the
first wavelength band (e.g. at 808 nm) is modulated at about
80 kHz and the light at the second wavelength band (e.g. at
980 nm) is modulated at about 120 kHz. The detector
module may thus be configured to detect light signals from
the detection volume and to selectively filter the detected
light signals with the first and second frequencies, respec-
tively. In particular, the processing unit of the insect sensor
device may be configured to filter the received sensor signal
to extract the first sensor signal modulated at the first
modulation frequency and a second sensor signal modulated
at the second modulation frequency and, based on the first
and second sensor signals, to detect at least one insect in the
detection volume and to determine at least one optically
detectable attribute of the detected insect, such as a mela-
nisation ratio and/or a direction of movement.

[0085] Accordingly, the detector module may selectively
detect the respective wavelength bands with a single detec-
tor and efficiently suppress background light, such as day-
light or light from light sources other than the illumination
module. It will be appreciated that alternative embodiments
will include more than two wavelength bands, e.g. 3 or 4 or
5 or more wavelength bands, and the more than two wave-
length bands may be modulated at respective modulation
frequencies. The processing unit may thus be configured to
filter the received sensor signal to extract a corresponding
plurality of two or more than two sensor signals modulated
at the respective modulation frequencies and, based on the
more than two sensor signals, to detect at least one insect in
the detection volume and to determine at least one optically
detectable attribute of the detected insect.

[0086] In one embodiment, the selective filtering of the
one or more modulation bands can be done effciently using
phase sensitivity lock-in detection which further eliminates
noise from other light sources.

[0087] A convenient illumination of a relatively large
detection volume, in particular a simultaneous illumination
of the entire detection volume, with a compact illumination
module, may e.g. be provided when the illumination module
is configured to emit a diverging beam of light, in particular
a beam of light having a divergence angle in at least one
direction of between 2° and 45°, such as between 10° and
30° or between 35° and 45°, measured as a full angle
between rays originating from the light source and inter-
secting opposite ends of a beam diameter.
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[0088] The illumination module may e.g. include one or
more optical elements, such as one or more reflectors and/or
one or more lenses that direct the light from the light source
as a beam of light, such as a diverging beam of light, of a
suitable cross-sectional shape towards the detection volume.
For example, the beam of light may have a rectangular or
round, e.g. oval or circular, cross section. Accordingly, the
detection volume may have a frusto-conical or frusto-pyra-
midal shape.

[0089] When detecting moving insects in a field of veg-
etation, it has turned out that a frusto-conical or frusto-
pyramidal detection volume having an elongated (e.g. ellip-
tical or rectangular) base/cross section is particularly
advantageous. The base/cross section may be a cross section
orthogonal to an optical axis of the detector unit or of the
illumination unit. In some embodiments, the elongated
cross-section/base has a width (measured in a horizontal
direction) that is larger than a height (measured in a vertical
direction), e.g. such that the ratio between the width and the
height is at least 3:2, such as at least 2:1, e.g. between 3:2
and 5:1, such as between 3:2 and 3:1, such as between 2:1
and 3:1. A detection volume having an elongated cross
section with a horizontal longitudinal axis where the detec-
tion volume is elevated above the ground surface by a
minimum vertical offset allows the detection volume to be
arranged as a relatively flat volume, e.g. a flat box-shaped
volume or a volume generally shaped as a flat pie slice, that
may be horizontally arranged above a canopy of vegetation.
Such a volume reduces reflections, stray light or other
disturbing effects of the plants that might otherwise interfere
with the detection process. Also, such a detection volume
makes efficient use of the available illumination power to
illuminate a volume where most insect activity occurs.
[0090] At least in some embodiments, the detection vol-
ume is a three-dimensional detection volume extending
outside the insect sensor device. In particular, the detection
volume is an enclosure-free void allowing unrestricted
movement of living airborne insects into and out of the void.
To this end, the detection volume may be defined solely by
the overlap of the illumination volume and the field of view
and depth of field of the detector module. When the detec-
tion volume is defined by an overlap between the illumina-
tion volume and the field of view and depth of field of the
detector module, the illumination module may be configured
to illuminate a conical or pyramidal or frusto-conical or
frusto-pyramidal illumination volume, in particular with an
elongated base/cross-section as described above with refer-
ence to the detection volume.

[0091] In some embodiments, the detector module com-
prises an imaging system, such as a camera. The imaging
system includes an optical lens configured to image an
image plane onto an image sensor, e.g. a quadrant Silicon
detector or an image sensor having a lower or higher
resolution. In some embodiments, the image plane is located
between 1 m and 5 m, such as between 1 m and 4 m, such
as between 1.5 m and 3 m in front of the optical lens. The
imaging system is arranged such that the field of view of the
imaging system overlaps, or even substantially coincides,
with the illuminated volume at least at said image plane.
[0092] The imaging system may have a field of view and
a depth of field large enough to record images of the entire
detection volume, in particular sufficiently focused images
to allow detection of the optically detectable attributes used
for calculating the index of insect biodiversity. The imaging
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system may be configured to detect disturbing events, e.g.
larger animals or plants crossing the detection volume. The
imaging system may also serve as a detector for detecting
background radiation. In some embodiments, the sensor
signals recorded by the image sensor may be used by the
apparatus to detect insects and/or for detecting airborne
trajectories of the insects, detecting wing beat frequencies
and/or other attributes. The airborne trajectories are also
examples of optically detected attributes that may serve as
input to the computation of the index of insect biodiversity
and/or another quantity associated with insect activity.
[0093] In some embodiments, the one or more detectors,
e.g. the image sensor, comprise one or more photo diodes.
Individual photodiodes that receive light from the entire
detection volume or from a part of the detection volume
allow for a fast time-resolved detection of changes in the
intensity of backscattered light. Such signals may be used to
determine wing beat frequencies of flying insects which, in
turn, may be used to detect the presence of insects and,
optionally, to distinguish between different types of insects
based on properties of the wing beat patterns, e.g. the
relative amplitudes of multiple frequencies in a frequency
spectrum associated with a detected insect event.

[0094] In some embodiments, the detector module com-
prises an array of photodiodes, the photodiodes configured
to receive light from respective parts of the detection vol-
ume, e.g. a linear or other 1D array or a 2D array, or another
form of 2D image sensor that allows a spatially resolved
detection of light impinging on different areas of an image
plane. The detector module may be configured to direct light
from different sub-volumes of the detection volume onto
respective photo-diodes of the array or onto respective areas
of a 2D image sensor, thus allowing a space-resolved
detection of insects. In some embodiments, the array of
photosensitive elements comprises no more than 128 pho-
todiodes, such as no more than 64, such as no more than 25,
such as no more than 16, such as no more than 9, such as no
more than 4 photodiodes.

[0095] In some embodiments, the detector module is con-
figured to selectively detect light at one or more predeter-
mined wavelengths or one or more small wavelength bands.
In some embodiments, the detector module is configured to
selectively detect light at two or more wavelengths or small
wavelength bands where the two or more wavelengths or
wavelength bands are spaced apart from each other and do
not overlap each other. To this end, the detector module may
comprise one or more light-sensitive sensors—e.g. one or
more photodiodes, photodiode arrays or other image sen-
sors—configured to selectively detect light at two or more
wavelengths or small wavelength bands where the two or
more wavelengths or wavelength bands are spaced apart
from each other and do not overlap each other. This may e.g.
be achieved by a light-sensitive sensor where respective
bandpass filters are selectively and alternatingly positioned
in front of respective light-sensitive areas of the sensor.
Alternatively, the detector module may include two or more
separate light-sensitive sensors, each configured to detect
light at a respective wavelength or wavelength band. Yet
alternatively or additionally, the detector module may be
configured to electronically separate sensor signals from
light at the respective wavelength bands, e.g. by employing
and filtering modulated light as described herein.

[0096] In particular, a detector module configured to selec-
tively detect light at 808 nm and at 970 nm, respectively, has
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been found to be suitable for detecting and distinguishing
different type of insects, e.g. based on a ratio of backscat-
tered light at the respective wavelength. In some embodi-
ments, the detector module comprises at least a first light-
sensitive sensor configured to selectively detect light within
a first wavelength band; and at least a second light-sensitive
sensor to selectively detect light within a second wavelength
band, non-overlapping with the first wavelength band.

[0097] Alternatively, the detector module comprises a
light sensitive sensor configured to selectively detect light
within a first wavelength band and within a second wave-
length band, non-overlapping with the first wavelength
band. In the latter embodiment, the detector module may
include a modulation filter in order to separately register
received light in the first and second wavelength bands and
modulated at first and second modulation frequencies,
respectively. Generally, the detector module may include a
single detector or multiple detectors.

[0098] The detector module may be configured to obtain
signals at a sampling rate of at least 1 MHz. A high sampling
frequency (e.g. in the MHz range) facilitates the use of
lock-in amplification which enables the ability to record two
wavelengths on one diode and/or the suppression of back-
ground radiation.

[0099] Besides making it possible to distinguish signals at
two wavelengths by a single detector, the modulation filter
further ensures that only light with the right frequency and,
optionally, the right phase can be detected by the detector
module. This in turn ensures that the detector module is
insensitive to light from other light sources such as the sun
or other artificial sources. An efficient suppression of other
light sources further ensures that detector data acquired at
different locations and at different times are comparable and
allow computation of a standardized biodiversity index.

[0100] In one preferred embodiment, the sensor signals
are modulation filtered by means of a lock-in amplifier or by
means of another suitable electronic modulation filter for
extracting signals modulated at a target modulation fre-
quency. When the illumination light at different wavelength
bands is also modulated at different modulation frequencies,
the detector module can separate sensor signals relating to
different wavelength bands into separate channels based on
the modulation filtering.

[0101] The processing unit may be configured to process
the received sensor signals so as to detect one or more insect
detection events and to extract one or more optically detect-
able attributes associated with the detected insect detection
events. The processing may include one or more of the
following: amplification, A/D conversion, filtering, calibra-
tion, feature detection, frequency analysis, calculation of
attributes and/or the like.

[0102] In particular, the processing unit may process the
sensor signal so as to detect one or more signal features
indicative of the presence of one or more insects in the
detection volume and extract from the sensor signal one or
more optically detectable attributes associated with the
detected insect detection events. The processing unit may
further be configured to count the number of detected insect
detection events, e.g. within a predetermined time period, a
sliding window or the like, so as to determine an estimate of
an amount of insects detected in the detection volume, e.g.
as a number of insects detected in the detection volume, e.g.
per unit time and/or per unit volume.
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[0103] Accordingly, the processing unit may output pro-
cessed detector data representing the respective insect detec-
tion events and the detected attributes.

[0104] In some embodiments, some or all of the process-
ing steps are performed by a processing unit external to the
insect sensor device, i.e. the processing steps may be imple-
mented in a device external to the insect sensor device or
they may be distributed between a local processing unit of
the insect sensor device and a remote processing unit,
separate from the insect sensor device.

[0105] For example, in such embodiments, the local pro-
cessing unit of the insect sensor may output sensor data
representing the detected sensor signals, optionally suitably
pre-processed, and the external processing unit may further
process the sensor signals so as to extract the optically
detectable attributes. The external processing unit may be
separate from a data processing system that performs the
computation of the index of insect biodiversity and/or of
another quantity associated with insect activity, or it may be
integrated therein.

[0106] In some embodiments, the processing unit is con-
figured to extract one or more optically detectable attributes
associated with the detected insect detection events. The
optically detected attributes may include one or more opti-
cally detectable attributes that can be determined from the
sensor signals acquired by the optical insect sensor device.
Examples of optically detectable attributes include: one or
more wing beat frequencies, a body-to-wing ratio, a mela-
nisation ratio (colour), a detected trajectory of movement of
an insect inside the detection volume, a detected speed of
movement of an insect inside the detection volume, an insect
glossiness, or the like. In some embodiments, the optically
detected attributes include a representation of light intensi-
ties associated with the insect detection event. The repre-
sentation of light intensities may include a time-resolved
and/or frequency-resolved representation, one or more fea-
tures of a time-resolved and/or frequency-resolved repre-
sentation, a processed version of a recorded time-resolved
and/or frequency-resolved representation, and/or the like.
For example, the representation may include time-resolved
intensities at one or respective wavelength bands. Suitable
features of a representation may include one or more loca-
tions of maxima and/or minima of the representation, one or
more maximum or minimum values of the light intensity,
locations, sizes and/or widths of one or more detected peaks
in the representation and/or other detectable features.
Examples of a processed version of a recorded time-resolved
and/or frequency-resolved representation include a com-
pressed version, an encoded version, an auto-encoded ver-
sion and/or a dimensionally reduced version of the recorded
time-resolved and/or frequency-resolved representation. In
some embodiments, the computation of the index of insect
biodiversity and/or of another quantity associated with
insect activity is based on a combination of two or more
optically detectable attributes. The detector data from each
insect sensor may be indicative of an amount, e.g. a number,
of detected insects detected in the detection volume during
a sampling period. The detector data may include one or
more optically detected attributes associated with each
detected insect detection event and/or another suitable rep-
resentation of the detected attributes, e.g. a distribution of
attributes detected during a sampling period. It will be
appreciated that, in some embodiments, the detector data
may include unprocessed or only partially processed data,
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e.g. time-resolved detected light intensities or spectra from
which one or more optically detectable attributes may be
extracted or which itself may serve as optically detected
attributes.

[0107] The detection and/or identification of insects based
on wing beat frequencies, melanisation ratios and insect
glossiness is described in more detail in WO 2017/182440
and in Gebru et. Al: “Multiband modulation spectroscopy
for the determination of sex and species of mosquitoes in
flight”, J. Biophotonics. 2018. While the above documents
describe these indicators in the context of a LIDAR system
using the Scheimflug principle and in the context of classi-
fication of insects, the present inventors have realized that
attributes extracted by these techniques may also be applied
to insect sensor devices based on other light sources that
illuminate an extended volume rather than a narrow laser
beam and to the computation of a biodiversity index instead
of a taxonomic classification of insects. For example, WO
2017/182440 discloses a laser-based LIDAR system for
detecting aerial fauna. Such a LIDAR system for aerial
fauna utilizes a collimated laser beam that is transmitted
relatively far into the atmosphere, and a receiver/detector
measures the backscattered laser light from insects. While
such an instrument is able to collect a large number of
recordings, LIDAR systems are generally alignment sensi-
tive and they require high-power lasers in order to provide
a sufficiently long-range laser beam of sufficient intensity.
Accordingly, such a system requires careful installation and
operation of a high-power laser typically requires supervi-
sion and is normally not suitable for operation in e.g. urban
areas.

[0108] Here and in the following, the term processing unit
is intended to comprise any circuit and/or device suitably
adapted to perform the functions described herein. In par-
ticular, the term processing unit comprises a general- or
special-purpose programmable microprocessing unit, such
as a central processing unit (CPU) of a computer or of
another data processing system, a digital signal processing
unit (DSP), an application specific integrated circuits
(ASIC), a programmable logic arrays (PLA), a field pro-
grammable gate array (FPGA), a special purpose electronic
circuit, etc., or a combination thereof.

[0109] In some embodiments the insect sensor device
comprises or is communicatively coupled to one or more
environmental sensor devices for sensing environmental
data, such as weather data. Examples of environmental data
include ambient temperature, humidity, amount of precipi-
tation, wind speed, etc. The one or more environmental
sensor devices may be included in the same housing as the
optical sensor or it may be provided as a separate unit, e.g.
a weather station, that may be communicatively coupled to
an insect sensor device and/or to a remote data processing
device. In some embodiments, a system of insect sensor
devices may include one or more environmental sensor
devices.

[0110] According to a fourth aspect, disclosed herein are
embodiments of a system of insect sensors, the system
comprising a plurality of optical insect sensor devices con-
figured to be individually positioned within a geographic
area, each insect sensor device configured to:

[0111] monitor insect activity within a three-dimen-
sional detection volume extending outside the insect
sensor device by detecting light from the detection
volume, wherein the detection volume is an enclosure-
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free void allowing unrestricted movement of living
airborne insects into and out of the void; and to

[0112] output detector data indicative of one or more
optically detected attributes associated with respective
detected insect detection events, each insect detection
event being indicative of one or more insects being
present in the detection volume.

[0113] The system thus allows consistent and uniform
monitoring of insect activity throughout even a large geo-
graphic area. Moreover, the monitoring process is performed
with little or no disturbance to the natural insect behavior,
thus avoiding undesired biases. The system is relatively cost
effective and allows automatic operation and data collection.
[0114] The system may further comprise a data processing
system communicatively coupled to the plurality of optical
insect sensor devices and configured to:

[0115] receive detector data from respective ones of the
plurality of optical insect sensor devices, the detector
data being indicative of one or more optically detected
attributes associated with respective detected insect
detection events, and to

[0116] compute, from the received detector data, one or
more quantities indicative of insect activity within the
geographic area, e.g. an index of biodiversity, the
number of detected insects of respective insect species,
and/or the like.

[0117] Each of the insect sensors may be an optical insect
sensor according to the third aspect described above. Each
insect sensor device may be mounted at a stationary detec-
tion site or non-stationary, e.g. mounted on a vehicle, e.g. as
described above.

[0118] In some embodiments, the detector data from
respective insect sensor devices is calibrated according to a
detector reference that is uniform across the plurality of
insect sensors.

[0119] Accordingly detector data from different insect
sensor devices are comparable. In particular, detector data
from different insect sensor devices may be used for the
calculation of a single index of insect biodiversity and/or for
the calculation of other quantities related to insect activity.
Moreover, indexes of biodiversity (or other quantities) cal-
culated from detector data from different insect sensor
devices are directly comparable.

[0120] In some embodiments, the calibration according to
a uniform detector reference includes one or more of the
following:

[0121] 1) A uniform calibration of the time axis for the
detected time-resolved light intensities, thereby
extracting consistent frequency characteristics of the
wing beat behaviour. This may be achieved by uniform
calibration of the respective processor clocks of the
insect sensor devices.

[0122] 2) A standardisation of the noise characteristics
of the insect sensor devices in order for the insect
sensor devices to have similar level of detection and in
turn yield consistent body to wing ratios. The noise
characteristics of the insect sensor devices are primarily
determined by the characteristics of the light-sensitive
sensor, e.g. by the characteristics of the quadrant detec-
tor and the performance of the transimpedance ampli-
fier circuits associated with each of the individual
detectors of the quadrant detector. These may be stan-
dardised by employing suitable manufacturing toler-
ances.
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[0123] 3) Calibration/Standardisation of the detectivity
of each insect sensor device for each wavelength,
thereby providing consistent melanisation ratio detec-
tion of different sensors.

[0124] The detectivity of the insect sensor device for a
given wavelength is a combination of many factors includ-
ing:

[0125] 1) The level and exact spatial profile of the light
emitted from the illumination module, in particular the
spatial overlap of the two wavelengths throughout the
entire detection volume.

[0126] 2) The exact alignment of the optical detector
module including lens, quadrant detector and the rela-
tive alignment of the two.

[0127] As the detectivity is the sum of several interdepen-
dent variables, it is not always possible to ensure an exact
match of both factors between insect sensor devices. Con-
sequently, a standardisation process is advantageously used
to measure offsets between insect sensor devices and/or
between different sensor areas of the same insect sensor
device so as to allow for a suitable calibration. In some
embodiments, this may be achieved by a calibration process
where spheres or other objects of respective predefined
colours are dropped within the detection volume of an insect
sensor device. This may be done across the entire detection
volume. By monitoring the ratio of signals in the different
wavelength channels of the detector module a characteristic
ratio for each insect sensor device can be detected and
subsequently compensated for, e.g. by determining one or
more offsets and/or one or more multiplicative factors and/or
one or more other calibration functions for adjusting one or
more of the respective intensity levels in the one or more
wavelength bands. In some embodiments, respective cali-
bration functions may be determined for each light-sensitive
area, e.g. for each photodiode of an array of light sensitive
areas. Accordingly, in some embodiments, each insect sen-
sor device is configured to output calibrated detector data,
calibrated at least based on a set of wavelength-specific
detectivity data indicative of a device-specific and wave-
length-specific detectivity of the insect sensor device in
respect of one or more predetermined calibration objects
within the detection volume at respective wavelengths.
[0128] In some embodiments, each insect sensor device
comprises a communications interface for transferring data
on detected insect detection events from the insect sensor
device to the data processing system so as to allow the data
processing system to collect standardised data from a plu-
rality of optical insect sensor devices.

[0129] The communications interface may be a wired or a
wireless interface configured for direct or indirect commu-
nication of detector data to the data processing system. For
example, indirect communication may be via a gateway
device, via one or more other insect sensor devices or
another node for relaying the detector data. The communi-
cation may be via a suitable communications network, such
as via a cellular telecommunications network, e.g. using
GSM/GPRS, UMTS, EDGE, 4G, 5G or any other suitable
cellular telecommunications standard. In some embodi-
ments, the communications interface may be configured for
communication via satellite. Alternatively or additionally,
the insect sensor device may include a local data storage
device for logging the detector data and for allowing the
stored data to be retrievable via a data port or a removable
data storage device.
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[0130] The data processing system may be implemented
as one or more suitably programmed computers, such as a
stand-alone computer, as a plurality of communicatively
coupled computers, e.g. as client server-system, as a virtual
computer or the like. The data processing system may
directly or indirectly be communicatively coupled to the one
or more insect sensor devices and receive the collected
detector data from the one or more insect sensor devices. To
this end, the data processing system may comprise a suitable
wired or wireless communications interface, e.g. as
described in connection with the communications interface
of the insect sensor devices.

[0131] The data processing system is configured, e.g. by a
suitable computer program, to process the received detector
data from the plurality of insect sensor devices, e.g. to
compute one or more indexes of insect biodiversity from the
received detector data and/or to compute another quantities
associated to insect activity.

[0132] For example, the data processing system may com-
pute a respective local index of insect biodiversity for each
of the one or more individual insect sensor devices. Each
local index of insect biodiversity may thus be indicative of
the local insect biodiversity in the environment around a
corresponding individual insect sensor device. Additionally
or alternatively, the data processing system may compute an
overall index of biodiversity from detector data received
from a plurality of insect sensor devices located within a
larger geographic area. The overall index of insect biodi-
versity may thus be indicative of insect biodiversity in a
larger geographic area.

[0133] It will be appreciated that the processing unit
and/or the data processing system may be implemented as a
client-server or a similar distributed system, where the data
acquisition and, optionally, some signal processing, is per-
formed locally in the insect sensor device, while other parts
of the data processing tasks may be performed by a remote
host system.

[0134] In some embodiments, each insect sensor device
may have an associated environmental sensor device while,
in other embodiments, the system may include more or
fewer environmental sensor devices compared to the number
of insect sensor devices. Accordingly, a process of comput-
ing an index of biodiversity and/or another quantity associ-
ated with insect activity may, in addition to the optically
detected attributes, further base the computation on envi-
ronmental data associated with the optically detected attri-
butes. For example, the process may base the computation of
the index of biodiversity and/or of another quantity associ-
ated with insect activity on one or more of the following
parameters indicative of environmental conditions during
the period where the optically detected attributes have been
recorded: ambient temperature, time of day, precipitation,
humidity, wind speed, etc. or a combination thereof. To this
end, a mathematical model may not only receive the opti-
cally detected attributes as input but also one or more
environmental data or other additional data, such as the time
of day, time of year, etc. Yet further, in some embodiments
the process may compute the index of biodiversity and/or
other quantity from the optically detected parameters and
compensate the computed biodiversity index and/or other
quantity for the sensed environmental data, e.g. by applying
a suitable correction factor or other correction function.
Suitable correction functions or factors may be based on
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training data, e.g. in the form of a trained machine learning
model, a look-up table and/or the like.
[0135] The present disclosure relates to different aspects
including the apparatus, sensor device and system described
above and in the following, corresponding apparatus, sys-
tems, methods, and/or products, each yielding one or more
of the benefits and advantages described in connection with
one or more of the other aspects, and each having one or
more embodiments corresponding to the embodiments
described in connection with one or more of the other
aspects and/or disclosed in the appended claims.
[0136] According to another aspect, disclosed herein are
embodiments of a computer-implemented method of deter-
mining an insect biodiversity index, the method comprising:
[0137] receiving detector data from one or more optical
insect sensor devices, the detector data being indicative
of one or more optically detected attributes associated
with respective insect detection events, detected by the
one or more insect sensor devices, wherein the detected
insect detection events are taxonomically unclassified;
[0138] computing an index of insect biodiversity
directly from the optically detected attributes associ-
ated with the taxonomically unclassified detection
events.
[0139] According to another aspect, disclosed herein are
embodiments of a data processing system configured to
perform steps of the method described herein. In particular,
the data processing system may have stored thereon program
code adapted to cause, when executed by the data processing
system, the data processing system to perform the steps of
the method described herein. The data processing system
may be embodied as a single computer or as a distributed
system including multiple computers, e.g. a client-server
system, a cloud based system, etc. The data processing
system may include a data storage device for storing the
computer program and detector data. The data processing
system may include a communications interface for receiv-
ing detector data.
[0140] According to another aspect, a computer program
comprises program code adapted to cause, when executed
by a data processing system, the data processing system to
perform the steps of the method described herein. The
computer program may be embodied as a computer-readable
medium, such as a CD-ROM, DVD, optical disc, memory
card, flash memory, magnetic storage device, floppy disk,
hard disk, etc. having stored thereon the computer program.
According to one aspect, a computer-readable medium has
stored thereon a computer program as described herein.
[0141] Additional aspects, embodiments, features and
advantages will be made apparent from the following
detailed description of embodiments and with reference to
the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0142] Preferred embodiments will be described in more
detail in connection with the appended drawings, where
[0143] FIG. 1 shows a schematic view of an apparatus for
determining an insect biodiversity index. The apparatus
comprises a system of insect sensor devices.

[0144] FIG. 2 schematically illustrates an embodiment of
a data processing system.

[0145] FIGS. 3 and 4 schematically illustrate embodi-
ments of an insect sensor device.
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[0146] FIG. 5 schematically illustrates an example of
sensor signals from a detector module of an embodiment of
an insect sensor device as described herein.

[0147] FIGS. 6 and 7 illustrate examples of detection
volumes.
[0148] FIG. 8 shows a flow diagram of an example of a

method for determining an index of insect biodiversity.
[0149] FIGS. 9A and 9B shows insect counts collected by
conventional trapping methods from two fields with differ-
ent degrees of biodiversity.

[0150] FIGS. 10A and 10B show corresponding histo-
grams of wing beat frequencies collected for the two fields
by an insect sensor device as described herein.

[0151] FIG. 11 shows an example of a calculated biodi-
versity prediction based on sensor data for the low biodi-
versity field (left) and the high biodiversity field (right).

DETAILED DESCRIPTION

[0152] FIG. 1 shows a schematic view of an apparatus for
determining an insect biodiversity index. The apparatus,
generally designated by reference numeral 100, comprises a
system of insect sensor devices. In particular the apparatus
comprises a data processing system 200 and a plurality of
insect sensor devices 120. The insect sensor devices are
deployed throughout a geographic area 300. Each insect
sensor device 120 may be mounted on a suitable stationary
or movable support, e.g. on a frame, on a stand, on a vehicle,
etc.

[0153] As will be described in greater detail below, each
insect sensor device may comprise an illumination module
including a light source, such as one or more halogen lamps,
one or more LEDs or the like, configured to illuminate an
illuminated volume in a proximity of the insect sensor
device. The insect sensor device may further comprise a
detector module including one or more detectors and one or
more optical elements configured to capture backscattered
light from at least a portion of the illuminated volume and
to guide the captured light onto the one or more detectors.
The illuminated volume from which light is captured by the
detector module for detecting insects is referred to as
detection volume 150. Generally, the detection volume may
be defined as the volume from which the detector module
obtains light signals useful for detecting insects. The detec-
tion volume is typically defined by an overlap of the volume
illuminated by the illumination module and by the field of
view and depth of field of the detector module. In particular,
the detection volume is not limited by any physical enclo-
sure but is an open, unenclosed void or space which air-
borne, living insects may enter or exit in an unrestricted
manner.

[0154] The insect sensor device comprises a processing
unit configured to perform the detection of insects and to
forward information about the detected insect population
and associated optically detectable attributes to the data
processing system.

[0155] Preferably, the insect sensor devices 120 are of the
same type and calibrated and standardized according to a
common detector reference, thus allowing detector data and
attributes determined by them to be compared with each
other and/or to be used as input to a computation of an
overall index of insect diversity and/or another quantity
indicative of insect activity associated with the geographic
area 300.
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[0156] The data processing system 200 may be a stand-
alone computer or a system of multiple computers, e.g. a
client-server system, a cloud-based system or the like. An
example of a data processing system will be described in
more detail below with reference to FIG. 2.

[0157] Each insect sensor device 120 is an optical insect
sensor device using reflected/backscattered light from
insects in a detection volume 150 to detect insects and to
measure optically detectable attributes of the detected
insects, e.g. one or more of the following: one or more wing
beat frequencies, a body-to-wing ratio, a melanisation ratio
(colour), a detected trajectory of movement of an insect
inside the detection volume, a detected speed of movement
of an insect inside the detection volume, an insect glossi-
ness, or the like.

[0158] Generally, the insect sensor device detects insect
detection events. An insect detection event refers to the
detection of one or more insects being present in the
detection volume. Detection of an insect detection event
may be based on one or more trigger criteria, e.g. based on
a signal level of the detected sensor signal and/or on another
property of the sensor signals sensed by the detector module
of the insect sensor device in response to the received light
from the detection volume.

[0159] The detection volume 150 associated with each
insect sensor device is a detection volume external to the
corresponding insect sensor device located in the vicinity of
the insect sensor device. An example of an insect sensor
device will be described in more detail below with reference
to FIG. 3. Examples of detection volumes will be described
in more detail below with reference to FIGS. 6 and 7.
[0160] In the example of FIG. 1, the apparatus comprises
three like insect sensor devices. It will be appreciated that
other embodiments may include fewer or more insect sensor
devices. For example, some embodiments may only include
a single insect sensor device, while other embodiments may
include 5, 10, 20, 100 or even more insect sensor devices. It
will be appreciated, that the number of insect sensor devices
may be chosen depending on factors such as the size and
variability of the geographic area, the desired accuracy of
the resulting biodiversity index or other computed quantity,
the spatial resolution of respective local indexes of biodi-
versity or other local quantities, etc.

[0161] Each insect sensor device 120 is communicatively
coupled to the data processing system 200 and communi-
cates the collected detector data, including measured attri-
butes to the data processing system 200. In the example of
FIG. 1, each insect sensor device communicates the col-
lected detector data via a cellular telecommunications net-
work to the data processing system 200, e.g. via a GSM/
GPRS network, USTM network, EDGE network, 4G
network, 5G network or another suitable telecommunica-
tions network. It will be appreciated that the communication
may be a direct communication or via one or more inter-
mediate nodes. Similarly, the communication may use alter-
native or additional communications technologies, e.g. other
types of wireless communication and/or wired communica-
tion. Yet further, the collected detector data may be stored
locally by the insect sensor device for subsequent manual
retrieval from each insect sensor device, e.g. on a portable
data storage device and subsequent input to the data pro-
cessing system 200.

[0162] The data processing system 200 is configured to
execute a computer program for analysing the detector data
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from one or more insect sensor devices and for computing
one or more desired quantities indicative of insect activity.
In particular, the data processing system 200 may be con-
figured to compute an index of insect biodiversity directly
from the detector data as described herein, i.e. without
intermediate taxonomic classification of the detected insects.
The data processing device may output the computed index
of insect biodiversity or other computed quantity in a
suitable form, e.g. on a display, on a storage device, via a
data communications interface, and/or the like.

[0163] In the example of FIG. 1, one of the insect sensor
devices comprises an environmental sensor device 180 for
sensing one or more environmental parameters, such as
temperature, wind speed, humidity and/or other weather
data. The sensed environmental data is also communicated
to the data processing system, e.g. directly by the environ-
mental sensor device or by the insect sensor device. It will
be appreciated that, in some embodiments, each insect
sensor includes or is operationally coupled to, an environ-
mental sensor device. In other embodiments only a subset of
insect sensor devices include or are operationally coupled to
an environmental sensor device. Alternatively or addition-
ally, the apparatus may include one or more environmental
sensor devices deployed in the geographic area 300 and
communicatively coupled to the data processing system 200,
separately from the insect sensor devices. The data process-
ing system may thus also base the computation of the index
of biodiversity or other quantity on the environmental data
sensed by the environmental sensor device(s), e.g. by com-
puting a modified index of insect biodiversity or otherwise
relating the computed index of insect biodiversity to the
sensed environmental conditions.

[0164] It will be appreciated that, while the system of the
plurality of insect sensor devices and the data processing
system of FIG. 1 is particularly suitable for determining an
index of biodiversity, embodiments of the system may also
be used to determine other quantities indicative of insect
activity within a geographic area, e.g. for monitoring the
insect activity within an agricultural production area, such as
one or more fields for growing crops.

[0165] FIG. 2 shows a schematic view of an example of a
data processing system 200, e.g. the data processing system
200 of the apparatus of FIG. 1.

[0166] The data processing system 200 comprises a cen-
tral processing unit 240 or other suitable processing unit.
The data processing system further comprises a data storage
device 230 for storing program code, received detector data
and, optionally, a mathematical model for computing the
index of insect biodiversity. Examples of suitable data
storage devices include a hard disk, an EPROM, etc. The
data processing system further comprises a data communi-
cations interface 270, e.g. a network adaptor, a GSM module
or another suitable circuit for communicating via a cellular
communications network or via another wireless communi-
cations technology. To this end, the data processing system
further comprise an antenna 271. It will be appreciated that
the data processing system may include a wired data com-
munications interface instead of or in addition to a wireless
communication interface. The data processing system fur-
ther comprises an output interface 220 e.g. a display, a data
output port, or the like.

[0167] FIG. 3 schematically illustrates an embodiment of
an insect sensor device, e.g. one of the insect sensor devices
of the system of FIG. 1. The insect sensor device, generally
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designated by reference numeral 120, comprises a process-
ing unit 140, a detector module 130 and an illumination
module 131, all accommodated within a housing 110. In this
example, the illumination module and the detector module
are vertically aligned with each other and the illumination
module is arranged below the detector module. However,
other arrangements are possible as well.

[0168] Generally, in order to maximize the amount of
backscattered light from insects inside the detection volume
150, it may be preferable to position the illumination module
adjacent or otherwise close to the detector module, such that
the illumination direction and the viewing direction only
define a relatively small angle between them, e.g. less than
30° such as less than 20°. In some embodiments, the
illumination module is configured to emit a beam of light
along an illumination direction, and the detector module
defines a viewing direction, e.g. as an optical axis of the
detector module, wherein the illumination direction and the
viewing direction define an angle between each other, the
angle being between 1° and 30°, such as between 5° and 20°.

[0169] The illumination module comprises an array of
light-emitting diodes (LEDs) 161 and a corresponding array
of lenses 162 for directing the light from the respective
LEDs as a diverging beam 163 along an illumination direc-
tion 164. The array of light emitting diodes may comprise a
first set of diodes configured to selectively emit light at a first
wavelength band, e.g. at 808 nm+/-25 nm. The array of light
emitting diodes may further comprise a second set of diodes
configured to selectively emit light at a second wavelength
band, different from the first wavelength band, in particular
spaced-apart from the first wavelength band, e.g. at 970
nm+/-25 nm. In other embodiments, the array of light
emitting diodes may include alternative or additional types
of LEDs or only a single type of LEDs. For example, in
some embodiments, the LEDs may be configured to emit
broad-band visible, near-infrared and/or infrared light.

[0170] The detector module 130 comprises an optical
system 132 in the form of a Fresnel lens. Alternative another
lens system may be used, e.g. an NIR coated aspheric lens,
e.g. having 60 mm focal length and an ¢76.2 mm aperture.
The detector module 130 includes an optical sensor 133, e.g.
one or more photodiodes, such as an array of photodiodes,
a CCD or CMOS sensor and the optical system directs light
from the detection volume onto the optical sensor. In some
embodiments, the optical system images an object plane 152
inside the illuminated volume onto the optical sensor. The
field of view of the optical system and the depth of field of
the optical system are configured such that the optical
system directs light from a portion of the volume illuminated
by the illumination module onto the optical sensor. The
portion of the illuminated volume from which the optical
system receives light such that it can be detected by the
optical sensor and used for detection of insects defines a
detection volume 150. The optical system 132 defines an
optical axis 134 that intersects with the illumination direc-
tion 164, preferably at a small angle, such as 10°.

[0171] For example, when an optical system is based on a
camera lens having =24 mm, /2.8 and an optical sensor
includes a %4" image sensor, the detector module may be
configured to focus on an object plane at 2 m distance from
the lens, corresponding to a field of view of approximately
1.7 mx1.7 m and a depth of field of approximately 1.3 m,
thus resulting in a detection volume of approx. 3.7 m>.
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[0172] The detector module 130 is communicatively
coupled to the processing unit 140 and forwards a sensor
signal indicative of the captured radiation by the optical
sensor 133 to the processing unit. The processing unit 140
may include a suitably programmed computer or another
suitable processing device or system. The processing unit
receives the sensor signal, e.g. an image or stream of images
and/or one or more sensed light intensities from respective
one or more photodiodes and, optionally, further sensor
signals from the detector module. The processing unit 140
processes the received sensor signals so as to detect and
identify insects in the detection volume and output detector
data indicative of detected insect detection events and asso-
ciated optically detectable attributes.

[0173] FIG. 4 schematically illustrates a more detailed
view of an example of the insect sensor device. The insect
sensor device 120 of FIG. 4 is similar to the insect sensor
device of FIG. 3 and comprises a processing unit 140, a
detector module 130 and an illumination module 131, all
accommodated within a housing 110 and all as described in
connection with FIG. 3. In this example, the illumination
module 131 includes an array of light emitting diodes
(LEDs). The LEDs may be arranged in a 2D pattern, such as
on a regular 2D grid. The LEDs may be distributed over an
area of at least 10 cm®, such as at least 30 cm?, such as at
least 60 cm?, such as at least 80 cm?. In some embodiments,
the LEDs may be distributed over an area between 10 cm?
and 400 cm?, such as between 30 cm? and 300 cm?, such as
between 40 cm? and 200 cm?, such as between 60 cm? and
120 cm?, e.g. about 90 cm?. Accordingly, an illumination
beam having a large cross-sectional area may be emitted so
as to illuminate a large volume simultaneously. The light
emitted from each diode may be partially collimated by an
asymmetrical lens to form a diverging beam, e.g. expanded
with 40° and 8° diverging angles in the vertical and hori-
zontal axis, respectively (measured as full divergence
angles). The array of LEDs may all emit the same wave-
length band or be arranged in such a way as to mix multiple
wavelengths. In one example, the illumination module emits
light at two different narrow wavelength bands, i.e. a first
band at a first wavelength and a second band at a second
wavelength, such as at 808 nm and 970 nm, respectively.
Other embodiments may include a single type of LEDs or
more than two different types of LEDs. The light from the
illumination module is modulated at one or at multiple
respective frequencies, e.g. the light at each wavelength may
be encoded with a unique frequency. In one example, the
light at the first wavelength is modulated at a first modula-
tion frequency and the light at a second wavelength is
modulated at a second modulation frequency, different form
the first modulation frequency. The first and second modu-
lation frequencies may each be selected between 10 kHz and
500 kHz, such as between 50 kHz and 200 kHz. In one
example, the first modulation frequency is about 80 kHz and
the second modulation frequency is about 120 kHz. To this
end, the processing unit includes a synchronization circuit
141 having a clock for controlling the illumination module.

[0174] The detector module 131 includes an image sensor
133 including a 2x2 array of light-sensitive elements, such
as photodiodes. In one particular embodiment, the image
sensor is a quadrant detector with four individual Si photo-
diodes arranged in a square. It will be appreciated that other
embodiments may include a larger array of light-sensitive
elements or a smaller array or light sensitive elements, such

Apr. 6, 2023

14

as a 2x1 array, or even a single light sensitive element. The
optical system 132 is arranged relative to the photodiode
sensor array in such a way as to image an image plane within
the detection volume onto the photodiode array. The four
light-sensitive areas thus collect light from four substantially
separate sub-volumes of the detection volume.

[0175] The detected signals from the photodiode array 133
are fed into the processing unit 140. The processing unit
includes an amplifier bank 142 with a number of amplifiers
matching the size of the photodiode array. In this example,
the amplifier bank includes four transimpedance amplifiers.
The amplified signals are fed into a corresponding A/D
converter bank 143 which includes a number of A/D con-
verters corresponding to the size of the photodiode array,
such as four A/D converters. The A/D converter bank 143
generates respective digital time-resolved signals for the
individual photodiodes. The processing unit further com-
prises a de-multiplexer circuit 144, e.g. an FPGA imple-
menting a number of digital lock-in amplifiers correspond-
ing to the size of the photodiode array and to the number of
wavelengths. In one example, the de-multiplexer circuit
implements eight lock-in amplifiers corresponding to the
four quadrants of the quadrant detector and two individually
modulated wavelengths. The de-multiplexer circuit 144 de-
multiplexes the signals from each of the photodiodes into
separate signals, optionally into separate signals for the
respective wavelengths, i.e. for each photodiode, the de-
multiplexer circuit generates one signal for each individually
modulated wavelength. To this end, the de-multiplexing
circuit receives a clock signal from the synchronisation
circuit 141. The lock-in amplifiers further serve as an
efficient filter for light not modulated with frequencies
around the two lock-in frequencies.

[0176] The resulting de-multiplexed signals thus include
one or more, e.g. two, wavelength-specific channels for each
photodiode, e.g. 2x4 channels. It will be appreciated that, in
embodiments with a different number of wavelengths or a
different array size, the number of de-multiplexed signals
will generally be different. The de-multiplexed signals are
forwarded to a data processing circuit 145 which processes
the individual signals to detect insects being present in the
detection volume, i.e. to detect insect detection events, and
to determine one or more attributes of each detected insect.
To this end, the data processing circuit 145 may initially
perform a calibration of the signal, e.g. based on stored
calibration data, such as stored offsets and/or multiplicative
factors. The data processing circuit outputs detector data
indicative of the insect detection events and the associated
determined attributes. The data processing circuit may fur-
ther log detector data associated with multiple insect detec-
tion events. The data processing circuit may intermittently,
e.g. periodically, upon request, or when the internal log
buffer is about to be full, communicate the recorded detector
data via the communications interface 170 to a remote data
processing system as described herein.

[0177] FIG. 5 schematically illustrates an example of
de-multiplexed sensor signals from a detector module of an
embodiment of an insect sensor device as described herein,
e.g. an insect sensor device as described in connection with
FIG. 3 or 4. In this example, the sensor signals from the
detector module includes respective time series of detected
light intensities at two narrow wavelength bands, e.g. as
recorded by respective photodiodes provided with respec-
tive bandpass filters or by one of the photodiodes of the array
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of FIG. 4. In some embodiments the signal may be inte-
grated or otherwise combined from multiple photodiodes,
from an image sensor and/or the like.

[0178] In this example, time series 701 corresponds to
detected light at 808 nm while time series 702 corresponds
to detected light at 970 nm. However, other embodiments
may use other wavelengths and/or more than two wave-
lengths or wavelength bands.

[0179] The processing unit of an insect sensor device may
process the times series to detect the presence of an insect in
the detection volume and to determine one or more attributes
of the detected insect. Alternatively, some or all of the signal
and data processing may be performed by a data processing
system external to the insect sensor device.

[0180] In the present example, the process implemented
by the processing unit and/or an external data processing
system may detect the presence of detected radiation above
a predetermined threshold and/or determine a fundamental
harmonic of the detected frequency response so as to detect
the presence of an insect, i.e. to identify an insect detection
event.

[0181] For example, in one embodiment, the processing
unit of the insect sensor device records data for a given
interval (typically ten minutes), extracts events and metadata
and then starts a new recording. The recorded data may
include respective time series of the de-multiplexed chan-
nels of sensor signals.

[0182] To extract the events from the recorded raw data,
the process estimates a rolling temporal mean and standard
deviation. To this end, in each window, the data is reduced
by a factor 10 before the mean and standard deviation is
calculated.

[0183] An event threshold is then defined by multiplying
the estimated standard deviation with a signal to noise factor
(SNR), resulting in a threshold map representing the data of
the respective channels.

[0184] Finally, the estimated rolling mean is removed
from the signal and the events are extracted by applying the
threshold map. The data associated with the extracted events
are stored on the insect sensor device and uploaded, e.g. via
cellular connection, to a cloud database or other suitable data
repository as soon as a connection is available. In cases
where no cellular or other data connection is available, it is
possible to store the extracted events locally on the insect
senor device.

[0185] A process implemented by a cloud service or
another type of data processing system external to the insect
sensor device may perform data processing of the recorded
data associated with the detected insect detection events. It
will be appreciated, however, that some or even all of the
subsequent processing may also be performed locally on the
insect sensor device.

[0186] Inany event, the process may compute one or more
attributes of the insects associated with the detected insect
events. Examples of such attributes include a fundamental
wing beat frequency (WBF), a body-wing ratio (BWR) and
a melanisation ratio (MEL).

[0187] For example, the process may compute the funda-
mental wing beat frequency (WBF) from the determined
fundamental harmonic of the frequency response of a
detected detection event. The process may compute the
body-wing ratio as a mean ratio between a wing and body
signal. The body signal may be determined as a baseline
signal 711 of a detection event which represents the scat-
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tering from the insect with closed wings while the wing
signal may be determined as the signal levels 712 at the
peaks in scattering.

[0188] The melanisation ratio may be determined as a
mean ratio between the signal strengths of the two recorded
channels during a detection event.

[0189] Based on respective sets of one or more of the
above attributes, associated with a plurality of insect detec-
tion events, optionally in combination with other param-
eters, a data processing system may compute an index of
insect of biodiversity.

[0190] Generally, embodiments of the insect sensor device
described herein provide a detection volume that is large
enough for the detector module to observe a number of
insects representative for the population density in the area.
The detection volume is also small enough to be sufficiently
uniformly illuminated so as to provide high signal strength
at the image sensor.

[0191] Moreover, embodiments of the apparatus described
herein provide fast observation times, e.g. so as to reliably
detect insects even in situations of high insect activity.
Moreover embodiments of the apparatus described herein
provide long enough observation times to be able to reliably
determine attributes of the flying insects.

[0192] FIGS. 6 and 7 illustrate examples of detection
volumes. FIG. 6 schematically shows an example of a
frusto-conical detection volume resulting from an illumina-
tion module emitting a diverging light beam with a generally
circular cross section. FIG. 7 schematically illustrates an
example of a frusto-pyramidal detection volume.

[0193] In order to compute an accurate index of insect
biodiversity it is preferable that the recorded insect activity
is representative for the area under consideration. In order to
achieve this, sufficiently high counting statistics are pre-
ferred.

[0194] As described herein, some embodiments of the
insect sensor device described herein record one or more
time series of light scattering off one or more insects in flight
at one or more wavelengths of the light. From the recorded
time series, the wing beat frequency and/or ratio of scatter-
ing from body and wings, respectively, can be computed.
However, in order to obtain a reliable and accurate detection
result, the recorded time series should be long enough for
multiple wingbeats to occur. The wingbeat frequency of
insects in flight spans from around 10 Hz to around a 1000
Hz. In order to get more than 10 wings beats the time the
insect is in the detection volume should, in the worst case,
be preferably more than 100 ms or even 1 s. Similarly, a
detection based on recorded flight trajectories is facilitated
by observation times long enough to record trajectories of
sufficient lengths.

[0195] Embodiments of the insect sensor device described
herein thus employ a detection volume shaped and sized to
allow sufficiently long observation times, even when sensor
is moving across an area of land.

[0196] The extent of the detection volume in a direction
along an optical axis of the detector module should prefer-
ably be larger than 50 cm, such as larger than 1 m, such as
larger than 2 m, such as larger than 5 m in order to ensure
that insects are likely to remain inside the detection volume
sufficiently long. For example, the length of the detection
volume along the optical axis of the detector volume may be
less than 100 m, such as less than 50 m, such as less than 20
m, such as less than 10 m.
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[0197] Furthermore, as discussed above, it is preferred that
the total detection volume is of the order of, or larger than,
1 m> such as larger than 1 m>. In order to achieve such a
detection volume with one or a system of small and cost-
efficient insect sensor devices, it is preferred that the illu-
mination module is carefully configured, and that the detec-
tion volume of the individual insect sensor is relatively
large, such as larger than 10 1.

[0198] The illuminated detection volumes shown in FIGS.
6 and 7 both provide large detection volumes in the vicinity
of the insect sensor device, i.e. allowing representative and
local measurements.

[0199] The detection volumes shown in FIGS. 6 and 7
represent an overlap between an illuminated volume, illu-
minated by an illumination module of the insect sensor
device, and by a detectable volume from which a detector of
the insect sensor device receives light, i.e. the detectable
volume may be defined by a field of view and depth of field
of the detector. In one embodiment, the illumination module
comprises one or more suitable light sources, e.g. one or
more high-power LEDs, emitting light which is diverging
from the illumination module so as to distribute light into a
large volume. In one particular embodiment, the illumina-
tion module is configured to emit light with a full divergence
angle in the horizontal plane that is larger than 5°, such as
larger than 10° such as larger than 20°, while the vertical
divergence is limited to angles smaller than 2° such as
smaller than 5°. The resulting detection volume conse-
quently will be optimized in space just above the vegetation
canopy. Moreover, in this embodiment, the amount of light
which disappears upwards or into the vegetation is limited.
In another embodiment, the illumination module is config-
ured to emit light with a full divergence angle in the vertical
plane that is larger than 5°, such as larger than 10° such as
larger than 20°, such as larger than 30°, while the horizontal
divergence is limited to angles smaller than 15° such as
smaller than 10°. This embodiment allows a compact design
of'the insect sensor device with the detector and illumination
modules arranged one above the other.

[0200] It is further preferred that the illumination module
is configured so as to direct the illumination light along a
center optical axis of the radiated light (i.e. along a direction
of illumination) that points upwards in such an angle as to
completely eliminate light form hitting the crop, e.g.
between 1° and 30°, such as between 2° and 30°, such as
between 5° and 20°.

[0201] An example of a detection volume resulting from
such a diverging, pie-shaped, forward-upwardly directed
illumination beam is illustrated in FIG. 7. In particular, FIG.
7 illustrates a 3D view of the detection volume 150 as well
as a side view and a top view of the detection volume. In the
example of FIG. 7, the distance d, between the aperture of
the detector module and the start of the detection volume is
about 1 m. The distance d, between the aperture of the
detector module and the far end of the detection volume is
about 10 m. The divergence angle 6,,,,.,; of the diverging
light beam in the vertical direction (full angle) is about 4°
while the divergence angle 0,,,,, ... in the horizontal direc-
tion (full angle) is about 20°. However, it will be appreciated
that other embodiments may have different size and/or
shape. For example, the divergence angle A, ,; of the
diverging light beam in the vertical direction (full angle)
may be about 40° while the divergence angle Ay, 0mzm 1
the horizontal direction (full angle) is about 8°.
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[0202] Generally, when the detection volume is positioned
close to the insect sensor device efficient illumination of the
detection volume and reliable detection of small insects is
facilitated. For example, the boundary of the detection
volume closest to an aperture of the detector module may be
between 1 cm and 10 m away from the aperture of the
detector module, such as between 10 cm and 5 m, such as
between 10 cm and 2 m. The boundary of the detection
volume furthest from an aperture of the detector module
may be between 3 m and 100 m away from the aperture of
the detector module, such as between 5 m and 20 m, such as
between 8 m and 12 m.

[0203] FIG. 8 shows a flow diagram of an example of a
method for determining an insect biodiversity index spray-
ing insecticides.

[0204] In initial step S1, a set of insect sensor devices are
provided. In particular, the insect sensor devices are cali-
brated and standardized according to a common reference as
described herein.

[0205] For example, the calibration process may include
the following steps:

[0206] A plurality of objects, e.g. balls, of respective
colors are caused to move in the detection volume, e.g. by
dropping the objects such that they traverse the detection
volume of the insect sensor device. The sensor signals for
each of the objects are recorded. This is repeated a plurality
of times with objects moving at different positions within the
detection volume. Preferably, for each position, sensor sig-
nals for a plurality of object movements, such as at least 100,
such as more than 500 movements of objects having differ-
ent color are recorded. The sensor signals may represent
detected intensities (denoted Iz, ; and I,,, respectively) at
two wavelength bands around wavelengths A, and A,,
respectively, as described herein. For each object, the ratio
L4/(Igo 1+1;,) or another measure of the relative detected
intensity at the two wavelengths is calculated. In one
embodiment A, =808 nm and A,=970 nm. In case of a sensor
array such as a quadrant detector this may be done for each
light-sensitive area of the array. The distribution of detected
ratios may be recorded (e.g. for each light-sensitive array)
and the sensor signals may be adjusted by respective cali-
bration functions so as to cause the calibrated distributions
to conform with a reference distribution, e.g. such that the
peak of the distribution is located at a common reference
value. Knowing these calibration functions, melanisation
ratios observed on insects by different insect sensor devices
can be compensated to yield identical results compensated
for variations in spatial overlap of the wavelengths and the
exact overlap of the two wavelengths.

[0207] In step S2, the insect sensors are deployed in a
geographic area for which an index of insect biodiversity is
to be computed.

[0208] In step S3, detector data indicative of respective
insect detection events are recorded and associated optically
detectable attributes are computed. This step may be
repeated for a predetermined period of time or until suffi-
cient data has been collected.

[0209] In step S4 a biodiversity index is calculated based
on detector data from the set of insect sensor devices. Again
the collection of data and computation of a biodiversity
index may be repeated, e.g. in order to analyse a change of
biodiversity over time.
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Example of Biodiversity Calculation—Total
Variance Method

[0210] Insect biodiversity is conventionally measured by a
combination of species richness (number of different species
recorded in a sample) and aggregate statistics such as the
Simpson’s biodiversity index, which takes into account the
relative abundance of species.
[0211] FIGS. 9A and 9B show insects collected by con-
ventional trapping methods from two fields with different
degrees of biodiversity. The figures show histograms repre-
senting the number of counts per species for two fields with
different degrees of biodiversity. FIG. 9A shows the number
of counts for a field with low biodiversity while FIG. 9B
shows corresponding counts for a field with high biodiver-
sity.
[0212] The insects have been taxonomically classified by
an expert in the field using a microscope. In the low
biodiversity field, a total of 14 different insect species were
identified, whereas in the high biodiversity field 25 different
insect species were identified over the same period in the
same traps. Including the relative numbers of each species,
a Simpson’s biodiversity index can be calculated of 0.635
for the low biodiversity field and 0.828 for the high biodi-
versity field.
[0213] FIGS. 10A and 10B show corresponding histo-
grams of wing beat frequencies collected for the two fields
by an insect sensor device as described herein. FIG. 10A
shows the number of counts for a field with low biodiversity
while FIG. 10B shows corresponding counts for a field with
high biodiversity. From visual inspection it is clear that there
are wingbeat frequencies present in the high biodiversity
field that are not present in the low biodiversity field,
particularly around the higher frequencies between 200 Hz
and 300 Hz.
[0214] Both fields have a dominant peak at 100 Hz, but
this peak is slightly less dominant in the high biodiversity
histogram than the low biodiversity histogram.
[0215] Similar histograms are available with different fea-
tures of field insects, such as body/wing ratio and melani-
sation, and each of these and their combination can be
interpreted to provide a comparative picture of biodiversity.
[0216] Some embodiments of the apparatus described
herein characterize, without the need for taxonomic identi-
fication of every detected insect, the insect diversity as a
statistic measure computed from the distribution of attri-
butes such as wing beat frequency.
[0217] FIG. 11 shows a calculated biodiversity prediction
based on sensor data for the low biodiversity field (left) and
the high biodiversity field (right).
[0218] Although the invention has been described with
reference to certain specific embodiments, various modifi-
cations thereof will be apparent to those skilled in art
without departing from the spirit and scope of the invention
as outlined in claims appended hereto.
[0219] In summary, advantages of some or all of the
disclosed embodiments include:
[0220] Real time monitoring
[0221] The ability to detect variations in biodiversity on
a day to day, hour to hour and even minute to minute
basis
[0222] Unbiased, no use of pheromones or other meth-
ods of manipulating insect activtiy are needed.
[0223] Cheap and accessible
[0224] Labour and “laboratory” free
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[0225] Standardises data collection and format
[0226] Improves ability to compare biodiversity mea-
surements
[0227] Resulting index may contain more information
[0228] Reduces risk of human and systematic error
[0229] It will be appreciated that insects vary a lot in size

and behavior. Insect sizes can vary from less than one mm
to a few cm and movement patterns of insects can vary from
insects standing still, hovering, in air to jumping insects with
ballistic trajectories. Embodiments of the apparatus and
insect sensor device described herein have been found useful
for various types of airborne insects, including flying insects
having wings and jumping insects, such as jumping flea
beetle, e.g. cabbage stem flea beetle (Psylliodes chryso-
cephala).
1-24. (canceled)
25. An apparatus for determining an index of insect
biodiversity, comprising:
a plurality of optical insect sensor devices configured to
be individually positioned within a geographic area,
each of the plurality of optical insect sensor devices
configured to:
monitor insect activity within a detection volume
extending outside the insect sensor device by detect-
ing light from the detection volume, and

output detector data indicative of one or more optically
detected attributes associated with respective
detected insect detection events, each insect detec-
tion event being indicative of one or more insects
being present in the detection volume;
a data processing system communicatively coupled to the
plurality of optical insect sensor devices and configured
to:
receive the detector data from respective ones of the
plurality of optical insect sensor devices, the detector
data being indicative of one or more optically
detected attributes associated with respective
detected insect detection events, and

compute, from the received detector data, an index of
insect biodiversity indicative of insect biodiversity
within the geographic area.
26. An apparatus according to claim 25, wherein the
detected insect detection events are taxonomically unclas-
sified and wherein the data processing system is configured
to compute the index of insect biodiversity directly from the
optically detected attributes associated with the taxonomi-
cally unclassified detection events.
27. An apparatus for determining an index of insect
biodiversity, comprising:
one or more optical insect sensor devices configured to be
individually positioned within a geographic area, each
of the one or more insect sensor devices configured to:
monitor insect activity within a detection volume to
detect one or more insect detection events, each
insect detection event being indicative of one or
more insects being present in the detection volume,
and

output detector data indicative of one or more optically
detected attributes associated with respective
detected insect detection events,

a data processing system communicatively coupled to the
one or more of optical insect sensor devices and
configured to:
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receive the detector data from the one or more optical
insect sensor devices, the detector data being indica-
tive of one or more optically detected attributes
associated with respective detected insect detection
events, wherein the detected insect detection events
are taxonomically unclassified, and

compute an index of insect biodiversity directly from
the optically detected attributes associated with the
taxonomically unclassified detection events.

28. An apparatus according to claim 27, wherein the data
processing system is configured to compute the index of
insect biodiversity as a measure of variability of the opti-
cally detected attributes associated with respective detected
insect detection events.

29. An apparatus according to claim 28, wherein the data
processing system is configured to compute the measure of
variability by performing a statistical analysis of the opti-
cally detected attributes, the statistical analysis being a
multi-variate analysis associated with respective detected
insect detection events.

30. An apparatus according to claim 28, wherein the data
processing system is configured to compute the measure of
variability at least by performing a clustering of the detected
insect detection events according to at least the optically
detected attributes associated with the respective detected
insect detection events.

31. An apparatus according to claim 27, wherein the data
processing system is configured to compute the index of
insect biodiversity based on a mathematical model, the
mathematical model being a trained machine learning model
trained by supervised learning that directly maps the opti-
cally detected attributes associated with respective detected
insect detection events to an index of insect biodiversity.

32. An apparatus according to claim 27, wherein each
insect sensor device of the plurality of insect sensor devices
is calibrated based on a common detector reference.

33. An apparatus according to claim 27, wherein each
insect sensor device is configured to output calibrated detec-
tor data based on a set of wavelength-specific detectivity
data indicative of a wavelength-specific detectivity of each
insect sensor device in respect of one or more predetermined
calibration objects within the detection volume at respective
wavelengths.

34. An apparatus according to claim 27, wherein the
optically detected attributes include one or more attributes
selected from the group of:

a detected trajectory of movement of an insect inside the

detection volume;

a detected speed of movement of an insect inside the

detection volume;

one or more detected wing beat frequencies;

a melanisation ratio;

an insect glossiness.

35. An apparatus according to claim 27, further compris-
ing one or more environmental sensor devices for sensing
environmental data indicative of an environmental condition
of the geographic area; and wherein the data processing
system is configured to receive the environmental data and
to compute the index of insect biodiversity from the received
detector data and from the sensed environmental data.

36. An apparatus according to claim 27, wherein each
optical insect sensor device comprises:
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an illumination module configured to illuminate the detec-
tion volume with illumination light comprising light at
a first wavelength band modulated at a first modulation
frequency;
a detector module comprising a detector configured to
detect light from the detection volume; and
a processing unit configured to receive sensor signals
from the detector module and configured to filter the
received sensor signal to extract a first sensor signal
modulated at the first modulation frequency and, based
on the first sensor signal, to detect at least one insect in
the detection volume and to determine at least one
optically detectable attribute of the detected insect.
37. An insect sensor device for detecting insects in a
detection volume, the insect sensor device comprising:
an illumination module configured to illuminate the detec-
tion volume with illumination light comprising light at
a first wavelength band modulated at a first modulation
frequency;
a detector module comprising a detector configured to
detect light from the detection volume; and
a processing unit configured to receive sensor signals
from the detector module and configured to filter the
received sensor signal to extract a first sensor signal
modulated at the first modulation frequency and, based
on the first sensor signal, to detect at least one insect in
the detection volume and to determine at least one
optically detectable attribute of the detected insect.
38. An insect sensor device according to claim 37,
wherein the illumination light further comprises light at a
second wavelength band, different from the first wavelength
band, modulated at a second modulation frequency, different
from the first modulation frequency, wherein the processing
unit is further configured to filter the received sensor signal
to extract a second sensor signal modulated at the second
modulation frequency and, based on the first and second
sensor signals, to detect at least one insect in the detection
volume and to determine at least one optically detectable
attribute of the detected insect.
39. An insect sensor device according to claim 37,
wherein the illumination module comprises an array of
light-emitting devices.
40. An insect sensor device according to claim 39,
wherein the illumination module comprises a corresponding
array of lenses for directing the light from the respective
light-emitting devices as a diverging beam along an illumi-
nation direction.
41. An insect sensor device according to claim 37,
wherein the processing unit comprises one or more lock-in
amplifiers for extracting the first sensor signal.
42. A system of insect sensors, comprising:
a plurality of optical insect sensor devices configured to
be individually positioned within a geographic area,
each of the plurality of optical insect sensor devices
configured to:
monitor insect activity within a three-dimensional
detection volume extending outside the insect sensor
device by detecting light from the detection volume,
wherein the detection volume is an enclosure-free
void allowing unrestricted movement of living air-
borne insects into and out of the void, and

output detector data indicative of one or more optically
detected attributes associated with respective
detected insect detection events, each insect detec-
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tion event being indicative of one or more insects
being present in the detection volume.

43. A system according to claim 42, further comprising a
data processing system communicatively coupled to the
plurality of optical insect sensor devices and configured to:

receive detector data from respective ones of the plurality

of optical insect sensor devices, the detector data being
indicative of one or more optically detected attributes
associated with respective detected insect detection
events, and

compute, from the received detector data, one or more

quantities indicative of insect activity within the geo-
graphic area.

44. A system according to any one of claim 42, wherein
each insect sensor device comprises a detector module and
a processing unit, the processing unit being configured to
receive and process sensor signals from the detector module,
and wherein the detector modules and/or the signal process-
ing performed by the processing units of the respective
insect sensor devices is calibrated according to a detector
reference that is uniform across the plurality of insect sensor
devices.
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