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Preface 

After working as a research engineer and data scientist at FaunaPhotonics for a couple of years, I 

was offered the possibility to change my employment into an industrial PhD position. At that 

point, we had focused on aquatic salmon lice, detection of birds around windmills and insect pest 

monitoring in oilseed rape. The development of the first “commercially ready” insect sensor was 

just started, and the company had grown from five persons when I joined into more than twenty 

people. Collecting labelled data on new pest species and expanding to more crops were supposed 

to be routine work in coming years. 

 

I was offered a chance to focus on a new area, working closer to researchers rather than 

agrochemical business partners and we initialized biodiversity monitoring as a side track to 

complement the more commercially important pest monitoring. As we wrote the application, 

OECD published their report “Biodiversity: Finance and the Economic and Business Case for 

Action” and suddenly biodiversity monitoring was in every headline. 

 

The side track offered a bumpy ride. As I am about to submit the thesis, biodiversity monitoring 

is proposed to be mandatory by EU law. Rather than being a slow and steady academic side 

project, it is now the key focus of FaunaPhotonics. Only one of the first four colleagues remain 

and I am the oldest employee in the company. The project faced Covid, three company 

supervisor replacements, the birth of my first child and most recently war in Europe. It has been 

three eventful, awful and wonderful years. 

 

/Klas, June 2023 
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Abstract 

This thesis is the result of an industrial PhD project in cooperation between FaunaPhotonics A/S 

and the Department of Geosciences and Natural Resource Management at Copenhagen University. 

It explores the viability of using photonic sensors for monitoring of bees and insect diversity. 

 

Recently reported declines of insect abundance and diversity have illustrated the need for large 

scale and long running studies of insects. However, such studies are costly with conventional 

methods which are constrained in their temporal and spatial coverage. Thus, there is a need for 

new methods to complement the conventional monitoring approaches. Entomological lidar has 

become increasingly common in recent years and allows the recording of thousands of insect 

observations in minutes. Such instruments emit a beam of light and record the reflected light from 

insects passing through the beam. The data is recorded as a time signal where, amongst other 

features, the wingbeat frequency is seen as a modulation in the signal. 

 

FaunaPhotonics have developed a short-range optical instrument with a similar measurement 

principle to entomological lidar. The “Volito” sensor automatically record and extract insect 

observations from the data and transmit them to a cloud platform via cellular network. It is eye-

safe, weatherproof and capable of long unsupervised deployments in the field. While initially 

developed for pest monitoring in agricultural crops, the non-intrusive monitoring method makes it 

a suitable technology for general insect monitoring. 

 

Monitoring biodiversity is a complex task that can involve identifying a large number of insects 

to sub-species level. While this seems unfeasible with optical instrumentation, this PhD project 

explores the possibility to develop a “simple” biodiversity indicator, analogous to species richness, 

or Simpson´s biodiversity index. 

 

This thesis includes a spatial model for honeybee monitoring using conventional entomological 

lidar, showing good agreement with manual observations. It describes the development of the new 

“Volito” sensor and correlates measured insect abundance with yellow water traps. It explores a 

deep learning approach to feature extraction from recorded data, improving upon earlier models 

from literature. Finally, it includes two draft manuscripts covering the first attempts at correlating 

a sensor-based diversity metric with conventional monitoring methods in agricultural fields in 

Iowa, USA, as well as protected areas in southern Scandinavia.  
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Resumé 

Denne afhandling er resultatet af et industrielt PhD projekt udført som et samarbejde mellem 

FaunaPhotonics A/S og Institut for Geovidenskab og Naturforvaltning på Københavns Universitet. 

I afhandlingen undersøges muligheden for brugen af optiske sensorer til monitorering af bier og 

insektdiversitet. 

 
De seneste års rapportering af fald i antallet af insekter og diversitet har understreget 

nødvendigheden af længerevarende og omfattende insektstudier. Sådanne studier er dog 

omkostningstunge ved brug af konventionelle metoder, som desuden er begrænsede i deres tids-  

og arealmæssige omfang. Der er derfor behov for nye metoder til at komplimentere de 

konventionelle målemetoder.  Entomologisk lidar er blevet stadig mere udbredt i de seneste år og 

muliggør måling af tusindvis af insekter på få minutter. Instrumenterne udsender en stråle af lys 

og måler det reflekterede lys fra insekter, der flyver gennem strålen. Data registreres som et 

tidssignal hvor forskellige karakteristika, heriblandt insektets vingeslagsfrekvens, kan findes som 

en variation i signalet. 

 
FaunaPhotonics har udviklet et optisk instrument til måling over kortere afstande, som bygger på 

måleprincipper fra entomologisk lidar. Denne “Volito” sensor måler og isolerer automatisk 

insektobservationer fra data, og sender dem derefter til en platform i skyen via mobil netværk. Den 

er sikker for øjnene, vandtæt og kan klare langvarig udsætning i felten uden overvågning. Selvom 

den oprindeligt blev udviklet til overvågning af skadedyr i afgrøder, udgør denne målemetode en 

anvendelig teknologi til monitorering af insekter generelt uden at inteferere med insekterne. 

 
Monitorering af biodiversitet er en kompleks udfordring, som kan indebære identifikation af et 

stort antal insekter helt ned til sub-artsniveau. Skønt dette umiddelbart kan forekomme 

udfordrende med optisk instrumentering, så afdækker dette PhD projekt muligheden for at udvikle 

en “simpel” biodiversitetsindikator, tilsvarende artsrigdom eller Simpson’s biodiversitetsindex. 

 
Denne afhandling indeholder en spatial model for monitorering af honningbier med konventionel 

entomologisk lidar, der viser en god overensstemmelse med manuelle observationer. Den 

beskriver udviklingen af den nye “Volito” sensor og korrelerer antallet af målte insekter med 

antallet af insekter fanget i gule fangbakker. Den undersøger en deep learning tilgang til at finde 

karakteristika fra det opsamlede data, forbedret fra tidligere modeller beskrevet i litteraturen. Til 

sidst indeholder den to udkast til manuskripter der dækker de første forsøg på at korrelere en 
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General introduction 

Insects play a crucial role in ecosystems as pollinators of wild plants and serve as food for larger 

animals such as birds (1). They also have a direct impact on human life by acting as pollinators, 

pests and pest control in agricultural systems and are common disease vectors (1–4). There is 

concern that a decline in insect abundance and diversity can cause cascade effects across the entire 

ecosystem at large scales (3). Recent reports of declining insect abundance and community health 

have generated a lot of attention and worries both the public as well as decision makers and 

academics (5).  

 

The decline in insect abundance and diversity is mainly considered an effect of changes in 

agricultural practices and landscapes (6–8), primarily from increased use of insecticide, habitat 

losses from agricultural intensification and reduced grazing areas. However, there are few studies 

that have evaluated insect abundance across long temporal and large spatial scales since such 

studies are resource intensive with conventional methods (9). 

 

Conventional insect diversity monitoring is done by trapping where insects are attracted by visual 

or olfactory cues or intercepted in flight or sweep netting (10). Collected specimen are stored in 

alcohol for later identification by microscope. As each trap has a different bias, a plethora of traps 

and monitoring methods are needed to get the unbiased insect diversity (10,11). An alternative, 

less intrusive method is to conduct the identification directly in flight in the field by Pollard walks 

or using a stationary observer (12). However, this limits the taxonomic accuracy and is only viable 

for larger species. Pest monitoring is, in general, easier than insect diversity monitoring as it is 

focused on a few key species which often can be counted directly in traps or on plants directly in 

the field (13). 

 

As conventional methods either provide a very low temporal resolution, as with traps, or single 

“snapshots”, as with manual observation, they are difficult to apply at large scale and over long 

timeframes. While field visits are time consuming, the taxonomic identification of collected 

specimen is in general the most resource intensive part (14,15). Recent advances in DNA based 

methods could reduce these costs but the methods are not fully developed and are currently unable 

to provide species specific abundance information (15,16). In order to get accurate information on 

insect communities and study the effects of efforts to reverse the current biodiversity declines, 

there is a need for novel methods (15). 
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Automated insect monitoring 

Automated insect monitoring methods can provide insect data without repeated human visits to 

the field sites (15). This could help researchers study the cause and effect of biodiversity promoting 

or pest supressing efforts as well as long-term trends, displacement effects and diel patterns, that 

are hard to capture with current methodology (17,18). 

 

Automated insect traps for pest monitoring are commercially available today (19,20). Such traps 

typically use a pheromone lure to attract specific species or taxonomic groups and collected insects 

are identified by an optical system, such as a camera or photodiode sensor, in the trap (21,22). 

While the lure increases the catch and limits the range of species that enters the trap, it makes the 

method unsuitable for insect diversity monitoring. 

 

Insect communities can also be monitored by remote sensing methods using optics, acoustics or 

radar. Camera systems can be used outside of traps but are limited by resolution and depth of focus 

(23,24). To allow identification to species level, high quality images are needed which either 

requires expensive components, or limited sampling volumes (25). Successful implementations 

typically focus the cameras on a small area, such as a flower, or an attractant such as a bright 

plastic piece, or an illuminated sheet (26,27). It is difficult to capture sufficiently high-quality 

images of free flying insects using machine vision systems, but some systems aimed at general 

insect monitoring are reported to be in development (28). 

 

Acoustic methods have shown promising results, but are in general limited to audible insects, such 

as crickets, bees and mosquitoes (29–31). However, acoustic monitoring methods can also be 

deployed in solid mediums such as trees or grain silos (32–34). An advantage is that they can be 

used in citizen science, as any smartphone can serve as a recorder albeit with low range. As the 

acoustic methods primarily use the wingbeat frequency as an indicator, the specificity is limited 

as the wingbeat frequency of many insect species are overlapping (35–38). 

 

Wingbeat frequencies can also be recorded by radar or lidar, as the projection, or optical cross 

section, of insect changes with the wing movement. Such methods can complement the wingbeat 

frequency with additional features, based on the optical properties of the insects (35,37–39). In 

general such instrumentation have large monitoring volumes and can record up to hundreds of 

thousands of insect observations in a single day (17). However, the cost and technical skill required 

to operate these instruments is currently high.  
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Radar and lidar entomology 

Insects were observed as noise in radar data already in 1947 (40). At the time referred to as 

“angels”, these observations were shortly confirmed to be reflections from flying insects (41). 

Dedicated entomological radar systems were developed in 1969 (42) and since then entomological 

radars have become common (43). Entomological radars typically emit radiation in the 2 – 110 

GHZ range (corresponding to wavelengths of 10 cm down to 3 mm) as pulses and record the back-

scattered signal from insects traversing the emitted beam. To avoid scatter from terrain and 

vegetation, they are typically aimed above the horizon and are able to record insects flying at 

kilometre ranges (43). By wobbling the beam direction, the flight direction and speed can be 

estimated and entomological radars are frequently used to monitor migratory insects such as moths 

(43,44). Recent advantages have also allowed existing networks of atmospheric doppler radars to 

be used for biodiversity monitoring of birds as well as insects (45,46). 

 

Interference from terrain and vegetation can be reduced by using harmonic radar. By attaching 

harmonic reflectors to individual insects, flight and foraging behaviour can be recorded at local 

level (43,47,48). However, the technology can only be applied to insects sufficiently large to carry 

the reflector, such as bees. The beam divergence, and thus the ground scatter, can also be reduced 

by reducing the emitted wavelength (25). In comparison, entomological lidar operates on the same 

principles as entomological radar but rather than emitting radar waves, it uses laser beams, which 

can stay collimated at astronomical distances (49). 

 

Development of the entomological lidar 

Optical insect monitoring was demonstrated already in 1949 in Copenhagen, where a searchlight 

was used to monitor the nocturnal flight behaviour of moths (43,50) but entomological lidar was 

first demonstrated in 2005 to monitor bees trained to find land mines (51). By replacing the emitted 

radiation with a collimated pulsed laser beam, the instrument could operate near ground level and 

by panning the beam, provide a heat map of insect activity (and landmines). 

 

Many current entomological lidar implementations use diode lasers and photodiode or CMOS 

detectors rather than solid state lasers and photo multiplier tubes (52). This has reduced instrument 

cost and increased availability (53). Operating on a similar measurement principle but on a very 

short range, trap-based systems have further reduced cost (54–57). 
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cost and increased availability (53). Operating on a similar measurement principle but on a very 

short range, trap-based systems have further reduced cost (54–57). 

 

Current state of the art in lidar entomology 

Entomological lidar systems have proven the capability to operate for multiple months and record 

long running dataset of insect activity at millisecond resolution (18). This in turns allows the study 

of seasonal trends and variation. Entomological lidar have also been used to study momentary 

changes such as the effect on insect activity from a solar eclipse (17). Such studies would be very 

resource intensive or even impossible to perform with conventional methods. However, they still 

have limited ability to provide species specific information (58). Multiple efforts to develop 

species specific classification systems have been pursued (37,38,59). For practical reasons, 

labelled data has been collected with close range laboratory equipment in controlled conditions, 

rather than long range lidars. 

 

Some groups have used time signals as input to neural networks and applied sophisticated deep 

learning methods (60). This approach has the advantage of reducing the number of feature 

extraction algorithms needed but it can be difficult to transfer the methodology to other systems. 

Other groups have used numerically estimated physical features and compared more simple 

classification algorithms (38). An advantage of using physical, optical properties is that they can 

potentially be measured from tethered or even dead museum specimens and shared between 

different instruments (51,61–63). 

 

A common limitation of previous lidar work has been the low number of species included in the 

studies and the limited ability to transfer classification models to the field. While it is impressive 

to distinguish a handful of species in controlled conditions, Insecta is one of the most species rich 

orders in the animal kingdom and there is a high risk of false positives.  

 

While it remains challenging to prove that entomological lidar and similar systems can provide 

species specific measurements in the field, clustering efforts have been made. Recent studies have 

demonstrated the ability to cluster insects from two physical features into 4 distinct groups (64). 

While these groups were manually identified from features in the data, they showed different diel 

and seasonal activity distributions. Other groups used hierarchical clustering to identify the top 20 

clusters in entomological lidar data collected over one week of measurements (17). Using the same 

clustering algorithm, another study used the elbow method to quantify the number of clusters 

found in a 500 m transect (65).  
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Light-matter interactions 

Entomological lidar and similar optical sensors depend on the physical interaction between light 

and a target insect. Photons are emitted from an instrument, interact with an insect, and are 

captured by a detector. As these interactions are well described elsewhere in the literature 

(53,66,67), only a brief cover of the main light-matter interactions relevant for lidar entomology 

is provided below. 

 

Scattering 

Scattering causes photons to change propagation direction. This happen when light encounters 

inhomogeneity/interfaces of refractive indices in the tissue (according to Fressnell’s equations). 

Insects are largely transparent in the near infrared and in general, forward scattering is the 

dominating interaction (63,68). However, for practical reasons, entomological lidar has the emitter 

and detector placed in close proximity and are therefore limited to detecting back-scattered light 

(53). Back-scattered light can be either due to single scatter interactions, where the photons bounce 

on the surface of the insects, or multiple scattering interactions where the photons bounce multiple 

times inside the insect.  

 

Polarization 

Light waves are composed of waves in both the electric and magnetic fields. The direction of the 

electric field component gives the polarization and light waves can contain multiple polarizations 

at once. For linearly polarized light, the electric field component of the wave oscillates in a single 

direction, whereas its direction is random for unpolarized light. 

 

As light interacts with matter, there is a chance that it changes polarization. As the number of 

interactions increases, the probability of losing the original polarization increases. The rate of de-

polarization can be described by a depolarization probability of the target tissue (69). We can, for 

example, assume that a shiny beetle reflects less de-polarized light than a furry bumblebee. I have 

not used polarization sensitive instrumentation in this work, but the polarization ratio of insects is 

commonly used by other groups as a feature for species classification (51,68,70). It has also been 

shown that the degree of linear polarization can be used to distinguish gravid, and non-gravid 

mosquitoes (71). 
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commonly used by other groups as a feature for species classification (51,68,70). It has also been 

shown that the degree of linear polarization can be used to distinguish gravid, and non-gravid 

mosquitoes (71). 

 

  

 

Absorption 

In addition to scattering, light interacting with a medium can be absorbed and converted to thermal 

energy. The absorption rate varies with the wavelength and molecular composition of the insects 

but of primary interest for lidar entomologists is the melanin absorption spectra (72,73). By using 

multiple wavelengths with different absorption rates, the melanisation of the target insects can be 

estimated (39,74). 

 

Interference 

When multiple light waves with different phases interact, they produce a new wave which is the 

superposition of the original waves. If light travels through a thin film, such as an insect wing, it 

interferes with itself as it bounces back and forth inside the element. Depending on the wavelength 

of the light, and the thickness of the element, the interference can be either constructive or 

destructive. By comparing the reflections of multiple wavelengths, the thickness of the element 

can be estimated. This has recently allowed precise measurements of insect wing thickness (61–

63,74–76).  
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Machine learning and ecology 

Automated insect monitoring systems depend on automated analysis of the captured data. As the 

availability of machine learning models has increased in recent years, it has also become a more 

common tool in ecology and entomology (15,77,78). In short, machine learning models can be 

sorted into two categories, supervised and unsupervised models as illustrated in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A schematic overview of machine learning algorithms and their applications in this 

thesis. Regression has not been used extensively in this work. 

 

Supervised methods primarily include classification, where a model classifies a piece of data into 

two or more separate classes, and regression, where a model aims to predict a quantity, such as the 

weight or flight direction from the data. Classification models include segmentation models where 

an object such as an insect is found within, and isolated from, a larger image. Common for all 

supervised methods is that they require a labelled reference dataset, where each data point has a 

“true” reference value. The model is then trained to make predictions on the training data and its 

performance is judged on the agreement between predictions and the “true” reference values.  

 

There are multiple metrics available for quantifying the performance of classification and 

regression models. A common method for classifiers is the sum of the number of correctly 

predicted targets (True positives) and others (True negatives) divided by the total size of the 

dataset. However, by investigating the distribution of wrongly classified targets (False negatives) 

and others (False positives), further insight can be gained. Supervised models can become very 
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powerful but collecting the labelled dataset is in general a time-consuming effort that requires 

human subject matter experts. 

 

In ecology and particular entomology, machine learning classifiers are used for taxonomic 

identification, both on collected microscopy images from collected samples and in camera traps 

(20,77,79). Classifiers are able to combine multiple images of the same insect, recorded from 

different angles or with a different focus to improve the accuracy (79,80). Classifiers can also be 

used to identify the collected pollen from bees to identify food networks, recognize birds from 

audio recordings etc. (77). They are available to the public in smartphone apps, capable of 

identifying animals or plants from photos (81). In general, supervised models are limited by the 

availability of high quality labelled data. The amount of data needed to train a model increases 

with number of model parameters, i.e. its complexity. 

 

Unsupervised methods are also affected by the amount of training data, but it does not require 

manual labelling. Both supervised models and clustering methods require pre-processing to unify 

the data before their application. A common pre-processing step is the dimensionality reduction, 

where the amount of data for each data point is unified and reduced to simplify the model. The 

variational auto encoder described in paper III is a typical example of an unsupervised, 

dimensionality reducing model. The clustering methods described in paper IV and V are also 

unsupervised methods. 

 

Unsupervised methods are frequently used with DNA based methods, especially in fields such as 

mycology and soil science, where a large part of the genome is unmapped. By clustering the data, 

researchers can find common traits between clusters and find new patterns (16,82). While 

unsupervised methods do not require labelled training data, they in general have tuneable 

parameters that affects the number of clusters generated, or the similarity metric used compare the 

datapoints. 

  

 

Machine learning and ecology 

Automated insect monitoring systems depend on automated analysis of the captured data. As the 

availability of machine learning models has increased in recent years, it has also become a more 

common tool in ecology and entomology (15,77,78). In short, machine learning models can be 

sorted into two categories, supervised and unsupervised models as illustrated in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A schematic overview of machine learning algorithms and their applications in this 

thesis. Regression has not been used extensively in this work. 

 

Supervised methods primarily include classification, where a model classifies a piece of data into 

two or more separate classes, and regression, where a model aims to predict a quantity, such as the 

weight or flight direction from the data. Classification models include segmentation models where 

an object such as an insect is found within, and isolated from, a larger image. Common for all 

supervised methods is that they require a labelled reference dataset, where each data point has a 

“true” reference value. The model is then trained to make predictions on the training data and its 

performance is judged on the agreement between predictions and the “true” reference values.  

 

There are multiple metrics available for quantifying the performance of classification and 

regression models. A common method for classifiers is the sum of the number of correctly 

predicted targets (True positives) and others (True negatives) divided by the total size of the 

dataset. However, by investigating the distribution of wrongly classified targets (False negatives) 

and others (False positives), further insight can be gained. Supervised models can become very 



18
 

Understanding entomological lidar data 

In my thesis, I have mainly worked with FaunaPhotonics´ “Volito” sensor. It is a close range, dual 

band entomological lidar system described in detail in paper II. An example of a insect recording 

from Volito sensor is shown in figure 2. 

 

 

 

 

 

 

 

 

 

 

Figure 2: Example of an insect recording from the Volito sensor, adapted from paper V.  

a) Signal is recorded in time and the body, wing and specular wing magnitudes are estimated. b) 

Fourier transformation of the total backscatter and body envelope. The fundamental frequency is 

indicated in blue. The first three overtones are indicated in orange. The Volito has a bandwidth 

of 0-5 kHz. In this case the second harmonic is stronger than the fundamental. The reason for the 

limited magnitudes of the harmonics is that each one is convoluted by the body envelope (66,67).  

 

In general, we assume that an insect recording has three frequency components in each wavelength 

band: 

• A body signal 

• A diffuse wing signal 

• A specular wing signal 

 

The contribution from the insect body is the result of single and multiple scattering events in the 

body of the insect. As this signal does not have any oscillatory properties, it can be estimated as 

the lower envelope of the signal. The diffuse wing signal is the result of scattering from scaled 

wings or veins in clear winged insects. As the projection, and thus the optical cross section, of the 

wings varies with their movement, the diffuse wing signal is seen as a periodic contribution on top 

of the body signal.  
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The specular wing signal, visible as rapid flashes in intensity with the same periodicity as the 

diffuse wing signal but with much shorter duration. This signal is caused by specular reflections 

when clear wings surface normal intercepts the midpoint between light source and detector. A 

mathematical formulation of these signals are provided as an appendix to paper V. 

 

From the body, diffuse and specular wing signal components, we can estimate number of physical 

features. Of special relevance is the wingbeat frequency since it is closely linked to the anatomy 

of each species. While temperature dependent, it is relatively consistent within species and 

comparatively well described in literature (37,83–87). There is, however, a large overlap between 

species as most insects have wingbeat frequencies between 25 and 1000 Hz. The average spread 

within the 42 species used in paper V was 20 Hz ±10 % of the mean. 

Classifying and clustering entomological lidar data 

Extracted features in lidar data are caused by morphological and behavioural properties of insects 

and are in general consistent within species. Therefore, we can use such features for species 

classification and biodiversity estimates. However, as any object that traverses the beam will 

generate a signal, including rain, leaves, dust, etc. insect observations need to be isolated from 

recordings generated by other objects. The first step in this noise filtering is often to remove all 

observations without identifiable wingbeat patterns. In my work, I have also used a neural network, 

trained on manually labelled observations, to further remove non insect observations. 

 

There are many different approaches to develop a classifier to identify species from others and a 

fundamental task for all of them is to draw boundaries in the feature space, minimizing the overlap 

between target and negative classes. In contrast, the task of estimating biodiversity is less well 

defined, not only for entomological lidar but also in conventional ecology. 
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One approach is to mimic the conventional monitoring method of identifying all observations to 

species level. This would allow for any conventional metric to be applied to optically recorded 

data. However, the task of collecting data and training classifiers for every species in the world 

seems unrealistic in the near and even in the far future. As a starting point, the taxonomic level 

could be to identify broad groups, such as family, or even order. However, even this remains 

challenging. 

 

Another approach is to focus on indicator species. Indicator species are commonly used in 

conventional monitoring methods (88). However, it is an approach that is poorly suited for 

entomological lidar where any rare species is outweighed by a large factor by common species 

such as flies and there is a high risk that false positives will influence the results. 

 

Alternatively, one can use biodiversity estimates such as species richness, or the Shannon and 

Simpson indices. These estimates are based on the number of unique species or registrations and 

their relative proportions but do not include the genetic relationship between the species. It is 

therefore not necessary to identify which species are present, just how many of each kind. This is 

the main approach I have pursued in this work, since it allows a flexible statistical approach to 

clustering, while it is conceptually similar to methods used with conventional monitoring methods. 

 

A final approach, not explored in this thesis, is to abstain from direct translations of methods used 

with conventional monitoring methods. Rather than classifying or clustering individual 

observations, the general distribution of features can be quantified. For example, the variance of 

recorded wingbeat frequencies could be used as a metric. Such a metric would not have any 

obvious equivalents in conventional monitoring. More complex metrics such as entropy 

measurements across a multi-dimensional feature space is also likely to perform well. However, I 

have avoided these approaches due to time limitations. Additionally, their lack of analogies to 

conventional monitoring might render them more difficult to get adopted by the scientific and 

general community. 
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Research objectives 

The goal of this project was to develop and evaluate the use of automated optical sensors in insect 

monitoring. While entomological lidars have been reported in multiple countries, there has been 

few comparative studies, relating their results to conventional ground truthed data. Most of the 

previous work have been focused on shorter measurement campaigns rather than extended, 

seasonal, monitoring schemes. 

 

The first task focused on the possibility to use distributed sensors to quantify insect biodiversity. 

We aimed to focus on a simple metric such as richness, and the related Shannon and Simpson’s 

biodiversity indices. The goal was to develop a tool for researchers and ecologists, enabling them 

to answer relatively simple questions such as “does a flower strip increase the biodiversity in a 

field or not?”, “at what time of the year is the biodiversity at its peak?”, “does the application of 

insecticide reduce the biodiversity within a field?” and in the future, more complex questions such 

as “is this action an effective way to increase biodiversity on a landscape level”? These goals have 

been pursued in paper III-V.  

 

The second task focused more specifically on bee monitoring. Managed bees are important actors 

in the agricultural landscape but there is concern that competition between managed honeybees 

and wild bees is partly to blame for the decline of wild bee communities. The decline of native bee 

communities has received a lot of attention from the public, which has engaged with bee hotels 

and reserved meadow areas in private and public gardens. As honeybees and bumblebees are flight 

active, relatively large insects that are commercially available and easy to manage, they were 

deemed good targets for an initial, proof of concept classification algorithm. The goal was to 

develop a honeybee counter which would be a useful tool for studying competition effect and 

investigate foraging range and pollination strategies.´ 

 

This work has been pursued in paper I and in an additional experiment. In the latter, a honeybee 

and bumblebee hive were separately installed in a large plant tunnel. A food source was placed in 

the far end of the tunnel along with three Volito sensors, which recorded the bees as they flew 

back and forth between the hive and the food source. To validate a future classifier, a field 

experiment was conducted.  
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This work has been pursued in paper I and in an additional experiment. In the latter, a honeybee 
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Three different phacelia flower strips were selected in areas without any registred honeybee hives. 

At each site, three beehives were installed in cages, allowing us to modify the honeybee access to 

the flower strip. At 50, 100 and 150 m distance from the hives, along the flower strips, Volito 

sensors were installed. The experiment ran over two weeks and the honeybee cages were opened 

and closed every two days. The experiment was validated by manual observations, were all honey- 

and bumblebees entering a 1 m2 square in front of the sensor in a 10 min period was manually 

counted by visual inspection. This data is still being treated. 
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Paper abstracts 
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Paper abstracts 

  

 

Paper I: Scheimpflug lidar range profiling of bee activity patterns and spatial 
distribution 

In this work, we used a long range entomological lidar to study the foraging behaviour of managed 

honeybees in a white clover field. Commercial honeybees are frequently used for pollination of 

fruit trees and vegetables as well as arable crops and while wild bees are less important in such 

settings, they are essential for the pollination of wild plants. However, honeybees may also 

contribute to declines of wild bee communities through competition and spread of diseases. To 

reduce the impact of commercially deployed honeybees on the wild insect communities, we need 

to study the temporal and spatial behaviour of both managed and wild bees. As such studies are 

complicated to conduct with conventional monitoring methods, we evaluated the performance of 

an entomological long range lidar. 

 

The lidar monitored a 1 km long transect and passed close to a cluster of beehives at ca 180 m 

distance. The insect activity was recorded over three days and the distribution of insects in the 

field was mapped. In total 566 609 insect observations were recorded, and the spatial distribution 

was separated into three groups, with two centred on the beehives. Using these distributions, the 

temporal activity and foraging range was estimated. In addition to the lidar measurements, we 

conducted ground truthing by performing transect walks. We also used hive scales to monitor the 

weight change of the hives, from which the flight activity could be estimated. The measured 

honeybee activity in the lidar was well correlated with both the transect walks and hive scales.  

 

The study showed that by designing the measurements around a point source, or in the future, an 

attractor such as a food source, behavioural studies can be conducted using long range 

entomological lidar without the classification of individual insect observations. Additionally, some 

insight into the three-dimensional distribution of honeybees was gained by altering the beam 

height between a lower and a higher transect, which revealed a funnel like distribution around the 

hives.  

 

Relationship to state of the art 

While the very first application of entomological lidar also focused on honeybee monitoring (51), 

it has not been repeated since. The publication included the first attempt to use lidar to estimate 

foraging ranges. Additionally, it is, to my knowledge the first-time insect abundance measures 

from lidar were correlated with manual observations of honeybees. 
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Paper II: Automating insect monitoring using unsupervised near-infrared sensors 

This paper describes the development and deployment of FaunaPhotonics novel short range 

sensor, later named “Volito” which was used in the following publications. While the long range 

entomological lidars can provide a large number of observations, the field installation is 

cumbersome and requires highly trained operators. Additionally, the instrumentation requires 

close supervision due to its sensitive alignment and eye-safety risks. 

 

To allow for continuous monitoring in remote areas, and repeated landscape studies, a smaller and 

more robust  sensor was needed. The Volito is a close range field monitoring device powered by 

a solar panel and equipped with a cellular connection to allow remote monitoring and real time 

data acquisition. The sensor automatically extracts insect observations from the raw data stream 

and transmits these to a cloud database for further processing. 

 

The Volito uses a dual band infrared LED array and the light is emitted in a wide angle to improve 

eye safety and maximize the near field measurement volume. The effective measurement volume 

varies with the size of the target but using a custom-built mapping robot, it was measured to 

between 5 and 100 liters depending on the configuration of the sensor and the size of the target 

insect. 

 

Six sensors were deployed in an oilseed rape field over four weeks along with water traps to 

evaluate the performance against conventional monitoring methods in commercial crops. The 

water traps were emptied daily and the aggregated insect counts in sensors and traps were 

comparable (Spearman rank correlation of 0.6). The main purpose of the paper was to describe the 

sensor in detail, to have a common reference and allow further publications to refer to technical 

details to this paper.  

 

Relationship to state of the art 

While entomological lidar has become increasingly common in recent years (65,89–93), they have 

been cumbersome to deploy. This paper describes the first photonic sensor, measuring an open-air 

volume, capable of autonomous long-term monitoring in the field. It includes the first 

characterizing of the probe volume using a sphere dropping robot. It also covers the first long term 

deployment and comparison between photonic sensors and yellow water traps in an agricultural 

setting.  
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Paper III: Dynamic β-VAE for quantifying biodiversity by clustering optically 
recorded insect signals 

In this paper, we evaluated a deep learning approach to extract a low dimensional feature 

representation of the insect observations to allow for later biodiversity clustering. A parameter 

space becomes increasingly empty with increasing dimensions, commonly known as the “curse of 

dimensionality”. Regardless of clustering method used, it is thus advantageous to represent your 

data with as few features as possible, while still capturing sufficient information to allow for the 

downstream tasks.  

 

In entomological lidar, a low dimensional representation is typically constituted by estimated 

physical features such as a wingbeat frequency, melanization, body wing ratio etc. Estimating 

these features is a difficult and potentially error prone task where the algorithms are sensitive to 

outliers. An alternative is to use the wingbeat frequency power spectra but in order to achieve a 

sufficient spectral resolution, a comparatively large number bins are needed. 

 

In this work, we developed a dynamic variational auto encoder (VAE) to automatically transform 

a high dimensional frequency representation of the data into a two-dimensional and well 

regularized feature space. As phylogenetic insect groups are clustered together, the approach was 

deemed suitable for later richness estimations. β-VAE’s introduces a scaling term, β, to balance 

the regularization and reconstruction losses. In this work, we introduced a dynamic self-adjustment 

of β which greatly improved model stability and results. This approach made it possible to achieve 

well regularized latent representation while also retaining high quality reconstructions. Unlabeled 

data recorded in the field was used to train the model.  

 

The performance of the model was based on the ability to cluster similar species together, using 

the ARI and AMI score. This required labelled data and we used insect observations recorded one 

species at the time in flight cages. The β-VAE was compared to alternative more simple methods, 

including PCA and hierarchical clustering. The β-VAE achieved two to three times better results 

than the conventional methods. To further improve the ability to cluster single species together, 

we tested to include a small subset of labelled data in the training. In this experiment, an additional 

loss term based on the intra and inter cluster distances between the labelled data points were added. 

This yielded an improvement of ca 10% as compared to the fully unsupervised β-VAE. 
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While exploratory, this work showed that phylogenetically similar species in general share similar 

properties when recorded by entomological lidar. This verified fundamental assumption for future 

richness estimations, regardless of method used for feature extraction, or richness estimation. 

 

Relationship to state of the art 

This publication describes the first application of a variational auto encoder on photonic insect 

data. While regular auto encoders have previously been used for feature extraction before 

classification. (94), they are unsuitable for unsupervised clustering due to their highly irregular 

latent spaces. The paper show that using the proposed models, the results improve upon the 

methods used in previous state of the art (65) by ca. 100 – 300%. Additionally, it introduces 

dynamic scaling of the β-term which improved the results ca 80% over the regular VAE. 
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Paper IV: Automating an insect biodiversity metric using distributed optical 
sensors: an evaluation across Kansas, USA cropping systems 

This manuscript describes the first experiment conducted to compare biodiversity estimates 

between sensors and conventional methods. Financed and partly planned by General Mills, 20 

fields covering 6 different crops and various regenerative farming practices were investigated. The 

fields were sampled using sweep netting, Malaise traps and Volito sensors twice during the growth 

season. Malaise traps were open for 24 hours and the sensors were active for three days each 

sample period. Collected specimen were in general identified to species level. Additionally, 

ecosystem indicators such as the predation rates were measured once per field. 

 
The experiment suffered from some limitations. Firstly, sensors were installed close to the growing 

crop, which generated large amounts of noise in the data. Secondly, the sampling was not done 

simultaneously for all methods. It is therefore likely that weather effects influenced the data and 

the measured insect abundance was uncorrelated across all methods. We used one third of the data 

to optimize the hyperparameters of the DBSCAN clustering algorithm. The number of clusters, 

and their relative distribution, generated by the algorithm was compared to the results from the 

conventional measurements of species richness Shannon and Simpsons biodiversity indices.  

 

Simpson and Shannons biodiversity indices were largely uncorrelated across all methods. Species 

richness was weakly correlated between the two conventional methods (Spearman R: 0.36, p<0.05, 

N=40). The correlations between the number of clusters generated by the algorithm and both 

individual sampling methods were high (Spearman R: 0.48 and 0.52, p<0.05, N=40). The 

correlation between the number of clusters generated by the algorithm and the combined richness 

of the individual sampling methods was also high (Spearman R: 0.55, p<0.05, N=40) In this 

project, I got involved after the experiment was completed. My task was to take over the data 

analysis and write a first, technical draft of the manuscript.  

 

Relationship to state of the art 

This manuscript describes the first attempt to use photonic sensor for insect biodiversity 

measurements by comparing the results to conventional monitoring methods. Previous work has 

aimed to quantify richness in entomological lidar data but haven’t been ground truthed or 

compared with conventional monitoring methods (65). This manuscript contains the first proof of 

concept that photonic sensors can quantify insect diversity.  
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Paper V: Photonic sensors for comparative insect abundance and diversity in 
distinct habitats 

The manuscript describes the development and testing of two different approaches to quantifying 

species richness with photonic sensors. The models were developed and optimized on labelled 

data, collected in flight cages during controlled conditions, and evaluated in the field. The field 

tests included 5 different locations in southern Sweden and Denmark where sensors and Malaise 

traps were deployed simultaneously from March to November. Traps were emptied weekly and 

caught specimen were identified to family level. In total, 9503 insects were identified. 

 

The labelled dataset used for development was composed of 42 species, recorded one species at 

the time in flight cages. Using this library, we assembled arbitrary compositions of data with 

known diversity. We developed two tests to evaluate the models. The first test quantified the 

correlation between the number of clusters generated by the algorithms against the number of 

species present in the data. The second tests investigated the number of clusters generated from 

increasing number of observations from a single species.  

 

We investigated the DBSCAN algorithm, also used in paper IV, as well as a hierarchal clustering 

algorithm (HCA). The DBSCAN algorithm operated on a low dimensional feature representation 

of the data while the HCA operated on the high dimensional wingbeat frequency power spectra. 

 

A parameter sweep was done to optimize hyperparameters on the labelled data. The best 

performing configurations were then tested on the data collected in the field. Both methods showed 

good correlations with the Malaise trap data (Pearson R: 0.54, 0.67, p<0.05, N=40, for DBSCAN 

and HCA respectively) but the relative sizes of the clusters were not well correlated with the 

distribution of families in the traps. 

 

Relationship to state of the art 

This manuscript describes the first efforts to validate the biodiversity metrics achieved from 

photonic sensors on a fully independent dataset. It uses a unique collection of labelled insect data, 

spanning 42 species to develop the methodology. This is a 400% increase over the largest 

previously reported database of photonic insect signals (59,95). Additionally, it covers the first 

long term comparison between photonic sensors and Malaise traps for both abundance and 

diversity. 
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spanning 42 species to develop the methodology. This is a 400% increase over the largest 

previously reported database of photonic insect signals (59,95). Additionally, it covers the first 

long term comparison between photonic sensors and Malaise traps for both abundance and 

diversity. 

 
 

Conclusions and perspectives for further research  

This project has aimed to develop a proof of concept for the use of entomological lidar in 

entomological and ecological studies. To tackle the decline of insect diversity and abundance, 

novel monitoring methods are needed. While the insight gained by regular field visits by skilled 

experts cannot be replaced by machines, the automated methods can complement the conventional 

monitoring methods and provide data in real time as shown in paper II, IV and V. 

 

At the start of the project, there was a handful of entomological lidars available globally and they 

in general required technical experts to set up and utilize. This project included the very first 

installation of FaunaPhotonics “Volito” sensor. At the end of this PhD project, FaunaPhotonics 

has deployed hundreds of sensors across in Europe and America. The cost is still high compared 

to conventional equipment and access for researchers to the technology is still limited but the 

methodology is gaining traction. 

 

The ability to accurately identify single observations to species level is still limited and difficult 

to validate in the field. The experiment with honeybees in flower strips aimed to collect a ground 

truthed-dataset for classifier development. Four persons working in the field for two weeks yielded 

ca 400 manually observed ten-minute time periods. This work is not ready for inclusion in this 

thesis, but it illustrates the work necessary to validate the performance of a single classifier. While 

scaling to more species will be a challenge, I believe “just” an automated bee classifier would be 

a great asset for ecologists worldwide. 

 

This PhD project yielded the first validated proof-of-concept of biodiversity monitoring using 

photonic sensors, but a lot of work remains. I have investigated two clustering algorithms but there 

are many approaches available. Future work could combine the deep learning feature extraction 

from paper III with the validation approach developed in paper V. Additionally, more sites with 

where the species richness and abundance are more uncorrelated should be investigated. 

 

Although we have not developed a new golden standard for biodiversity monitoring with 

automated sensors yet, or a high performing bee classifier, I do believe this project collected the 

data necessary for this future work. The tools and concepts explored in this work are transferrable 

to both the acoustic and radar domains. A big advantage of the automated methods is the ability to 

scale, and I hope we will see large regional networks of live biodiversity sensors in the future.  
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Abstract 

Background: Recent declines of honeybees and simplifications of wild bee communities, at least partly attributed 
to changes of agricultural landscapes, have worried both the public and the scientific community. To understand 
how wild and managed bees respond to landscape structure it is essential to investigate their spatial use of foraging 
habitats. However, such studies are challenging since the foraging behaviour of bees differs between species and can 
be highly dynamic. Consequently, the necessary data collection is laborious using conventional methods and there is 
a need for novel methods that allow for automated and continuous monitoring of bees. In this work, we deployed an 
entomological lidar in a homogenous white clover seed crop and profiled the activity of honeybees and other ambi-
ent insects in relation to a cluster of beehives.

Results: In total, 566,609 insect observations were recorded by the lidar. The total measured range distribution was 
separated into three groups, out of which two were centered around the beehives and considered to be honeybees, 
while the remaining group was considered to be wild insects. The validity of this model in separating honeybees from 
wild insects was verified by the average wing modulation frequency spectra in the dominating range interval for each 
group. The temporal variation in measured activity of the assumed honeybee observations was well correlated with 
honeybee activity indirectly estimated using hive scales as well as directly observed using transect counts.

Additional insight regarding the three-dimensional distribution of bees close to the hive was provided by alternating 
the beam between two heights, revealing a “funnel like” distribution around the beehives, widening with height.

Conclusions: We demonstrate how lidar can record very high numbers of insects during a short time period. In 
this work, a spatial model, derived from the detection limit of the lidar and two Gaussian distributions of honeybees 
centered around their hives was sufficient to reproduce the observations of honeybees and background insects. 
This methodology can in the future provide valuable new information on how external factors influence pollination 
services and foraging habitat selection and range of both managed bees and wild pollinators.
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Background, motivation and aim
The decline of insect numbers in recent years has wor-
ried both researchers and the public [1]. Pollinators and 
in particular bees and hoverflies provide essential ser-
vices in terms of pollination of wild plants [2] and crops 
[3]. Honeybees provide a large part of the pollination 
of crops, but wild pollinators are also quantitatively 
important crop pollinators [4] and are essential for 
wild plant pollination [5]. Accordingly, recent declines 
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The decline of insect numbers in recent years has wor-
ried both researchers and the public [1]. Pollinators and 
in particular bees and hoverflies provide essential ser-
vices in terms of pollination of wild plants [2] and crops 
[3]. Honeybees provide a large part of the pollination 
of crops, but wild pollinators are also quantitatively 
important crop pollinators [4] and are essential for 
wild plant pollination [5]. Accordingly, recent declines 
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of honeybees [6] and simplifications of wild bee com-
munities [7], has caused considerable concern [8]. The 
decline of wild pollinators has been attributed to a mul-
titude of factors, such as landscape simplification caus-
ing loss of foraging and nesting habitat, increased use 
of pesticides, spread of diseases and potentially also 
direct competition with managed pollinators [8, 9]. The 
decline of managed bees is instead mostly related to 
socio-economic factors, including lack of profitability 
of bee keeping [10], which may, however, be related to 
landscape structure [11].

To generate a mechanistic understanding of how both 
wild pollinators and honeybees respond to landscape 
change and to monitor the pollination services they pro-
vide, it is essential to investigate their spatial use of forag-
ing habitats. Bees are central place foragers, that have to 
find food for their offspring in the vicinity of their nests 
[12, 13]. For wild bees, a major reason for their decline is 
thought to be a loss of a continuous forage supply across 
the season and sufficiently close to the nest [14]. How-
ever, since bee species differ in their foraging ranges, the 
consequences of landscape simplification may be species 
dependent [15–17]. Similarly, the benefit of managing 
honeybees may depend on the forage landscape sur-
rounding hives [11], with consequences for the interest 
of bee keepers to manage hives for honey production. 
Finally, honeybees and wild pollinators may to a smaller 
or larger extent share flower resources,, suggesting that 
they may compete [18, 19]. The scope and consequence 
of competition may depend on their foraging ranges [20], 
for example whether or not wide-ranging species such 
as honeybees are able to outcompete less mobile spe-
cies in simplified landscapes [21]. Knowledge about the 
use of foraging habitat and mobility of bees is, therefore, 
essential when designing mitigation measures to coun-
teract ongoing pollinator declines, e.g., to safeguard crop 
pollination.

Although knowledge of habitat selection and forag-
ing ranges of bees is essential, there is a lack of informa-
tion on how it varies between species, landscape types 
and over time. The major reason for this is that studies 
of habitat use and foraging movements are challeng-
ing. For example, their foraging may show spatio-tem-
poral dynamics [22–24] that can differ between species 
[25, 26], resulting in a requirement of extensive data to 
describe their use of foraging habitat. Conventional 
methods to determine habitat use, such as pan-traps, fail 
to produce fine time-resolved data and may result in bias 
because of bees being attracted to the traps [27]. Other 
methods, such as Pollard walks, require considerable 
resources and may produce data that are so scarce that 
they need to be pooled over space or time for analyses 
[28]. Hence, there is a need for methods that allow for 

time-continuous monitoring of bees and can accurately 
resolve different taxonomic groups.

Detection of insects with radar was demonstrated as 
early as 1949 [28] and entomological use of radar has 
since been considerably refined [29, 30]. It has in par-
ticular been applied to monitor large insects, such as 
moths and locust, migrating at heights of hundreds of 
meters. Using existing weather radar infrastructure, large 
amounts of data can be made accessible for radar ento-
mology [31, 32]. The monitoring of foraging insects close 
over the ground is challenged by ground clutter noise but 
harmonic radar systems [33, 34], where a nonlinear diode 
is glued to the insects, can track individual insects at low 
altitudes [35]. However, the technology is limited to mon-
itoring insects strong enough to carry the antenna and is 
unsuitable for monitoring large numbers of insects.

Inspired by progress in entomological radar and 
early entomological lidar [36, 37], lidar entomology has 
evolved [38] and overcomes many of the challenges for 
remote monitoring of insects near the ground. Lasers and 
the shorter wavelengths used in lidar allow for increased 
sensitivity and superior beam control in terms of collima-
tion and side lobes. This makes it possible to use lidar in 
cluttered environments, e.g., embedded in forest vegeta-
tion [39], or just above ground in agricultural fields [40, 
41]. In recent years, it has been used in several applica-
tions due to its capability of recording large number of 
observations in short time [40, 42, 43]. Lidars can provide 
sufficient statistics of insect activity within minutes and 
the retrieval of modulation properties provide some dis-
crimination between groups, although not yet to species 
level [43]. Lidar instrumentation has earlier been used to 
monitor honeybees [44] but to date there are no studies 
attempting to capture the whole foraging range through-
out the day.

To evaluate the feasibility to monitor honeybee activ-
ity separately from the activity of other insects, we set up 
an entomological Scheimpflug lidar [45] to monitor the 
honeybee activity in a pollinator-dependent crop, white 
clover for seed production (Trifolium repens L.). In addi-
tion to the lidar measurements, the activity of honeybees 
was measured using modified Pollard walks [46] and 
hive scales, measuring the weight of the hives over time. 
In this paper, we aim to show the ability to distinguish 
between honeybee and general insect activity using a 
spatial model rather than individual classification of each 
insect observation.

Materials and methods
An entomological kHz lidar was used to monitor the 
honeybee and insect activity in a 755 m transect over a 
white clover field for seed production in Denmark on 4. 
to 6. July 2017. The field contained 6 clusters with ca 20 
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beehives each for pollination services, as shown in Fig. 1. 
For ground truthing, Pollard walks and hive scales were 
used to monitor the honeybee activity. The measure-
ments were carried out from 11:20 to 20:35 on 4 July, 
from 08:50 to 20:15 on 5 July and 09:00–15:00 on 6 July 
(local summertime).

Study site
The study site was a 300*1000  m white clover field 
located on the island of Lolland, Denmark (54°46′ 15.7″ N 
11°36′ 25.5″ E). This site was selected for its flatness. The 
field was surrounded by hedges along the long sides and 
a small deciduous forest in the far end (Fig.  1). Within 
the field, there were two flower strips with a mix of lacy 
phacelia (Phacelia  tanacetifolia) and buckwheat (Fag-
opyrum esculentum) to attract and support insects. The 
white clover crop was established with an even plant den-
sity resulting in 1331 flowerheads per  m2 (average of six 
samples 12.5 × 50  cm). At the time of the experiment, 
the white clover was in full bloom. On the eastern side, 
a wheel track ran along the field. The surrounding area 
contained agricultural fields and small forests.

Lidar instrumentation
The lidar instrument was purchased from Norsk Ele-
ktro Optikk AS, Norway. It resembles the ones earlier 
described in [40, 47, 48]. Briefly, in this study, the light 
from a 3  W 808  nm laser diode was expanded using a 
beam expander with 500  mm focal length and 102  mm 
aperture. The emitted light was focused on a neoprene 
covered termination board at 755 m and a tree at 1000 m 
distance (Fig.  1). The back-scattered light from insects 
entering the beam was collected by a Newtonian tel-
escope with 200 mm aperture and 800 mm focal length. 

To reduce the amount of background light in the system, 
the collected light was filtered by a 3 nm wide bandpass 
filter. The filtered light was recorded by a 2048-pixel 
(14 × 200 µm pixel size) silicon line scan camera mounted 
according to the Scheimpflug principle at 45° angle. The 
optical instrumentation was mounted on a tripod and 
protected from weather by a 3 × 3  m tent. Power was 
supplied by a mains connection from a residential house 
at the field border.

The laser beam was aimed ca. 2 m west of the south-
eastern beehive cluster ca 180 m along the beam (Fig. 1). 
On 6 July, the height of the beam was alternated in height 
between the termination plate and a tree at 1000 m every 
15  min to profile the activity at two heights. The beam 
height above ground was measured on site at 15 loca-
tions along the transect and varied from ca 0.5  m close 
to the lidar to 2.5  m at the highest point for the lower 
beam. These measurements where combined with open 
source terrain data available from the Danish elevation 
model [49] and a linear model was used to interpolate the 
beam’s height above the terrain along the full transect.

Data processing
The lidar recorded 35 000, 16-bit exposures at 3.5  kHz 
into a file of 10 s duration. The laser was synchronously 
modulated with the 3.5  kHz sampling frequency such 
that every second exposure was taken with the laser 
turned off. Between each file, there is an average gap 
of ~ 1 s due to data transfer which yields an average tem-
poral fill-factor of ~ 90%. As in previous work [48], the 
frames, recorded when the laser is off, are subtracted 
from the frames recorded with the laser turned on 
yielding synchronized lock-in detection. This detection 
scheme allows the lidar to record insect echoes during 

Fig. 1 Schematic of the field and experiment layout. The lidar beam passed ca 2 m from the beehives, ca 1.5 m above the ground. Satellite image 
from Google Earth
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beehives each for pollination services, as shown in Fig. 1. 
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daytime by removing the influence of background illu-
mination and yields a time-range map, as exemplified in 
Fig.  2. Subsequently, the 10  s median intensity at each 
pixel is subtracted to remove static signals from atmos-
pheric backscattering.

The Scheimpflug ranging principle is based on trian-
gulation and thus the pixel number corresponds tangen-
tially to the range [50–54]. Insect observations, as the 
one shown in Fig. 2b, were automatically extracted from 
the raw data using a slightly adapted version of the algo-
rithm described in detail in [48]. An insect observation 
is defined as a sequence of above-threshold signals pro-
duced when an insect transits the beam. Each observa-
tion thus consists of a single insect trajectory through 
the beam. In total over 3 days, 566 609 individual insect 
observations were recorded by the lidar during a total 
measurement time of 23 h and 15 min.

Ground truthing
Two 45 m modified Pollard walks were conducted every 
hour at two different transects ca 150  m from the bee-
hives, as shown in Fig. 1 [46]. The first was a 100 cm wide 
area between two wheel tracks for field operations in 
the white clover. The second was a 150  cm wide flower 
strip with phacelia and buckwheat. The transect walks 

were conducted by various operators at the site, in total, 
5 different persons, counting all honey- and bumblebees 
foraging, resting or flying between the wheel tracks or 
within the flower strip. Due to a limited number of bum-
blebees observed (< 50 in total), we only used honeybee 
counts in the further analyses. On average, ca 40 bees 
were observed by each observer and Pollard walk and in 
total, 5730 honeybee observations were made.

Two of the beehives were remotely monitored by the 
beekeeper and the weight was logged every second hour. 
The change in weight over the course of the day is deter-
mined by the number of bees in the hive as well as the 
amount of collected pollen and nectar. We assume that 
all bees are inside the hives at midnight, thus represent-
ing the total weight of bees and the hive, Wtot. By linearly 
interpolating the change in hive weight from midnight to 
midnight, we can then, for every two hours, subtract the 
measured “hive weight”, WHive , which is removed from 
each weight measurement:

whereWBee represents the lost weight of the bees in the 
hive when they are out foraging, assumed to be directly 
correlated to the number of bees in the hive and, there-
fore, negatively correlated to the flight activity. This 
weight loss will of course also be affected by the amount 
of pollen and nectar collected and consumed between 
each 2-h sample, this is ignored in our model.

Weather data was collected by a small weather station 
with 30-min resolution monitoring temperature, humid-
ity, air pressure, wind speed and wind direction. In gen-
eral, the weather was stable with temperatures between 
15 and 25 degrees Celsius, varying sun and cloud cover-
age and low winds during the entire measurement period.

Measurement results and data analysis
The distribution of insect recordings over time and range 
is shown in Fig. 3. Half of the observations were recorded 
within 11  m of the beehives. The maximum activity 
recorded by the lidar was reached between 14:45 and 
15:00 with a total of 10 807 insect observations along the 
whole transect and 26 insect observations per meter and 
minute.

The measured insect activity over range during the 
peak activity is plotted in Fig. 4. From the gathered lidar 
data, we hypothesized that the spatial distribution of 
insect activity can be explained by three types of obser-
vations: hive activity, due to honeybees flying around 
near the hives, honeybees foraging within the field and 
background activity from wild insects. The activity from 
male drones is neglected in this model, since they gen-
erally only make up less than 10% of the total popula-
tion in a beehive [55, 56]. Drones can aggregate in drone 

(1)WBee = Wtot − WHive

Fig. 2 a Lidar raw data example. The time-range map reveals a large 
number of insect observations by the beehives at 180 m. At the 
top of the image, the static echo from the termination is visible as a 
continuous line at 755 m. The signal intensity over range is shown in 
the vertical plot to the left with maximum, median and interquartile 
range (IQR) signals in orange, blue and green. Likewise, the signal 
over time (up to 700 m) is shown in the horizontal plot at the bottom. 
b Cut out showing an insect observation, where the wingbeats are 
visible as vertical stripes
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congregation areas (DCAs), but these generally occurs at 
higher altitudes than we’ve monitored in this study [57]. 
To quantify the honeybee and wild insect activity we 
used a spatial model to decompose the observed range 
distribution into these three components. In simple 
terms: insect distributions centered around the beehives 
are assumed to be either clustering, or foraging bees. This 
is modelled as

where Nw is the number of wild insects, Nfo is the number 
of foraging honeybees and Nhive is the hive activity from 
honeybees located near the hives.

The distribution of wild insects is defined as a negative 
exponential function:

where r is the range from the lidar, and α is a nega-
tive parameter which depends on the optical proper-
ties of the targets. This reciprocal distribution is caused 
by the reduced sensitivity of the lidar with range and 
the expected measured result from insects distributed 
homogenously in the field [54].

The hive activity and foraging honeybees are modelled 
as Gaussian distributions, Nh and Nfo, centered around 
the beehive cluster:

where N0fo is the maximum number of observations, rc is 
the centre position and R is the width of the curve.

The model in Eqs. (2)–(4) has 8 free parameters and 
was fitted to aggregated range distributions with a bin 
width of 2 m, yielding 360 datapoints from 35 to 755 m. 
using Scipy’s optimization package [58]. The model was 
fitted to 15 min subsets of the collected insect observa-
tions and had an average adjusted r-squared correlation 
coefficient of 0.96 with a standard deviation of 0.026.

The foraging distribution (shown in purple in Fig.  4) 
includes both flights to and from foraging sites as well 
as actual foraging flights. The width of the foraging dis-
tribution describes the foraging range from the beehives 
and has an average full width half maximum of 153  m 
throughout the full measurement period, with a standard 
deviation of 50 m.

All insect observations were split into three groups, 
matching the regions, where Nw, Nh or Nfo dominated the 
model as illustrated in Fig. 4. To investigate the assump-
tion that these groups consist of different insect spe-
cies, we estimated the modulation powers of a sample of 
insects selected in the dominating range interval of each 
group by the Welch method [59]. In Fig.  5, the median 

(2)(r, t) = Nw(r, t) + Nfo(r, t) + Nhive(r, t)

(3)Nw(r, t) = N0w(t)rα(t)
, 35 < r < 755

(4)Nfo(r, t) = N0fo(t)e
−

(r−rc(t))
2

R(t)2

Fig. 3 Time-range map of insect activity during the second 
measurement day. Insect counts per minute and 1 m of transect 
evaluated in 15 min, 2 m bins. By the beehives at 180 m, the activity 
is 30 times higher than in the surrounding area. More activity is 
recorded closer to the lidar, since the sensitivity decreases with range. 
The maximum activity is indicated by an arrow at 14:45

Fig. 4 Range distribution of detected insect observations between 
14:45 and 15:00, 5/7 2017. The range distribution is approximated by 
three distributions. The peak in activity next to the beehives at 180 m 
is fitted by the red curve  Nh and assumed to be the result of bees 
clustering near the hives. Foraging bees are fitted by the purple curve 
 Nfo. The distribution from background insects not centered around 
the beehives,  Nw, is plotted in green
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congregation areas (DCAs), but these generally occurs at 
higher altitudes than we’ve monitored in this study [57]. 
To quantify the honeybee and wild insect activity we 
used a spatial model to decompose the observed range 
distribution into these three components. In simple 
terms: insect distributions centered around the beehives 
are assumed to be either clustering, or foraging bees. This 
is modelled as

where Nw is the number of wild insects, Nfo is the number 
of foraging honeybees and Nhive is the hive activity from 
honeybees located near the hives.

The distribution of wild insects is defined as a negative 
exponential function:

where r is the range from the lidar, and α is a nega-
tive parameter which depends on the optical proper-
ties of the targets. This reciprocal distribution is caused 
by the reduced sensitivity of the lidar with range and 
the expected measured result from insects distributed 
homogenously in the field [54].

The hive activity and foraging honeybees are modelled 
as Gaussian distributions, Nh and Nfo, centered around 
the beehive cluster:

where N0fo is the maximum number of observations, rc is 
the centre position and R is the width of the curve.

The model in Eqs. (2)–(4) has 8 free parameters and 
was fitted to aggregated range distributions with a bin 
width of 2 m, yielding 360 datapoints from 35 to 755 m. 
using Scipy’s optimization package [58]. The model was 
fitted to 15 min subsets of the collected insect observa-
tions and had an average adjusted r-squared correlation 
coefficient of 0.96 with a standard deviation of 0.026.

The foraging distribution (shown in purple in Fig.  4) 
includes both flights to and from foraging sites as well 
as actual foraging flights. The width of the foraging dis-
tribution describes the foraging range from the beehives 
and has an average full width half maximum of 153  m 
throughout the full measurement period, with a standard 
deviation of 50 m.

All insect observations were split into three groups, 
matching the regions, where Nw, Nh or Nfo dominated the 
model as illustrated in Fig. 4. To investigate the assump-
tion that these groups consist of different insect spe-
cies, we estimated the modulation powers of a sample of 
insects selected in the dominating range interval of each 
group by the Welch method [59]. In Fig.  5, the median 
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measurement day. Insect counts per minute and 1 m of transect 
evaluated in 15 min, 2 m bins. By the beehives at 180 m, the activity 
is 30 times higher than in the surrounding area. More activity is 
recorded closer to the lidar, since the sensitivity decreases with range. 
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Fig. 4 Range distribution of detected insect observations between 
14:45 and 15:00, 5/7 2017. The range distribution is approximated by 
three distributions. The peak in activity next to the beehives at 180 m 
is fitted by the red curve  Nh and assumed to be the result of bees 
clustering near the hives. Foraging bees are fitted by the purple curve 
 Nfo. The distribution from background insects not centered around 
the beehives,  Nw, is plotted in green
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power spectra from 500 random observations recorded 
in rw, rh and rfo is presented. We see that both honeybee 
distributions have a strong peak around 180–220  Hz 
which fits well with the expected wingbeat frequency for 
honeybees from literature [60–62]. Wild insects show a 
different distribution with lower and more varied wing-
beat frequencies than the clustered and foraging bees. 
We only counted honeybees and bumble bees during 
the Pollard walks but many other small insects can be 
expected to be active in the field.

Fitting the spatial model to all data, the number of wild 
insects, clustering and foraging bees can be estimated 
for the full measurement period. The result is plotted 
together with the ground truthing results in Fig.  6. The 
lidar was shut down for ca 20 min due to computer prob-
lems on 4 July around 11:00 and thus, some data points 
are missing in Fig. 6. The lidar data from 6 July is shown 
separately in Fig. 7.

In Fig. 6a, b, we see that the hive activity and foraging 
bees show a strong daily pattern, where activity rises 

during the morning, reaches peak activity around 14:00 
both days, slightly after the solar noon at 13:18 [63] and 
decreases in the afternoon. In contrast, the wild insect 
activity shows a more consistent activity throughout 
the day, and even increases throughout the entire sec-
ond day.

The lidar measurements of bee activity show good cor-
relation with the reference measurements (Table 1). The 
correlation between the Pollard walk counts and hive 
scale measurements were calculated by linearly interpo-
lating between the two closest sample points of the hive 
scales to each Pollard walk. The correlation between the 
Pollard walks and the lidar was calculated by interpolat-
ing the between the two closest 15 min recording inter-
vals to each Pollard walk. Since the lidar was alternated 
between a higher and lower transect during the third 
day, it gradually became un-aligned and recorded fewer 
and fewer observations in each timeslot. Lidar data from 
6 July is, therefore, not comparable to the two previous 
days or used in the correlation calculations.

Fig. 5 Modulation power frequency distributions. Green curve represents the wild insects observed in  rw region, red curve represents the hive 
activity in the  rh region. The purple curve represents the foraging bees observed in the  rfo region. Median intensity is plotted as a solid line and the 
IQR between 25 and 75% as a band. The insect observations recorded in the  rh and  rfo regions are assumed to be honeybees in the model. This is 
supported by the spectra, since they show a strong peak between 180 and 220 Hz
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The transect walks by the wheel track show a slightly 
better correlation with hive and lidar measurements than 
the flower path, possibly because the honeybees were 
easier to spot in the low clover crop than in the flower 
strip. The lidar shows slightly better correlation with the 
loss in hive weights than with the Pollard walk observa-
tions. This is also shown in Fig. 8.

Analyzing lidar data from the third day when the beam 
was altered between two transects, we find ~ 68% more 
bees in the lower transect than in the upper. The bees 
observed near the beehives in the upper transect are also 
more dispersed, as shown in Fig. 7a, b. The average wing-
beat frequency spectra in the lower and, respectively, 
upper transect are shown in Fig. 7c. By fitting a spectral 

Fig. 6 Lidar insect counts,  Wbee loss, and Pollard walk observations over time. The clustered and foraging bees detected by the lidar show a 
different temporal pattern than the background insects, which are active later in the evening. This correlates with the estimate of bee activity 
determined from hive scales and with the transect counts
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model from [64], the fundamental frequency in the lower 
and, respectively, upper transect can be estimated. With 
an explanation grade for the model of > 98%, the funda-
mental wingbeat frequency was calculated to 179.6  Hz 
with in the lower transect and 191.5  Hz in the upper 
transect. Confidence intervals were 178.8 Hz to 180.4 Hz 
and 191 Hz to 192 Hz, respectively.

Discussion
In this study, we have separated hive activity and forag-
ing bees from wild insects. The measured activity is cor-
related with alternative measures of activity obtained by 

hive scales and Pollard walks. The average foraging dis-
tance is estimated and the insect distribution close to the 
hives is profiled by multiplexing the height of the beam.

The large abundance of honeybees in this experimental 
setup made it possible to assume that the vast majority 
of insects centered around the beehives were due to hive 
activity or foraging honeybees. While there were sev-
eral beehive clusters in the field, the selected cluster was 
relatively isolated from the others and we could assume 
that insects showing a different spatial distribution were 
other insects. This made it possible to calculate the hon-
eybee activity and foraging range without individually 

Fig. 7 a Insect activity over time, range and flight height. Each dot represents one observation. Observations recorded in the lower transect are 
plotted in blue. Observations from the higher transect are plotted in orange. The majority of observations are recorded close to the beehive at 
180 m. Note that the variation in ground level is exaggerated by the different scales on the height and distance axes. b Distribution over range 
during the third day for both transects. In the lower transect, we see a high number of bees concentrated in a small area, whereas in the higher 
transect, we see fewer and a broader distribution of insects which indicates a “funnel like” distribution above the beehives. c Median frequency 
composition and IQR for the low and high transect within 15 m of the beehives. Insect in the high transect have a 7% higher average wingbeat 
frequency. The lower transect also shows more activity at lower frequencies from wild insects
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classifying each observation. This simplification was 
validated by the frequency spectra shown in Fig.  5. The 
drone activity was ignored as they only make up a rela-
tively small fraction of the individuals in a beehive.

The lidar, beehive scales and manual transect walks 
all show good agreement on the honeybee activity 
(Table 1). However, using the beehive scales to monitor 
activity is based on the approximation that the weight 
is linearly changing by a constant rate from midnight 
to midnight. This is an assumption; the weight of the 
hives depends on the feed brought into the hive, the 
feed eaten and the weight of the bee population within 

the hive. The lidar measurements are more strongly 
correlated with the hive scales than the Pollard tran-
sects. One interpretation is that the hive scales and 
lidar measure all flight activity, while the Pollard tran-
sects mainly record flower visits and flights close to 
the ground level. Alternatively, the Pollard counts are 
prone to more random variation, caused by observa-
tions of shorter time duration, smaller spatial scale cov-
ered and bee detectability. In addition, both the lidar 
and the hive scales are more strongly correlated with 
the activity in the wheel track than in the flower strip. 
This could indicate that the bees from the monitored 

Table 1 Relationships (Pearson correlation coefficient R, p value p and number of time intervals used N) between alternative 
measures of honeybee activity

Pollard walk counts, wheel 
track

Pollard walk counts, flower 
path

Wbee loss
hive 1

Wbee loss
hive 2

Pollard walk counts, 
flower path

R: 0.811
p: 5.1 ×  10–7

N: 26

Wbee loss
hive 1

R: 0.846
p: 1.08 ×  10–9

N: 32

R: 0.638
p: 8.43 ×  10–5

N: 32

Wbee loss
hive 2

R: 0.874
p: 6.76 ×  10–11

N: 32

R: 0.832
p: 3.69 ×  10–9

N: 32

R: 0.821
p: 2.30 ×  10–10

N: 38

Lidar bee counts
(Nhive + Nfo)

R: 0.607
p: 1.65 ×  10–3

N: 24

R: 0.526
p: 8.29 ×  10–3

N: 24

R: 0.725
p: 8.61 ×  10–6

N: 29

R: 0.777
p: 7.00 ×  10–7

N: 29

Fig. 8 Measured honeybee activity from the lidar is correlated with the observations from the transect walks (a). The correlation is even stronger 
between the lidar and the hive weights (b). The interpretation could be that the lidar and hive scales measure all flight activity, whereas the Pollard 
walks only measure bees foraging in part of the field
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classifying each observation. This simplification was 
validated by the frequency spectra shown in Fig.  5. The 
drone activity was ignored as they only make up a rela-
tively small fraction of the individuals in a beehive.

The lidar, beehive scales and manual transect walks 
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activity is based on the approximation that the weight 
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to midnight. This is an assumption; the weight of the 
hives depends on the feed brought into the hive, the 
feed eaten and the weight of the bee population within 

the hive. The lidar measurements are more strongly 
correlated with the hive scales than the Pollard tran-
sects. One interpretation is that the hive scales and 
lidar measure all flight activity, while the Pollard tran-
sects mainly record flower visits and flights close to 
the ground level. Alternatively, the Pollard counts are 
prone to more random variation, caused by observa-
tions of shorter time duration, smaller spatial scale cov-
ered and bee detectability. In addition, both the lidar 
and the hive scales are more strongly correlated with 
the activity in the wheel track than in the flower strip. 
This could indicate that the bees from the monitored 
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path

Wbee loss
hive 1

Wbee loss
hive 2

Pollard walk counts, 
flower path

R: 0.811
p: 5.1 ×  10–7

N: 26

Wbee loss
hive 1

R: 0.846
p: 1.08 ×  10–9

N: 32

R: 0.638
p: 8.43 ×  10–5

N: 32

Wbee loss
hive 2

R: 0.874
p: 6.76 ×  10–11

N: 32

R: 0.832
p: 3.69 ×  10–9

N: 32

R: 0.821
p: 2.30 ×  10–10

N: 38

Lidar bee counts
(Nhive + Nfo)

R: 0.607
p: 1.65 ×  10–3

N: 24

R: 0.526
p: 8.29 ×  10–3

N: 24

R: 0.725
p: 8.61 ×  10–6

N: 29

R: 0.777
p: 7.00 ×  10–7

N: 29

Fig. 8 Measured honeybee activity from the lidar is correlated with the observations from the transect walks (a). The correlation is even stronger 
between the lidar and the hive weights (b). The interpretation could be that the lidar and hive scales measure all flight activity, whereas the Pollard 
walks only measure bees foraging in part of the field
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hive were mainly foraging in the nearby white clover, or 
that the honeybees were more difficult to count in the 
high growing flower strip.

By modulating the beam between a lower and higher 
path, we profiled the honeybee activity at two heights. 
The fewer and more dispersed insects in the upper beam 
seems to indicate a “funnel like” distribution of bees over 
the beehives, widening with height, as shown in Fig. 7a, b. 
Orientation flights of new workers have been described 
as a spiral widening with height and could contribute to 
this distribution [65]. However, the number of orienta-
tion flights is expected to be low compared to the num-
ber of foraging flights. In addition, the insects observed 
in the upper beam had 7% higher wingbeat frequency, as 
can be seen in Fig. 7c. If returning bees carrying nectar 
and pollen have a higher wingbeat frequency, the results 
indicate a scenario, where bees leave the hives flying close 
to the ground for foraging. Once fully loaded, ca 150 m 
from the hive, they return to the hive on a higher trajec-
tory, as illustrated in Fig. 9. However, a recent study based 
on a limited number of measurements failed to find a 
correlation between weight load and wingbeat frequency 
[61]. Other work on bumble bees show that payload ini-
tially affect flight pitch angle and that the wing beat fre-
quency is only increased in extreme cases [66]. Wingbeat 
frequency increases with temperature, and since the air is 
expected to be warmer near the ground, a thermal differ-
ence between the beams is unlikely to be the cause.

A few previous experiments used a “scanning” beam to 
map insect activity in three dimensional space [67], but to 
our knowledge this is the first time this is combined with 
automated algorithms for individual event extraction on 
a large number of observations. In this work, the beam 
was moved manually and only vertically but the logical 
progression would be to alternate the beam horizontally 
over more transects and automate the movement. One 
could also employ a 2D detector chip in combination 
with a laser sheet [68]. This would allow a 2D model of 
the foraging range within the field. We wish to explore 
this in future studies. Although this experiment only cov-
ered total of ~ 23 h of recordings, the high number of col-
lected recordings allows statistical analysis of temporal 
changes with 15 min resolution. This is to the best of our 
knowledge not possible with any other insect monitoring 
method.

In this study, the range distribution of the foraging bees 
had an average full width half maximum of ~ 150 m. This 
can be compared to studies in the literature which finds 
that foraging ranges vary from 45 to 6000 m, with aver-
age foraging distances typically around 600 m to 800 m 
depending on colony size, foraging resources and time of 
year, with shorter distances in early summer [69, 70]. In 
this field, the hives were placed in the middle of a food 
source which has been shown to result in shorter forag-
ing distances [23]. However, as discussed in Fig.  4, the 
sensitivity of the lidar decreases with range due to the 

Fig. 9 Funnel-like distribution and differences in wingbeat frequency could be explained by a model, where insects leaving the hive fly at lower 
height, close to the ground, while returning bees fly along a higher path. In this study, the full-width-half-maximum (FWHM) of the foraging range 
was ca 150 m
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optical configuration. Therefore, the minimum detect-
able target size decreases with range, and in addition, the 
beam’s elevation over the crop is also varying along the 
transect. This makes it hard to quantitatively compare the 
activity at different distances [23]. A future more com-
plex parameterization model could take these parameters 
into account as discussed in [54] and investigate inhomo-
geneous distributions of wild insects, pollinator competi-
tion and displacement of wild pollinators.

Outlook
Since the height of the beam strongly influences the 
number of detected observations, it is challenging for 
lidar entomologists to compare insect activity levels at 
different locations. Regardless, the instrumentation can 
be a vital tool to investigate the behavior of bees and wild 
insects. In this study, a simple spatial model was relied on 
to discriminate target types and provide quantitative esti-
mates of their relative occurrence. As characterization of 
the scattering properties of individual insects develops, 
discrimination at the level of individual transit observa-
tions may become possible [71–73].

While instrumentation used in this study is commer-
cially available, it currently requires skilled technicians 
for alignment and operations. As the entomological lidar 
community is growing and research groups are active in 
several countries and continents, there are good pros-
pects for the methodology becoming accessible for ento-
mologists and ecologists in general.

Conclusions
We deployed an entomological lidar in a homogenous 
flowering white clover field and profiled the honey-
bee activity around a cluster of beehives over time. By 
decomposing the observations into hive activity, forag-
ing honeybees and wild insects the number of honey-
bees engaged in flight activities could be estimated and 
showed good correlation with estimates from hive scales 
and Pollard walks. In addition to counting the number 
of active bees, average foraging distance was estimated. 
In addition, the three-dimensional distribution of hon-
eybees around the hives was investigated by moving the 
beam between an upper and lower height.

This work has shown the ability to record very high 
number of insects during a short time period, which 
allows the study of insect activity with a very high tem-
poral resolution. We propose that lidar monitoring can 
change pollinator research in the future by providing val-
uable new information on how external factors influence 
pollinator activity.
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optical configuration. Therefore, the minimum detect-
able target size decreases with range, and in addition, the 
beam’s elevation over the crop is also varying along the 
transect. This makes it hard to quantitatively compare the 
activity at different distances [23]. A future more com-
plex parameterization model could take these parameters 
into account as discussed in [54] and investigate inhomo-
geneous distributions of wild insects, pollinator competi-
tion and displacement of wild pollinators.

Outlook
Since the height of the beam strongly influences the 
number of detected observations, it is challenging for 
lidar entomologists to compare insect activity levels at 
different locations. Regardless, the instrumentation can 
be a vital tool to investigate the behavior of bees and wild 
insects. In this study, a simple spatial model was relied on 
to discriminate target types and provide quantitative esti-
mates of their relative occurrence. As characterization of 
the scattering properties of individual insects develops, 
discrimination at the level of individual transit observa-
tions may become possible [71–73].

While instrumentation used in this study is commer-
cially available, it currently requires skilled technicians 
for alignment and operations. As the entomological lidar 
community is growing and research groups are active in 
several countries and continents, there are good pros-
pects for the methodology becoming accessible for ento-
mologists and ecologists in general.

Conclusions
We deployed an entomological lidar in a homogenous 
flowering white clover field and profiled the honey-
bee activity around a cluster of beehives over time. By 
decomposing the observations into hive activity, forag-
ing honeybees and wild insects the number of honey-
bees engaged in flight activities could be estimated and 
showed good correlation with estimates from hive scales 
and Pollard walks. In addition to counting the number 
of active bees, average foraging distance was estimated. 
In addition, the three-dimensional distribution of hon-
eybees around the hives was investigated by moving the 
beam between an upper and lower height.

This work has shown the ability to record very high 
number of insects during a short time period, which 
allows the study of insect activity with a very high tem-
poral resolution. We propose that lidar monitoring can 
change pollinator research in the future by providing val-
uable new information on how external factors influence 
pollinator activity.
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Automating insect monitoring 
using unsupervised near‑infrared 
sensors
Klas Rydhmer1,2*, Emily Bick1,3, Laurence Still1, Alfred Strand1, Rubens Luciano1, 
Salena Helmreich1, Brittany D. Beck1, Christoffer Grønne1, Ludvig Malmros1, Knud Poulsen1, 
Frederik Elbæk1, Mikkel Brydegaard1,4,5,6, Jesper Lemmich1 & Thomas Nikolajsen1

Insect monitoring is critical to improve our understanding and ability to preserve and restore 
biodiversity, sustainably produce crops, and reduce vectors of human and livestock disease. 
Conventional monitoring methods of trapping and identification are time consuming and thus 
expensive. Automation would significantly improve the state of the art. Here, we present a network 
of distributed wireless sensors that moves the field towards automation by recording backscattered 
near‑infrared modulation signatures from insects. The instrument is a compact sensor based on dual‑
wavelength infrared light emitting diodes and is capable of unsupervised, autonomous long‑term 
insect monitoring over weather and seasons. The sensor records the backscattered light at kHz pace 
from each insect transiting the measurement volume. Insect observations are automatically extracted 
and transmitted with environmental metadata over cellular connection to a cloud‑based database. 
The recorded features include wing beat harmonics, melanisation and flight direction. To validate 
the sensor’s capabilities, we tested the correlation between daily insect counts from an oil seed rape 
field measured with six yellow water traps and six sensors during a 4‑week period. A comparison of 
the methods found a Spearman’s rank correlation coefficient of 0.61 and a p‑value = 0.0065, with 
the sensors recording approximately 19 times more insect observations and demonstrating a larger 
temporal dynamic than conventional yellow water trap monitoring.

Insecta is the most speciose class of terrestrial  fauna1 and the majority of the world’s biodiversity is composed 
of this  class2. In epidemiological and agricultural ecosystems, insects serve as both beneficial  organisms3–5 and 
economic  pests6,7. Data on insects can support biodiversity  conservation8,9, human health  protection10 and 
increased food  production11.

Insects are monitored via established sampling methods including trapping, sweep netting, and portable 
 aspiration12–14. These methods are imperfect resulting in biases towards  size15–17 and  stage18. Additionally, con-
ventional methods may be time-consuming, costly and prone to human error such as person-to-person vari-
ation in sampling  execution19–21. New methods, like insect anesthetization  sampling22, are being implemented 
to minimize these biases. Regardless of sampling method, insect identification is time consuming and requires 
specialized training.

In order to reduce the cost of insect monitoring and identification, automation of insect  trapping23–27 and 
 identification27–31 has been developed. While these methods could greatly improve monitoring via traps, they 
are unsuitable for monitoring a general insect population since trap designs and baits are generally biased in 
regard to  species32,33.

Automation of insect monitoring without traps could reduce species bias of conventional methods and human 
error, thus greatly improving the state of the art. Insect identification has been automated as early as 1973 using 
wingbeat  frequency34–36, and today remote insect sensing includes acoustic  detection37, radar  observations38–40 
and  lidar41–43. Acoustic methods work best with a solid  medium26,44, though acoustic monitoring of free fly-
ing insects has been  demonstrated45–47. While radar technologies have much larger monitoring  range16,40,48–50, 
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Insect monitoring is critical to improve our understanding and ability to preserve and restore 
biodiversity, sustainably produce crops, and reduce vectors of human and livestock disease. 
Conventional monitoring methods of trapping and identification are time consuming and thus 
expensive. Automation would significantly improve the state of the art. Here, we present a network 
of distributed wireless sensors that moves the field towards automation by recording backscattered 
near‑infrared modulation signatures from insects. The instrument is a compact sensor based on dual‑
wavelength infrared light emitting diodes and is capable of unsupervised, autonomous long‑term 
insect monitoring over weather and seasons. The sensor records the backscattered light at kHz pace 
from each insect transiting the measurement volume. Insect observations are automatically extracted 
and transmitted with environmental metadata over cellular connection to a cloud‑based database. 
The recorded features include wing beat harmonics, melanisation and flight direction. To validate 
the sensor’s capabilities, we tested the correlation between daily insect counts from an oil seed rape 
field measured with six yellow water traps and six sensors during a 4‑week period. A comparison of 
the methods found a Spearman’s rank correlation coefficient of 0.61 and a p‑value = 0.0065, with 
the sensors recording approximately 19 times more insect observations and demonstrating a larger 
temporal dynamic than conventional yellow water trap monitoring.

Insecta is the most speciose class of terrestrial  fauna1 and the majority of the world’s biodiversity is composed 
of this  class2. In epidemiological and agricultural ecosystems, insects serve as both beneficial  organisms3–5 and 
economic  pests6,7. Data on insects can support biodiversity  conservation8,9, human health  protection10 and 
increased food  production11.

Insects are monitored via established sampling methods including trapping, sweep netting, and portable 
 aspiration12–14. These methods are imperfect resulting in biases towards  size15–17 and  stage18. Additionally, con-
ventional methods may be time-consuming, costly and prone to human error such as person-to-person vari-
ation in sampling  execution19–21. New methods, like insect anesthetization  sampling22, are being implemented 
to minimize these biases. Regardless of sampling method, insect identification is time consuming and requires 
specialized training.

In order to reduce the cost of insect monitoring and identification, automation of insect  trapping23–27 and 
 identification27–31 has been developed. While these methods could greatly improve monitoring via traps, they 
are unsuitable for monitoring a general insect population since trap designs and baits are generally biased in 
regard to  species32,33.

Automation of insect monitoring without traps could reduce species bias of conventional methods and human 
error, thus greatly improving the state of the art. Insect identification has been automated as early as 1973 using 
wingbeat  frequency34–36, and today remote insect sensing includes acoustic  detection37, radar  observations38–40 
and  lidar41–43. Acoustic methods work best with a solid  medium26,44, though acoustic monitoring of free fly-
ing insects has been  demonstrated45–47. While radar technologies have much larger monitoring  range16,40,48–50, 
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they are unsuitable for monitoring small insects, or insects around vegetation, such as a crop canopy. Optical 
methods were early used as to overcome many of these  limitations51–53. Today, lidar can be used to record a large 
number of observations in a long  transect54–58 and distinguish between species groups by wingbeat frequency 
(WBF)55,59. However, lidar equipment requires a trained operator and requires constant supervision due to eye 
safety restrictions.

Here we present an autonomous near-infrared sensor for monitoring of flying insects in the field. The sensor 
aims to minimize human biases, be usable by non-technical personnel, and be capable of unsupervised long-
term monitoring. Compared to existing entomological lidars, it has a smaller measurement volume but is eye 
safe and weatherproof.

Instrument design
The sensor is weatherproof, compact, and intended for field use by non-technicians. Like entomological lidar 
instrumentation, an air volume is illuminated, and light backscattered from insects entering the measurement 
volume is recorded by a high-speed photodetector. In addition, the instrument is equipped with a satellite naviga-
tion device, a camera for situational photos, and an environmental sensor monitoring temperature, humidity, and 
light intensity. An internal Global System for Mobile Communications (GSM) modem allows for communica-
tion and data transfer. The sensor can be powered by any 12 V power supply, including utility power, batteries, 
or solar power, and has a maximum power consumption of 30 W during monitoring. A photo of the sensor is 
shown in Fig. 1 and an internal block diagram is described in Fig. 2.

Emitter. The emitter module consists of a rectangular array of LEDs emitting two spectral bands at 808 nm 
and 980 nm with total output of 1.6 W and 1.7 W, respectively. The two wavelengths are modulated in a square 
wave at 118.8 kHz and 79.2 kHz respectively. The LEDs are mounted in a checkerboard pattern to achieve a 
homogeneous beam profile. The total area of the checkerboard, and thus the beam size at the source, is 82  cm2. 
The light emitted from each diode is partially collimated by an asymmetrical lens and expands with 20° and 4° 
diverging angles ( θE ). The full width half maximum (FWHM) of the emitted light is 26 nm for the 808 nm band 
and 47 nm for the 970 band.

Receiver. The backscattered light from insects entering the overlap between the beam and the receiver’s field 
of view (FoV) is collected by a near infrared coated aspheric lens (60 mm focal length, ø 76.2 mm aperture) 
onto a silicon quadrant photodiode (QPD) with a total area of 1  cm2. The receiver is focused at 1 m and has a 4° 
divergence angle ( θR ). Quadrant detection of insects allow for basic range and size  estimation60,61 and can dif-
ferentiate ascending and descending insects as well as migrating insects with tailwind or host- or scent-seeking 
insects with headwind.

Figure 1.  Situational photo of the sensor. As insects fly into the measurement volume, the backscattered 
light is recorded by the receiver. Insect observations are automatically extracted and transmitted along with 
environmental data, location, and situational photos, to the cloud via a GSM connection. Using a solar panel 
and battery, the sensor is capable of unsupervised, long-term monitoring in remote locations.
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Signal processing. Each quadrant of the QPD is amplified by a dedicated trans-impedance amplifier (TIA) 
with a bandwidth of 10 Hz–1 MHz and a gain of 0.75 V/µA around 100 kHz. The amplified signals are sampled 
by four analogue–digital converters (ADC) with 14-bit output at a rate of 6  MHz. The digital data-streams 
are sent into a field-programmable gate array (FPGA) where eight digital lock-in amplifiers are implemented 
in VHDL (Very High-Speed Integrated Circuit Hardware Description Language). This allows the two spectral 
bands to be recorded independently on each quadrant, resulting in an 8-channel data stream. The data is then 
filtered by a low-pass filter with a cut-off at 5 kHz and digitally sampled to a 20 kHz, 16-bit data stream before it 
is sent to a microcontroller unit (MCU) for event extraction and further processing (Fig. 3). Since insects gener-
ally have wing beat frequencies below 1 kHz, a 5 kHz cutoff allows us to resolve a minimum of five harmonics 
in the frequency spectra. The increase in bit depth is possible due to the oversampling of the unfiltered signal.

Measurement volume. The measurement volume is defined by the overlap between the beam and the FoV. 
Its size and shape can be adjusted by changing the angle ( θS ) between the emitter and receiver.

The beam, FoV and the measurement volume have been mapped by a custom-built 3-axis robot covering a 
volume of 2 m × 1.5 m × 1.5 m. The robot is equipped with a photodetector, an illumination source, and a sphere 
dropping mechanism. The photo-detector and illumination source are used to map the emitted beam and FoV 
respectively while sphere dropping mechanism allow us to verify the signal intensity from a standard object at 
any point in the volume. Using these methods, the signal response from an arbitrary target can be estimated. 
The volumes were measured at 20 planes along the Z axis, from 30 to 1655 mm, each plane consisting of 56 × 56 
measurement points in a 12 mm grid. The calculated signals were then compared to actual measurement values 
by dropping black and white spheres. The white spheres were assumed to be 100% reflective and the black spheres 
had a 5% reflectivity.

The measurement volume properties for targets with various optical cross sections (OCS) at different angles 
are shown in Table 1. The size of the measurement volume is dependent on the minimum acceptable sensitivity, 
which is related to the noise in the instrument. In the following results, the edge of the volume is defined as the 
limit where the signal to noise ratio (SNR) is larger than 10 for typical noise levels in a field installation. The 
signal to noise ratio is defined as the maximum value of the recorded signal divided by the peak-to-peak noise. 
The volumes for a 10  mm2 target are shown in Fig. 4.

Data processing. Automated event extraction. The sensor records intervals of 10  min (4 quadrants, 2 
spectral bands, 16 bit and 20 kHz sample rate after demux of carrier frequency) and automatically extracts in-
sect observations from each recording. The event extraction is inspired by earlier work but modified to reduce 
computational  load42,43,59,62. The event extraction algorithm was developed during prior experiments in various 

Figure 2.  General measurement principle. Light is emitted and collimated from the LED board at 808 nm 
and 980 nm and modulated at different carrier frequencies. The backscattered light from an insect entering 
the measurement volume is collected by a lens and focused onto a QPD. The four QPD-quadrants are 
independently amplified by a TIA and sampled. The digital data streams are sent to the FPGA, where 8 digital 
lock-in amplifiers individually amplify each wavelength in the digital signal processing (DSP) unit. The resulting 
8-channel data stream is analyzed by the MCU which extracts events from the data stream. The events can then 
be stored locally or sent via GSM modem to a cloud database. Created using Power Point 365.
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Signal processing. Each quadrant of the QPD is amplified by a dedicated trans-impedance amplifier (TIA) 
with a bandwidth of 10 Hz–1 MHz and a gain of 0.75 V/µA around 100 kHz. The amplified signals are sampled 
by four analogue–digital converters (ADC) with 14-bit output at a rate of 6  MHz. The digital data-streams 
are sent into a field-programmable gate array (FPGA) where eight digital lock-in amplifiers are implemented 
in VHDL (Very High-Speed Integrated Circuit Hardware Description Language). This allows the two spectral 
bands to be recorded independently on each quadrant, resulting in an 8-channel data stream. The data is then 
filtered by a low-pass filter with a cut-off at 5 kHz and digitally sampled to a 20 kHz, 16-bit data stream before it 
is sent to a microcontroller unit (MCU) for event extraction and further processing (Fig. 3). Since insects gener-
ally have wing beat frequencies below 1 kHz, a 5 kHz cutoff allows us to resolve a minimum of five harmonics 
in the frequency spectra. The increase in bit depth is possible due to the oversampling of the unfiltered signal.

Measurement volume. The measurement volume is defined by the overlap between the beam and the FoV. 
Its size and shape can be adjusted by changing the angle ( θS ) between the emitter and receiver.

The beam, FoV and the measurement volume have been mapped by a custom-built 3-axis robot covering a 
volume of 2 m × 1.5 m × 1.5 m. The robot is equipped with a photodetector, an illumination source, and a sphere 
dropping mechanism. The photo-detector and illumination source are used to map the emitted beam and FoV 
respectively while sphere dropping mechanism allow us to verify the signal intensity from a standard object at 
any point in the volume. Using these methods, the signal response from an arbitrary target can be estimated. 
The volumes were measured at 20 planes along the Z axis, from 30 to 1655 mm, each plane consisting of 56 × 56 
measurement points in a 12 mm grid. The calculated signals were then compared to actual measurement values 
by dropping black and white spheres. The white spheres were assumed to be 100% reflective and the black spheres 
had a 5% reflectivity.

The measurement volume properties for targets with various optical cross sections (OCS) at different angles 
are shown in Table 1. The size of the measurement volume is dependent on the minimum acceptable sensitivity, 
which is related to the noise in the instrument. In the following results, the edge of the volume is defined as the 
limit where the signal to noise ratio (SNR) is larger than 10 for typical noise levels in a field installation. The 
signal to noise ratio is defined as the maximum value of the recorded signal divided by the peak-to-peak noise. 
The volumes for a 10  mm2 target are shown in Fig. 4.

Data processing. Automated event extraction. The sensor records intervals of 10  min (4 quadrants, 2 
spectral bands, 16 bit and 20 kHz sample rate after demux of carrier frequency) and automatically extracts in-
sect observations from each recording. The event extraction is inspired by earlier work but modified to reduce 
computational  load42,43,59,62. The event extraction algorithm was developed during prior experiments in various 

Figure 2.  General measurement principle. Light is emitted and collimated from the LED board at 808 nm 
and 980 nm and modulated at different carrier frequencies. The backscattered light from an insect entering 
the measurement volume is collected by a lens and focused onto a QPD. The four QPD-quadrants are 
independently amplified by a TIA and sampled. The digital data streams are sent to the FPGA, where 8 digital 
lock-in amplifiers individually amplify each wavelength in the digital signal processing (DSP) unit. The resulting 
8-channel data stream is analyzed by the MCU which extracts events from the data stream. The events can then 
be stored locally or sent via GSM modem to a cloud database. Created using Power Point 365.
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conditions. In simple terms, it aims to quantify the noise level and subsequently multiply it with a signal-to-noise 
factor to yield a threshold. All events that exceed this threshold are then extracted.

In the chosen implementation, the signal in each channel was downsampled to 2 kHz and a rolling median 
boxcar filter with a width of 2 s and 50% overlap was used to estimate the quasi-static baselines (the baselines can 
change with environmental conditions, static objects in the beam etc.). A 2 s window width makes the median 
estimation insensitive to insect observations, which has an average transit time of ca 100 ms. The standard devia-
tion of the baseline was measured with an identical filter, applied to all datapoints below the median. The selection 
of values below the median reduces the influence of rare events, such as insects, on the noise level estimation.

The interpolated median signals were removed from the full resolution data and we employed a Boolean 
condition for insect detection when the time series exceed ten times the estimated standard deviation. A high 
threshold factor rejected weak observations which could yield unreliable results in the downstream feature 
extraction. The Boolean time series were eroded by 500 µs and dilated by 30 ms. The erosion rejects short spikes, 
outliers and insect signals to short to be interpreted and the dilation includes insect observation flanks. The 
logical OR function was applied across all QPD-quadrants and spectral channels. Extracted observations are 
transmitted to a cloud database along with metadata such as baseline and noise level, via GSM connection or 
stored locally until a connection is available. An example of the event extraction process is shown in Fig. 5, and 
the insect event is shown in greater detail in Fig. 6.

Each insect observation, along with its associated timestamp and device identifier, is automatically uploaded 
to the cloud via one-way AMQP (Advanced Message Queuing Protocol), with unique connections for each 
device. Virtual computing is then used to further process, analyze, and securely store data for further use and 
aggregation.

Feature extraction/data interpretation. The QPD segments collect backscattered light from different 
sections of the measurement volume. For a single object passing through the measurement volume, the signal 
strength within each QPD-quadrant is related to the object’s OCS as well as its position. As the OCS varies with 
each wingbeat, the wingbeat frequency can be resolved. Many methods have been used to extract the wingbeat 

Figure 3.  Frequency diagram. The wide beam yields long insect transit times, and the corresponding frequency 
resolution is high enough to accurately capture most species. The frequency response curve (red) is flat in the 
wingbeat frequency region and the effect of the LP filter at 5 kHz is indicated. The 5 kHz bandwidth allows a 
minimum of 4 harmonic overtones to be recorded even for mosquitoes with very high wingbeat frequencies.

Table 1.  Measurement volume parameters at different angles for different target OCS. The target OCS values 
correspond roughly to a small midge, a small beetle, and a honeybee.

θS (deg)
SNR at 25 cm for 10  mm2 
target (dB) Far limit (10  mm2 target) (cm)

Measurement volume for 
1  mm2 target (L)

Measurement volume for 
10  mm2 target (L)

Measurement volume for 
100  mm2 target (L)

5 28.6 > 1650 8 52 100

12.5 31.5 130 7 27 87

20 32.3 95 5 16 70



60

5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2603  | https://doi.org/10.1038/s41598-022-06439-6

www.nature.com/scientificreports/

Figure 4.  Measured FoV, beam, and measurement volume for the three angles. Each volume is mapped at 20 
planes along the Z axis and each plane consists of 56 × 56 measurement points with 12 mm spacing. For the FoV 
and beam, all measurement points below 2% of the maximum value are excluded. For the measurement volume 
all points with a SNR < 10 for a 10  mm2 target are excluded. A low angle yields a longer and larger, but less 
sensitive, measurement volume. The FoV is identical in all configurations.

Figure 5.  An example of the event extraction process in a single channel for visibility. (a) The data, in the 
810 nm band of a single QPD segment after the rolling median has been removed. The part of the signal above 
the event threshold is marked in grey, and the final insect event after erosion and dilation of the binary map is 
marked in green. (b) Intensity distribution of the data.
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Figure 4.  Measured FoV, beam, and measurement volume for the three angles. Each volume is mapped at 20 
planes along the Z axis and each plane consists of 56 × 56 measurement points with 12 mm spacing. For the FoV 
and beam, all measurement points below 2% of the maximum value are excluded. For the measurement volume 
all points with a SNR < 10 for a 10  mm2 target are excluded. A low angle yields a longer and larger, but less 
sensitive, measurement volume. The FoV is identical in all configurations.

Figure 5.  An example of the event extraction process in a single channel for visibility. (a) The data, in the 
810 nm band of a single QPD segment after the rolling median has been removed. The part of the signal above 
the event threshold is marked in grey, and the final insect event after erosion and dilation of the binary map is 
marked in green. (b) Intensity distribution of the data.
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frequency from insect  observations62–64 and most are based on identifying the fundamental frequency in the 
frequency domain, as shown in Fig. 6b.

In addition to the wingbeat frequency, the body and wing contribution can be measured from each time 
signal which allows calculation of additional features such as body-to-wing ratio. Additional features can be 
calculated by comparing the relative intensity of the body and wing signals in the two spectral bands. These bands 
differentially index melanin  absorption65–67 and may yield some sensitivity to wing interference  patterns66,68,69, 
although not enough to uniquely determine wing membrane thickness. Together these features can be used to 
quantify the morphology of different insect groups and allow remote classification of insects according to order, 
family, genus or  species32,64,69,70.

Field validation
Methodology. The sensor was field-tested against a conventional insect monitoring method, yellow water 
traps (22 cm diameter)33,71, in an organic oilseed rape (Brassica napus L.) field in the vicinity of Sorø, Denmark 
(55° 29′ 04.3″ N 11° 29′ 34.6″ E). During a four-week period (04/22/20–05/22/20), insects were monitored with 
six sensors and six yellow water traps. The water traps were filled with water and soap, immediately drowning 
any insects landing in the trap. Sensors and traps were placed in a grid pattern, consisting of four linear transects 
30 m from and perpendicular to the field’s southern-most edge. This is illustrated in Fig. 7. Each transect con-
sisted of three monitoring points (either sensors or traps) with 45 m spacing, and a separation of 22.5 m between 
transects. The first and third transect consisted of sensors and the second and fourth were yellow water traps. 
During the field study presented in this work, θS was set to 20° in order to maximize the signal strength of small 
targets at close range.

Fundamentally the two methods observe different insect behaviors. While the sensor looks at insects fly-
ing above the crop canopy, the yellow water traps look at insects that occur within it. Further confounding the 
comparison, yellow is attractive to some  insects33. Therefore, some proportion of insects will be attracted to 
the yellow water traps, resulting in overrepresentation of some  species72,73. However, water traps constitute the 
standard practice for pest monitoring in oilseed rape for many species.

Data analysis. The water traps were emptied daily, except for Sundays and 7 additional days (3 sample days 
in late April and 4 days in mid May) where we were unable to empty the traps. Sensor data was recorded continu-
ously. All insects in the traps were collected, but to allow for a more direct comparison of methods, non-flying 
insects and thrips found in water traps were excluded from further analysis.

The sensor data was aggregated according to the collection time of the water traps. Insects trapped during 
Sundays were added to the following days count and the number of collected insects was normalized by the 
number of trapping days. One day, April 30th, was excluded due to instrument malfunction. The average number 
of recorded insect observations per sensor per day and per hour was calculated. The calculated numbers were 
normalized by sensor uptime, which was on average 90% throughout the measurement period. Observations 
during heavy rainfall and without any distinguishable wingbeat frequency, ca 1% of the observations, were 
automatically removed from the data using a classification algorithm.

Figure 6.  Insect event example. (a) The 810 nm signal for a single insect event in of one of the QPD segments. 
The insect wingbeats appear as undulating spikes. The minimum envelope of the signal is interpreted as the 
insect body contribution to the signal. (b) The Welch spectral density of the event. The fundamental wingbeat 
frequency and harmonics are seen in the event signal. This event has a fundamental wingbeat frequency of 
160 Hz and an average body-to-wing ratio of 0.4.
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Results
The insect activity recorded by the sensors and traps respectively are shown in Fig. 8. Insect counts from sensors 
and traps cannot be directly equated due to differences in measurement subject (insect flights vs insect landings) 
and non-homogeneous insect distribution; however, they serve to visualize similarities in gross changes in insect 
activity over the sample period. The results demonstrate a significant correlation between the sensor and trap 
results, specifically with a Spearman’s rank correlation coefficient of 0.61 and a p-value = 0.006574. Over the course 
of the season, an average of 1122 ± 242 (SE) insect observations per day were collected per sensor (excluding 
downtime), compared to an average of 63 ± 6 (SE) insects caught per water trap per day over the same period.

Discussion
Here we present a sensor for automated unsupervised field monitoring of insect flight activity. The sensor illumi-
nates an air volume and records the backscattered light from insects that fly through the measurement volume. 
Discrete insect observations are automatically extracted from the continuous raw data flow and transmitted 
over a cellular connection to a database in the cloud. Field validation showed the number of recorded insect 
observations correlates with the number of individual insects trapped by a conventional insect monitoring 
method. Furthermore, the sensor recorded an order of magnitude more insects than the conventional method 
over the same period.

The automation of insect monitoring has the potential to reduce monitoring bias, cost, and human labor, 
potentially resulting in an increased ability to collect large quantities of biodiversity, public health, and economi-
cally relevant insect data. Additionally, the observations from the sensors were available in real time, whereas 
emptying and counting insects from traps required a significant amount of labor. While this work was limited 
to comparing total insect counts from the traps, it is possible for a skilled expert to identify these insects to the 
sub-species level. This is an area were the traps currently have a strong advantage over this sensor and similar 
instrumentation. Developing and evaluating species specific insect classification algorithms is therefore a major 
focus. Significant work is still needed prior to field implementation to test possible use cases and limitations of 
this system.

One of the most striking differences in monitoring methods is the day-to-day variability in the number of 
data points collected (Fig. 7). While the yellow traps catch a similar number of insects each day, the difference 
between low and high flight activity days were more visible in the sensor. Early analysis of the trap and sensor 

Figure 7.  Layout of sensors and traps on the field. Sensors and traps were placed in a grid pattern ca 30 m from 
the field edges. The four north–south transects are separated by ca 22 m and consists of either sensors or water 
traps, spaced by 45 m. Image data from Google Earth 2021, Aerodata International Survey Mapdata 2021.
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Results
The insect activity recorded by the sensors and traps respectively are shown in Fig. 8. Insect counts from sensors 
and traps cannot be directly equated due to differences in measurement subject (insect flights vs insect landings) 
and non-homogeneous insect distribution; however, they serve to visualize similarities in gross changes in insect 
activity over the sample period. The results demonstrate a significant correlation between the sensor and trap 
results, specifically with a Spearman’s rank correlation coefficient of 0.61 and a p-value = 0.006574. Over the course 
of the season, an average of 1122 ± 242 (SE) insect observations per day were collected per sensor (excluding 
downtime), compared to an average of 63 ± 6 (SE) insects caught per water trap per day over the same period.

Discussion
Here we present a sensor for automated unsupervised field monitoring of insect flight activity. The sensor illumi-
nates an air volume and records the backscattered light from insects that fly through the measurement volume. 
Discrete insect observations are automatically extracted from the continuous raw data flow and transmitted 
over a cellular connection to a database in the cloud. Field validation showed the number of recorded insect 
observations correlates with the number of individual insects trapped by a conventional insect monitoring 
method. Furthermore, the sensor recorded an order of magnitude more insects than the conventional method 
over the same period.

The automation of insect monitoring has the potential to reduce monitoring bias, cost, and human labor, 
potentially resulting in an increased ability to collect large quantities of biodiversity, public health, and economi-
cally relevant insect data. Additionally, the observations from the sensors were available in real time, whereas 
emptying and counting insects from traps required a significant amount of labor. While this work was limited 
to comparing total insect counts from the traps, it is possible for a skilled expert to identify these insects to the 
sub-species level. This is an area were the traps currently have a strong advantage over this sensor and similar 
instrumentation. Developing and evaluating species specific insect classification algorithms is therefore a major 
focus. Significant work is still needed prior to field implementation to test possible use cases and limitations of 
this system.

One of the most striking differences in monitoring methods is the day-to-day variability in the number of 
data points collected (Fig. 7). While the yellow traps catch a similar number of insects each day, the difference 
between low and high flight activity days were more visible in the sensor. Early analysis of the trap and sensor 

Figure 7.  Layout of sensors and traps on the field. Sensors and traps were placed in a grid pattern ca 30 m from 
the field edges. The four north–south transects are separated by ca 22 m and consists of either sensors or water 
traps, spaced by 45 m. Image data from Google Earth 2021, Aerodata International Survey Mapdata 2021.
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data indicates that the peak recorded during May 7–11 is due to a pollen beetle (Brassicogethes aeneus) activity 
spike. This will be the subject of further studies.

Another marked difference between the sensor and the water traps is the number of data points collected over 
the same collection period. Each sensor observed ~ 19× more insect observations than insects collected in the 
water trap. While in general the correlation between the two values is considered more relevant than the absolute 
number, one advantage of a much higher observation is the ability to get statistically sound data aggregated with 
very high temporal resolution. In this work, the data was aggregated to match the collection times of the traps but 
it could easily be aggregated down to hourly activity. The higher temporal resolution and continuous monitoring 
during unsociable hours allows for the comparatively easy and low-labor collection of data on insect circadian 
rhythms, as well as direct weather interactions.

We hypothesize that the sensors observe different insect behaviors compared to conventional monitoring 
methods since only airborne (flying or jumping) insects are recorded. Therefore, we did not expect a perfect cor-
relation between the sensors and the conventional methods. Sweep netting is likely the most similar monitoring 
method since it also catches insects in flight above the crop. However, sweep netting, which also collects insects 
on plants, occurs at a point measurement in time and is typically performed along a transect, rather than at a 
fixed point in the  field19. Also, each trapping method is biased towards different insects, influencing  catch15,17.

Trapping methods, such as the water traps used in this study, monitor insects landing, walking, or jumping 
to a specific point and do not record insects in flight. Also, each trapping method is biased towards different 
insects, with the trap color influencing the trap  catch33. It would therefore be beneficial to include multiple trap 
types in the ground truthing in future work. Additionally, both the sensors and the conventional ground truthing 
methods assume that the recorded insect activity in one specific point in the field is representative of the insect 
activity in the near surroundings.

Although we do not fully understand in what manner, the sensor is also most likely biased towards report-
ing certain species groups. Most primarily, its only capable of recording airborne insects and unsuitable for 
monitoring during rain. Insect vision is focused towards the visual or ultraviolet spectrum and not capable of 
resolving infrared light and we believe the emitted beam has very little influence on insect  behavior75. However, 
in a homogeneous landscape such as an agricultural field, any foreign object placed above the canopy could 
serve as an attractant to insects. Finally, the size of the measurement volume varies with the OCS of the insects 
and larger insects will be over-represented. To provide a complete picture of the insect population, this should 
be considered. Along with species specific observations, this is an area where we expect significant progress.

Automated insect monitoring has the potential to facilitate pest prevention, public health studies and bio-
diversity monitoring. Compared to alternative methods, such as automated traps, the sensor described in this 
paper comes at a higher cost per unit and with higher power requirements. Compared to previously described 
entomological lidars, we record fewer observations, but with a longer transit time and higher sampling frequency. 
We believe the advantage of entomological lidars, such as the sensor described in this paper, is the ability to 
potentially monitor and discriminate between multiple species using a single instrument.

In further work we will explore the possibilities of unsupervised long-term monitoring of insect activity and 
species recognition.

Figure 8.  Sensor-trap comparison. (a) Average insect counts across sensors per day. Errorbars indicate the 
standard deviation between the sensors. (b) Average insect count across yellow traps per day. Errorbars indicate 
the standard deviation between the traps. (c) Sensor vs trap counts during days where both sensor and trap data 
were available. The red line is the linear least square fit (LSTQ) with a Spearman correlation coefficient of 0.61.
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Conclusions
In this work, we have introduced an unsupervised automated sensor for insect monitoring. The measurement 
principle is similar to entomological lidar setups but is optimized for near-field measurements. This simplifies 
the installation process and increases the robustness of the sensor, allowing it to be operable by non-technical 
experts and enables long-term unsupervised monitoring.

The sensor automatically extracts insect events from the raw data and transmits these via a built-in modem 
for further processing. From the recorded observations, features such as the wingbeat frequency, body-wing 
ratio, and melanisation factor are computed and used to predict the insect classification down to species. Dur-
ing a 4-week deployment in an oilseed rape field, the detected flight activity was shown to be correlated with a 
conventional monitoring method.

The capabilities, standardization, and scalability of this sensor-based method has the potential to improve 
the state of the art in insect monitoring. To date, 119 similar units have been deployed in field and in 2021 the 
cloud database encompassed > 18 million insect observations. The sensor can be used to explore areas such as 
biodiversity assessment, insecticide resistance, and long-term monitoring of remote areas, facilitating research 
studies currently difficult or impossible to conduct with conventional methods.
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Conclusions
In this work, we have introduced an unsupervised automated sensor for insect monitoring. The measurement 
principle is similar to entomological lidar setups but is optimized for near-field measurements. This simplifies 
the installation process and increases the robustness of the sensor, allowing it to be operable by non-technical 
experts and enables long-term unsupervised monitoring.

The sensor automatically extracts insect events from the raw data and transmits these via a built-in modem 
for further processing. From the recorded observations, features such as the wingbeat frequency, body-wing 
ratio, and melanisation factor are computed and used to predict the insect classification down to species. Dur-
ing a 4-week deployment in an oilseed rape field, the detected flight activity was shown to be correlated with a 
conventional monitoring method.

The capabilities, standardization, and scalability of this sensor-based method has the potential to improve 
the state of the art in insect monitoring. To date, 119 similar units have been deployed in field and in 2021 the 
cloud database encompassed > 18 million insect observations. The sensor can be used to explore areas such as 
biodiversity assessment, insecticide resistance, and long-term monitoring of remote areas, facilitating research 
studies currently difficult or impossible to conduct with conventional methods.
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A B S T R A C T   

While insects are the largest and most diverse group of terrestrial animals, constituting ca. 80% of all known 
species, they are difficult to study due to their small size and similarity between species. Conventional moni-
toring techniques depend on time consuming trapping methods and tedious microscope-based work by skilled 
experts in order to identify the caught insect specimen at species, or even family level. Researchers and policy 
makers are in urgent need of a scalable monitoring tool in order to conserve biodiversity and secure human food 
production due to the rapid decline in insect numbers. 

Novel automated optical monitoring equipment can record tens of thousands of insect observations in a single 
day and the ability to identify key targets at species level can be a vital tool for entomologists, biologists and 
agronomists. Recent work has aimed for a broader analysis using unsupervised clustering as a proxy for con-
ventional biodiversity measures, such as species richness and species evenness, without actually identifying the 
species of the detected target. 

In order to improve upon existing insect clustering methods, we propose an adaptive variant of the variational 
autoencoder (VAE) which is capable of clustering data by phylogenetic groups. The proposed dynamic β-VAE 
dynamically adapts the scaling of the reconstruction and regularization loss terms (β value) yielding useful latent 
representations of the input data. We demonstrate the usefulness of the dynamic β-VAE on optically recorded 
insect signals from regions of southern Scandinavia to cluster unlabelled targets into possible species. We also 
demonstrate improved clustering performance in a semi-supervised setting using a small subset of labelled data. 
These experimental results, in both unsupervised- and semi-supervised settings, with the dynamic β-VAE are 
promising and, in the near future, can be deployed to monitor insects and conserve the rapidly declining insect 
biodiversity.   

1. Introduction 

Insects make up the majority of all known animal species with ca. 1 
million described species and an estimated 3–4 million yet to be 
discovered (May, 1988; Stork, 2018). While insects are numerous and 
found in almost all habitats, the total insect population is thought to be 
shrinking at an alarming rate. An influential report recently reported a 
70% loss of flying insect biomass in 30 years (Hallmann et al., 2017). 
These losses have mainly been driven by changes in the agricultural 
landscape, increased use of pesticides and the spread of disease, but the 
exact reasons and consequences are still unknown (Potts et al., 2016; 
Goulson et al., 2015). In order to accurately measure the biodiversity 

and health of the insect community across various biotopes (or habitats), 
researchers, agronomists, policy makers and institutions are in need of 
insect monitoring capabilities from multiple areas, over long periods of 
time. 

Conventional insect biodiversity monitoring typically involves 
various trapping methods, each with their own bias towards different 
species, which makes it difficult to compare the results across studies 
(Muirhead-Thompson, 2012). The collected insect specimens are further 
identified under microscopes by highly trained experts. These methods 
provide data with very high specificity but are time consuming and 
expensive which severely limits the ability to collect data on a large 
scale, or over extended time periods, with high spatial and temporal 
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agronomists. Recent work has aimed for a broader analysis using unsupervised clustering as a proxy for con-
ventional biodiversity measures, such as species richness and species evenness, without actually identifying the 
species of the detected target. 

In order to improve upon existing insect clustering methods, we propose an adaptive variant of the variational 
autoencoder (VAE) which is capable of clustering data by phylogenetic groups. The proposed dynamic β-VAE 
dynamically adapts the scaling of the reconstruction and regularization loss terms (β value) yielding useful latent 
representations of the input data. We demonstrate the usefulness of the dynamic β-VAE on optically recorded 
insect signals from regions of southern Scandinavia to cluster unlabelled targets into possible species. We also 
demonstrate improved clustering performance in a semi-supervised setting using a small subset of labelled data. 
These experimental results, in both unsupervised- and semi-supervised settings, with the dynamic β-VAE are 
promising and, in the near future, can be deployed to monitor insects and conserve the rapidly declining insect 
biodiversity.   

1. Introduction 

Insects make up the majority of all known animal species with ca. 1 
million described species and an estimated 3–4 million yet to be 
discovered (May, 1988; Stork, 2018). While insects are numerous and 
found in almost all habitats, the total insect population is thought to be 
shrinking at an alarming rate. An influential report recently reported a 
70% loss of flying insect biomass in 30 years (Hallmann et al., 2017). 
These losses have mainly been driven by changes in the agricultural 
landscape, increased use of pesticides and the spread of disease, but the 
exact reasons and consequences are still unknown (Potts et al., 2016; 
Goulson et al., 2015). In order to accurately measure the biodiversity 

and health of the insect community across various biotopes (or habitats), 
researchers, agronomists, policy makers and institutions are in need of 
insect monitoring capabilities from multiple areas, over long periods of 
time. 

Conventional insect biodiversity monitoring typically involves 
various trapping methods, each with their own bias towards different 
species, which makes it difficult to compare the results across studies 
(Muirhead-Thompson, 2012). The collected insect specimens are further 
identified under microscopes by highly trained experts. These methods 
provide data with very high specificity but are time consuming and 
expensive which severely limits the ability to collect data on a large 
scale, or over extended time periods, with high spatial and temporal 
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resolution. 
In recent years, new technologies have been developed for insect 

monitoring such as automated traps (Potamitis et al., 2014, 2017), 
acoustic methods (Ganchev et al., 2007; Mankin et al., 2011) and optical 
instruments such as the entomological lidar (Brydegaard, 2014; Genoud 
et al., 2018; Jansson and Brydegaard, 2018; Shaw et al., 2005). In 
general, these methods provide large amounts of data with a high 
temporal resolution but with lower specificity compared to conventional 
methods (Kirkeby et al., 2021; Fanioudakis et al., 2018; Potamitis et al., 
2017; Chen et al., 2014). The introduction of automated and continuous 
monitoring methods has the potential to greatly improve biodiversity 
monitoring and, consequently, conservation efforts. In order to utilize 
the full potential of these new methods, large number of unlabelled 
insect recordings need to be translated into a quantifiable biodiversity 
index, comparable to conventional estimates. 

In this work, we combine the rich data from lidar entomology with 
the powerful capabilities of variational auto-encoders (VAEs) (Kingma 
and Welling, 2014). A common trade-off that is difficult to achieve in 
VAEs is between its two loss components: reconstruction loss and reg-
ularization loss. Balancing these two components can yield useful 
low-dimensional features (representations) of the input data which can 
be further analyzed to perform clustering of the input data (Bengio et al., 
2013; Higgins et al., 2016). We introduce a dynamically changing 
formulation of the scaling of the loss terms (β). The proposed β dynamics 
takes instantaneous changes to the loss terms and the historical perfor-
mance during training into account to keep both the reconstruction and 
regularization performance near their optimum. 

The proposed dynamic β-VAE is trained on unlabelled insect re-
cordings collected using a novel optical insect sensor at several sites in 
southern Scandinavia. We demonstrate its ability to successfully extract 
features from input data into the regularized latent space, and to cluster 
the data into an appropriate number of clusters. We experimentally 
validate improvements compared to more conventional methods such as 
the hierarchical clustering algorithm (HCA) (Brydegaard et al., 2020; 
Kouakou et al., 2020) and principal component analysis (PCA). Addi-
tionally, we show that the introduction of a semi-supervised data set 
further improves the clustering performance on the unlabelled data 
when evaluated on known phylogenetic groups. 

2. Background & related work 

2.1. Lidar-entomology & clustering 

Lidar entomology is an insect monitoring method where insects are 
recorded as they enter an infrared laser beam which can sometimes 
extend for kilometers. It might be the fastest way to record large 
amounts of insect data, yielding up to several tens of thousands of 
optically recorded insect signals per day (Brydegaard et al., 2020). This 
data consists of time series, where the signal intensity varies with the 
insect cross section and wing beats. As the wing-beat frequency (WBF) 
varies between insects groups, it can to some degree be used to distin-
guish between species, alone or with other extracted features (Kirkeby 
et al., 2021; Fanioudakis et al., 2018; Potamitis et al., 2017; Chen et al., 
2014; Gebru et al., 2018). 

While the ability to identify a number of key species from automated 
sensors would be greatly beneficial to the entomological community, it 
is not sufficient to quantify the biodiversity. Instead, the total number of 
species (species richness) and their relative distributions (species even-
ness) are the commonly used measurements. Previous efforts to derive 
these numbers from a large number of optically recorded insect signals 
have been made using HCA on the WBF power spectra (Brydegaard 
et al., 2020; Kouakou et al., 2020). However, in order to cover a broad 
range of frequencies with sufficient resolution, a high dimensional 
feature space is required and the distance measures are non-trivial. For 
reduced model complexity and improved computational and clustering 
performance, a reduction of the parameter space is desired. 

In order to reduce the parameter space while retaining the necessary 
information, various algorithms for extracting the WBF and other 
physical properties from insect recordings have been proposed and used 
(Kirkeby et al., 2021; Gebru et al., 2018; Qi et al., 2015; Jansson et al., 
2018; Li et al., 2020). Machine learning based methods for feature 
extraction, such as auto-encoders (AE), have also been used to extract 
additional features (Qi et al., 2015), and very recently, to cluster 
acoustically recorded bird songs (Rowe et al., 2021). While an AE is able 
to generate high quality features for classification, a known behaviour of 
AE is the irregularity of the latent feature space where two similar data 
inputs might end up with very different latent representations. This 
makes the extracted features from an auto-encoder unsuitable for clus-
tering recordings of similar insect species and quantifying the diversity 
of the recorded insects. 

2.2. VAEs and β-annealing 

Variational autoencoders (VAEs) consist of a regularized probabi-
listic encoder-decoder pair and are some of the most powerful repre-
sentation learning methods (Bengio et al., 2013; Kingma and Welling, 
2014). They have seen broad applications in generative modelling and 
unsupervised learning tasks. 

Given unlabelled input data consisting of N samples with F features, 
x ∈ ℝN×F, the probabilistic encoder of a VAE maps the input to the 
posterior density p(z|x) over the latent variable, z ∈ ℝN×L. In practice, 
L << N and the encoder neural network approximates the true posterior 
density, p(z|x), with a multivariate Gaussian, qθ(z|x) ∼ 𝒩𝒩 (μθ, σ2

θ ). The 
decoder of a VAE reconstructs the input data from the latent variable 
and is given by the density function pφ(x|z). The encoder and decoder 
neural networks are parameterised by θ and φ, respectively. The opti-
mization objective of a VAE consists of two competing terms and it can 
be shown to be (Kingma and Welling, 2014)  

ℒVAE = �Eqθ [logpφ(x|z)] + KL[qθ(z|x)||p(z)] (1) 
ℒVAE≜ℒrec + ℒreg (2)  

The quality of the auto-encoded reconstructions is controlled by the 
reconstruction loss ℒrec, which is the first term in Eq. (1). The encoder 
density is regularized to match the prior over the latent variable, p(z) ∼
𝒩𝒩 (0bf,I), enforced by the regularization loss, ℒreg, which is the Kullback- 
Leibler divergence (KLD) term in Eq. (1). At a high level, the regulari-
zation term controls the smoothness or the regularity of the latent space. 
Well structured and smooth latent spaces can yield useful representa-
tions of the input data. 

The trade-off between the two loss terms can have influence on the 
performance of any VAE. A VAE where the reconstruction term domi-
nates might be able to reconstruct the input data well with a latent space 
that might not be interesting for the downstream tasks (such as clus-
tering). To alleviate this, a simple trick of scaling the regularization term 
ℒrec was used in  Higgins et al. (2016) resulting in a modified objective: 

ℒβ�VAE = ℒrec + βℒreg. (3)  

Here the role of β ≥ 0 is to balance the reconstruction- and regulariza-
tion losses. Typically, lower β values yield better reconstructions but a 
less regularized latent space and less disentangled features. On the other 
hand, higher β may lead to posterior collapse, where all reconstructions 
are reduced to the average input and the KLD approaches zero. Various 
methods have been proposed to overcome this instability in achieving a 
reasonable trade-off between the loss terms. A common implementation 
is β-annealing, where β is gradually increased from a very low value up 
to a fixed point. While this solves the initial stability problems, the task 
of finding the optimal value of β remains. Recently, it has been shown 
that repeating the process with a cyclic β can lead to better performance 
(Fu et al., 2019). However, when unchecked both implementations face 
the risk of posterior collapse (vanishing KLD) once β enters a stationary 
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phase. 
More recently, several approaches have attempted to adapt β instead 

of using a fixed or scheduled scaling (Shao et al., 2020, 2020; Asperti 
and Trentin, 2020). In the controlVAE formulation in Shao et al. (2020), 
rather than gradually increasing β to a maximum value (annealing), it is 
controlled with feedback from a non-linear proportional-integral (PI) 
controller to keep the KLD at a desired level. This addresses the van-
ishing KLD problem but the users still have to set the desired value of the 
KLD, which might not be straightforward for many applications. 

3. Methods 

The primary goal of this work is to obtain low-dimensional latent 
representations suitable for clustering of the high-dimensional input 
data. Specifically, the objective is to obtain latent space encodings of the 
insect spectral data such that similar species of insects are positioned 
close to each other. To this end, we propose to dynamically adapt, the 
otherwise constant scaling factor, β of a standard β-VAE. 

In our proposed dynamic β-VAE formulation, the changes in recon-
struction and regularisation losses are monitored throughout the 
training process; these changes are used to adapt the β value in each 
epoch using a simple control algorithm. If either the reconstruction- or 
regularization losses increase above a specific level of their historical 
minimum then β is adjusted (either by increasing or decreasing) until a 
new optimum is attained. This dynamic control of β maintains a steady 
trade-off between the two loss terms while reducing the global loss 
function by latching on to the historical minimum of the loss 
components. 

In the remainder of this section, we detail the dynamic β-VAE and 
formulate a semi-supervised variant of the model using a new clustering 
loss component. 

3.1. Dynamic β-VAE 

The key contribution in this work is an online, adaptive formulation 
of the β-VAE using dynamic control of β. This is achieved by varying β at 
each epoch, based on the instantaneous changes in the reconstruction- 
and regularization terms in Eq. (3), with an objective of not letting either 
of the loss terms to dominate the overall model optimization. This results 
in a trade-off between sufficiently good reconstructions and adequately 
regularized latent space yielding representations of the input data that 
are useful for the downstream task. 

At any given epoch t the objective for the dynamic β-VAE is given by, 

ℒ(t) = ℒ(t)
rec + β(t)ℒ(t)

reg. (4)  

The dynamically controlled β(t) is formulated using the signum func-
tion1, ψ[⋅], given by 

β(t) = β(t�1) �
b
4
�
1 � ψ

[
Δreg

] )
(1 + ψ[Δrec] + Δℒrec )

+
a
4
(1 � ψ[Δrec] )

�
1 + ψ
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Δreg

]
� Δℒrec

) (5)  

where  

Δrec = ℒ(t)
rec � w1min
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ℒ(:t�1)
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(6) 

Δreg = ℒ(t)
reg � w2min

(
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(7) 

Δℒrec = ψ
[
ℒ(t)

rec � w3ℒ(t′ )
rec

]
+ ψ

[
ℒ(t)

rec � w4ℒ(t′ )
rec

]
(8)  

with hyperparameters [a,b,w1,w2,w3,w4] ∈ ℝ+. The notation (: t � 1) is 
used to indicate all epochs up to (t-1) and (t′) is the epoch when β was 
last changed. The terms associated with (: t � 1) provide a form of long 
term memory of the previous local optima for each of the two loss terms. 

The β dynamics in Eq. (5) can be divided into two regimes aimed at 
optimizing reconstruction- and regularization terms corresponding to 
increase- and decrease of β, respectively. 

3.1.1. Reconstruction regime (β↓) 
The value of β is decreased due to the �b term in Eq. (5) when Δrec is 

positive; meaning the reconstruction loss is increasing compared to the 
historical minimum reconstruction loss, according to Eq. (6). The β 
decrease rule also checks if the regularization loss is decreasing 
compared to the historical minimum with the term 1 � ψ[Δrec] in Eq. (5). 

3.1.2. Regularization regime (β↑) 
The increase in β happens due to the +a term in Eq. (5) when Δreg is 

positive; meaning the regularization loss is increasing according to Eq. 
(7). The increase rule checks if the reconstruction loss has decreased 
compared to the historical minimum with the term 1 � ψ

[
Δreg

]
in Eq. 

(5). 
Additionally, Δℒrec in Eq (8) nudges a change in β based on the last 

update to β. This allows β to get out of plateaus of either stable recon-
struction or regularization regimes. 

In Fig. 1, one instance of optimizing the dynamic β-VAE with the 
objective in Eq. (4) is shown. The value of β increases until about epoch 
700 at which it plateaus and decreases (Fig. 1, row 3). At epoch 2000, it 
has finally stabilized. These changes are correlated with changes to ℒreg 

and ℒrec captured in the second row of Fig. 1, estimated according to Eqs. 
(5)–(8). 

3.2. Semi-supervised clustering 

Using a small subset of labelled data that optimizes a relevant loss 
could steer learning of representations that are more expressive for the 
downstream tasks under consideration. One approach to achieve this is 
to introduce auxiliary tasks based on the labelled data, resulting in a 
semi-supervised learning setup (Figueroa and Rivera, 2017). 

Fig. 1. The evolution of β during training of an unsupervised dynamic β VAE. 
After a 25 epoch warm-up phase when β = 0, it is dynamically adjusted based 
on Δℒrec, Δrec and Δreg. Thereby, ℒrec and ℒreg remain balanced without 
increasing the total loss (Row 1) implying stable model convergence. 

1 The signum function, ψ[x] returns the sign of any real number s ∈ ℝ 

ψ[s] =

⎧
⎨

⎩

+1 s > 0
0 s = 0
�1 s < 0   
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phase. 
More recently, several approaches have attempted to adapt β instead 

of using a fixed or scheduled scaling (Shao et al., 2020, 2020; Asperti 
and Trentin, 2020). In the controlVAE formulation in Shao et al. (2020), 
rather than gradually increasing β to a maximum value (annealing), it is 
controlled with feedback from a non-linear proportional-integral (PI) 
controller to keep the KLD at a desired level. This addresses the van-
ishing KLD problem but the users still have to set the desired value of the 
KLD, which might not be straightforward for many applications. 

3. Methods 

The primary goal of this work is to obtain low-dimensional latent 
representations suitable for clustering of the high-dimensional input 
data. Specifically, the objective is to obtain latent space encodings of the 
insect spectral data such that similar species of insects are positioned 
close to each other. To this end, we propose to dynamically adapt, the 
otherwise constant scaling factor, β of a standard β-VAE. 

In our proposed dynamic β-VAE formulation, the changes in recon-
struction and regularisation losses are monitored throughout the 
training process; these changes are used to adapt the β value in each 
epoch using a simple control algorithm. If either the reconstruction- or 
regularization losses increase above a specific level of their historical 
minimum then β is adjusted (either by increasing or decreasing) until a 
new optimum is attained. This dynamic control of β maintains a steady 
trade-off between the two loss terms while reducing the global loss 
function by latching on to the historical minimum of the loss 
components. 

In the remainder of this section, we detail the dynamic β-VAE and 
formulate a semi-supervised variant of the model using a new clustering 
loss component. 

3.1. Dynamic β-VAE 

The key contribution in this work is an online, adaptive formulation 
of the β-VAE using dynamic control of β. This is achieved by varying β at 
each epoch, based on the instantaneous changes in the reconstruction- 
and regularization terms in Eq. (3), with an objective of not letting either 
of the loss terms to dominate the overall model optimization. This results 
in a trade-off between sufficiently good reconstructions and adequately 
regularized latent space yielding representations of the input data that 
are useful for the downstream task. 

At any given epoch t the objective for the dynamic β-VAE is given by, 

ℒ(t) = ℒ(t)
rec + β(t)ℒ(t)

reg. (4)  

The dynamically controlled β(t) is formulated using the signum func-
tion1, ψ[⋅], given by 
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with hyperparameters [a,b,w1,w2,w3,w4] ∈ ℝ+. The notation (: t � 1) is 
used to indicate all epochs up to (t-1) and (t′) is the epoch when β was 
last changed. The terms associated with (: t � 1) provide a form of long 
term memory of the previous local optima for each of the two loss terms. 

The β dynamics in Eq. (5) can be divided into two regimes aimed at 
optimizing reconstruction- and regularization terms corresponding to 
increase- and decrease of β, respectively. 

3.1.1. Reconstruction regime (β↓) 
The value of β is decreased due to the �b term in Eq. (5) when Δrec is 

positive; meaning the reconstruction loss is increasing compared to the 
historical minimum reconstruction loss, according to Eq. (6). The β 
decrease rule also checks if the regularization loss is decreasing 
compared to the historical minimum with the term 1 � ψ[Δrec] in Eq. (5). 

3.1.2. Regularization regime (β↑) 
The increase in β happens due to the +a term in Eq. (5) when Δreg is 

positive; meaning the regularization loss is increasing according to Eq. 
(7). The increase rule checks if the reconstruction loss has decreased 
compared to the historical minimum with the term 1 � ψ

[
Δreg

]
in Eq. 

(5). 
Additionally, Δℒrec in Eq (8) nudges a change in β based on the last 

update to β. This allows β to get out of plateaus of either stable recon-
struction or regularization regimes. 

In Fig. 1, one instance of optimizing the dynamic β-VAE with the 
objective in Eq. (4) is shown. The value of β increases until about epoch 
700 at which it plateaus and decreases (Fig. 1, row 3). At epoch 2000, it 
has finally stabilized. These changes are correlated with changes to ℒreg 

and ℒrec captured in the second row of Fig. 1, estimated according to Eqs. 
(5)–(8). 

3.2. Semi-supervised clustering 

Using a small subset of labelled data that optimizes a relevant loss 
could steer learning of representations that are more expressive for the 
downstream tasks under consideration. One approach to achieve this is 
to introduce auxiliary tasks based on the labelled data, resulting in a 
semi-supervised learning setup (Figueroa and Rivera, 2017). 

Fig. 1. The evolution of β during training of an unsupervised dynamic β VAE. 
After a 25 epoch warm-up phase when β = 0, it is dynamically adjusted based 
on Δℒrec, Δrec and Δreg. Thereby, ℒrec and ℒreg remain balanced without 
increasing the total loss (Row 1) implying stable model convergence. 
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As we are interested in clustering of insect species based on their 
latent representation, we enforce clustering of a small subset of labelled 
examples to improve the overall clustering. An additional loss term, ℒcls, 
based on the auxiliary task is introduced to the model optimization: 

ℒ = ℒrec + β(t)ℒreg + γ(t)ℒcls (9)  

where γ(t) is the scaling of the clustering loss component. 
The clustering loss, ℒcls, has two components to encourage intra-class 

cohesion and inter-class repulsion. Intra-class cohesion is captured as 
the sum of distance between all data points belonging to a particular 
class and the corresponding cluster centroid location. Assuming K 
clusters with centroids ̂zk ∈ ℝL, k = 1,…,K and Nk cluster members with 
class label k denoted zk, the intra-class cohesion distance is given by: 

dC =
∑K

k=1

∑Nk

i=1
d(zk

i , ẑk). (10)  

The inter-class repulsion distance is captured using the sum of all pair-
wise distances between the cluster centroids: 

dR =
∑K

i=1

∑

j<i
d(ẑi, ẑj) (11)  

In both cases, d(⋅) is the Euclidean distance. 
Finally, the clustering loss is computed as the ratio between the two 

distances, which when minimized encourages smaller intra-class and 
larger inter-class distances, given by 

ℒcls =
dC + ε
dR + ε, (12)  

where ε is a constant used for numerical stability. 

3.3. Training of dynamic β-VAE 

The final objective of the dynamic β-VAE with semi-supervision in 
Eq. (9) has three components which are introduced during the training 
in three successive stages:  

1. Warm-up phase (β = 0, γ = 0): In this phase, the model primarily 
learns to reconstruct the input data similar to bottleneck 
autoencoders.  

2. Regularized phase (β > 0, γ = 0): In this phase, the dynamic control 
of β sets in which smooths the learned latent space without deteri-
oration in the quality of reconstructions.  

3. Semi-supervised phase (β > 0, γ > 0): In this phase, the learned 
latent space is steered to favour the downstream task of clustering. 

4. Experiments & results 

The main objective of the proposed dynamic β-VAE is to cluster 
unlabelled insect spectra into plausible clusters that could correspond to 
unique species. To evaluate the performance of the model, we use real 
data collected from field instruments and compare the model’s perfor-
mance in different settings. Details of the data and experiments are 
presented in this section. 

4.1. Data collection & pre-processing 

The insect data were recorded with a novel instrument from Fau-
naPhotonics, which uses a similar principle at close- and long ranges as 
the methods described in (Kirkeby et al., 2021; Gebru et al., 2018; 
Brydegaard et al., 2020; Brydegaard, 2014). In the current imple-
mentation, an air volume is illuminated with infrared light in two 
spectral bands at 808 nm and 975 nm. The back-scatter of any object 
passing through a 20 L volume within 1m of the sensor is recorded onto 

a photo diode quadrant detector. As insects fly past, the optical cross 
section varies with their WBF. This yields a modulated time series, 
sampled at 20 kHz with a bandwidth from 0 to 5 kHz. As signals from 
any non-insect object passing through the volume are also recorded, a 
CNN trained with manual labels was used to filter out insect recordings 
from rain and dust etc. For simplicity, the multi spectral time series were 
reduced to one dimension by calculating the average Welch power 
spectra (Welch, 1967) over both spectral bands in F = 193 bins between 
0 and 2 kHz. Finally, the data was log-transformed and individually 
normalized by the maximum of each spectrum. 

The unlabelled data were recorded from March to November 2020 in 
various biotopes in the Öresund region in southern Scandinavia and 
N = 40, 000 insect recordings were randomly selected for the experi-
ments with F = 193 features after the WBF pre-processing. 

Additionally, data encompassing 12 different species groups were 
labelled one species at a time in closed cages in Copenhagen, Denmark. 
From this data, 6000 insect recordings (15% of the unlabelled data) 
were randomly selected and added to the labelled training set. For each 
species group, this resulted in 500 labelled recordings to be used in the 
semi-supervised mode. The average WBF spectra for each labelled spe-
cies group is shown in Fig. 2. 

In order to validate the clustering ability of the different models, 8 
out of the 12 labelled species were included in computing the clustering 
loss, ℒcls in Eq. (11), in the semi-supervised setting. The remaining four 
labelled species were used as test set for validating the clustering 
accuracy. 

4.2. Experimental set-up 

The dynamic β-VAE was evaluated in unsupervised and semi- 
supervised modes to obtain latent representations, which were clus-
tered using K-means (Lloyd, 1982). Their clustering performance was 
compared with the baseline methods: PCA, Kernel-PCA, HCA using the 
standard implementations in sklearn (Pedregosa et al., 2011) and a 
conventional VAE on the same data. The encoder neural network qθ(z|x) 
consists of 9 fully connected layers, with rectified linear unit (ReLU) 
activation (except for the last layer). The encoder predicts the mean and 
the variance of the approximate posterior distribution. The decoder 
neural network pφ(x|z) is implemented with 10 fully connected layers 
and ReLU activation (except the last layer, which has sigmoid activa-
tion). The VAE uses a bottleneck L = 2 to create the latent representa-
tion. The model layout was developed on a independent unlabelled 
dataset recorded at a different location and was gradually expanded 
until reconstructions were sufficiently good. In order to visualize the 
latent representation, the size of the bottleneck of the model (latent 
dimension) was limited to two. Details of the network architecture are 
reported in Table 1. 

Both the unsupervised and semi-supervised models were run five 
times on random training and test splits. A random subset of 3000 re-
cordings from the dataset were used as the test set. 

After each training run the latent representation of the unlabelled 
test set was clustered using K-means method. The appropriate number of 
clusters K were automatically selected by the maximum average 
silhouette score (Rousseeuw, 1987) from a range of 5 � 50. As we expect 
the unlabelled data to consist of at least 5 distinct species, we incorpo-
rate this as prior information in choosing the range of clusters. For 
comparison, the data were also clustered into the same range of clusters 
using PCA, Kernel-PCA (implemented with sigmoid kernels) and HCA 
(implemented with complete linkage). 

The final evaluation was done by comparing the automatically 
identified clusters with the four labelled test species. The automatically 
found clusters were compared with the labelled data using the adjusted 
rand index (ARI) (Rand, 1971) and adjusted mutual (AMI) information 
score (Vinh et al., 2010). These metrics are useful to compare clusters 
obtained in unsupervised settings, as they are agnostic to labels and only 
focus on the similarity between members within the clusters. 
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4.3. Model parameters & hyperparameters 

The dynamic β-VAE has several tunable model parameters, as seen in 
Eqs. (3)–(8). These model parameters were tuned on an independent 
dataset, collected with the identical instrumentation but at a different 
location. The data had a similar distribution as the data used in this work 
and we obtained: a = 0.2 and b = 0.05, w1 = w2 = 1.2, w3 = 0.9 and 
w4 = 1.1. These parameters were found to be sufficiently robust on the 
dataset used in this work without any fine-tuning. 

All models were implemented in PyTorch (Paszke et al., 2019) and 
trained for 5000 epochs using the Adam optimizer (Kingma et al., 2015) 
with a learning rate of 10�3. The models were trained on Nvidia GTX 
1050 graphics processing unit with 4 GB memory with a batch size of 
256. A decision to adapt β was taken every fifth epoch to avoid random 
fluctuations. The scaling of the clustering loss, γ, in the semi-supervised 
mode was cycled between 0.01 and 0.2 every 100 epochs. 

4.4. Results 

The clustering performance on the labelled test set for the unsuper-
vised and semi-supervised instances of the dynamic β-VAE is presented 
in Table 2. 

The dynamic β-VAE performs better than the baselines in the ARI- 
and AMI-scores which quantifies the intra-class cohesion and inter-class 
separability. While HCA have been successfully used to identify groups 

of similar insects by other groups previously (Brydegaard et al., 2020), it 
has the lowest ARI score. With semi-supervision the dynamic β-VAE 
further improves upon its unsupervised clustering scores, and the im-
provements compared to the conventional models are more pronounced. 
The nonlinear kernel-PCA does not show any drastic improvements over 
conventional PCA. The low dimensional representations of the test 
species for each model are shown in Fig. 4. While the different species 
form largely separable and homogeneous clusters in all methods, they 
are relatively more compact in the semi-supervised implementation. 

In the results presented in Table 2, the appropriate number of clus-
ters found in the unlabelled test set data is also reported. The number of 
clusters, K, was automatically chosen to maximize the average silhou-
ette score (Rousseeuw, 1987). 

An example of the latent representation from all 12 labelled species 
groups by the unsupervised instance is shown in Fig. 3. All species 
generate dense, but partly overlapping, clusters except the weevils 
(Ceutorhynchus spp.), and to some degree the fruitflies (Drosophilidae 
spp.) which form sparser clusters. 

The latent space obtained by the semi-supervised β-VAE on the 
unlabelled test set is shown in Fig. 6a. Using K = 15 the data is color 
coded by cluster and the average spectra from each cluster is shown in 
Fig. 6b. 

5. Discussions 

In this work, we introduced a dynamic β-VAE in order to achieve a 
good trade-off between the reconstruction and regularization loss terms 
by performing online adjustment of the β term. The proposed β dynamics 
result in useful latent representations for the downstream clustering 
task. Our experiments demonstrate the ability of the model to map high- 
dimensional insect data into a well regularized latent representation 
where phylogentic groups are distinguishable. 

5.1. Generalization of the β dynamics 

The primary objective of using the β dynamics in Eq. (4) is to perform 
online adjustment of the scales of reconstruction and regularization 
terms based on their instantaneous values while taking the previous 

Fig. 2. The median wing-beat frequency (WBF) spectra estimated from each labelled species in the input data, xi ∈ ℝF . The shaded areas indicate the inter-quartile 
range, between 25% and 75%. The mosquitoes (Culicidae spp.) have the highest WBF and the moths (Tortricidae spp. the lowest. The weevils, (Ceutorhynchus spp.) 
have a large variation around their fundamental WBF. All recordings are log-transformed and individually normalized. 

Table 1 
Network architecture of the implemented dynamic β-VAE showing the number of hidden units per layer (H) and the non-linear activation functions per layer in the 
encoder and decoder parts of the network. (RL: Rectified Linear Unit. SG: Sigmoid.)  

#  1 2 3 4 5 6 7 8 9 10 

Enc. 
H 193 128 128 64 32 16 8 4 2 + 2 – 

Act. RL RL RL RL RL RL RL RL – – 

Dec. 
H 2 4 8 16 32 32 64 128 128 193 

Act. RL RL RL RL RL RL RL RL RL SG  

Table 2 
Aggregated results from 5 repetitions of each method. The unsupervised model 
performs better than the classical models and adding the labelled data further 
improves clustering of unlabelled data. The median number of automatically 
determined clusters (K) are also reported. (ARI and AMI scores: higher is better.  

Models K ARI-score AMI-score 

PCA 5 0.15 ± 0.02 0.21 ± 0.01 
K-PCA 5 0.17 ± 0.02 0.22 ± 0.01 
HCA 16 0.11 ± 0.06 0.21 ± 0.10 
VAE 5 0.14 ± 0.09 0.20 ± 0.09 
β-VAE 7 0.25 ± 0.02 0.34 ± 0.03 
β-VAE (semi-sup.) 6 0.28 ± 0.05 0.37 ± 0.05  
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4.3. Model parameters & hyperparameters 

The dynamic β-VAE has several tunable model parameters, as seen in 
Eqs. (3)–(8). These model parameters were tuned on an independent 
dataset, collected with the identical instrumentation but at a different 
location. The data had a similar distribution as the data used in this work 
and we obtained: a = 0.2 and b = 0.05, w1 = w2 = 1.2, w3 = 0.9 and 
w4 = 1.1. These parameters were found to be sufficiently robust on the 
dataset used in this work without any fine-tuning. 

All models were implemented in PyTorch (Paszke et al., 2019) and 
trained for 5000 epochs using the Adam optimizer (Kingma et al., 2015) 
with a learning rate of 10�3. The models were trained on Nvidia GTX 
1050 graphics processing unit with 4 GB memory with a batch size of 
256. A decision to adapt β was taken every fifth epoch to avoid random 
fluctuations. The scaling of the clustering loss, γ, in the semi-supervised 
mode was cycled between 0.01 and 0.2 every 100 epochs. 

4.4. Results 

The clustering performance on the labelled test set for the unsuper-
vised and semi-supervised instances of the dynamic β-VAE is presented 
in Table 2. 

The dynamic β-VAE performs better than the baselines in the ARI- 
and AMI-scores which quantifies the intra-class cohesion and inter-class 
separability. While HCA have been successfully used to identify groups 

of similar insects by other groups previously (Brydegaard et al., 2020), it 
has the lowest ARI score. With semi-supervision the dynamic β-VAE 
further improves upon its unsupervised clustering scores, and the im-
provements compared to the conventional models are more pronounced. 
The nonlinear kernel-PCA does not show any drastic improvements over 
conventional PCA. The low dimensional representations of the test 
species for each model are shown in Fig. 4. While the different species 
form largely separable and homogeneous clusters in all methods, they 
are relatively more compact in the semi-supervised implementation. 

In the results presented in Table 2, the appropriate number of clus-
ters found in the unlabelled test set data is also reported. The number of 
clusters, K, was automatically chosen to maximize the average silhou-
ette score (Rousseeuw, 1987). 

An example of the latent representation from all 12 labelled species 
groups by the unsupervised instance is shown in Fig. 3. All species 
generate dense, but partly overlapping, clusters except the weevils 
(Ceutorhynchus spp.), and to some degree the fruitflies (Drosophilidae 
spp.) which form sparser clusters. 

The latent space obtained by the semi-supervised β-VAE on the 
unlabelled test set is shown in Fig. 6a. Using K = 15 the data is color 
coded by cluster and the average spectra from each cluster is shown in 
Fig. 6b. 

5. Discussions 

In this work, we introduced a dynamic β-VAE in order to achieve a 
good trade-off between the reconstruction and regularization loss terms 
by performing online adjustment of the β term. The proposed β dynamics 
result in useful latent representations for the downstream clustering 
task. Our experiments demonstrate the ability of the model to map high- 
dimensional insect data into a well regularized latent representation 
where phylogentic groups are distinguishable. 

5.1. Generalization of the β dynamics 

The primary objective of using the β dynamics in Eq. (4) is to perform 
online adjustment of the scales of reconstruction and regularization 
terms based on their instantaneous values while taking the previous 

Fig. 2. The median wing-beat frequency (WBF) spectra estimated from each labelled species in the input data, xi ∈ ℝF . The shaded areas indicate the inter-quartile 
range, between 25% and 75%. The mosquitoes (Culicidae spp.) have the highest WBF and the moths (Tortricidae spp. the lowest. The weevils, (Ceutorhynchus spp.) 
have a large variation around their fundamental WBF. All recordings are log-transformed and individually normalized. 

Table 1 
Network architecture of the implemented dynamic β-VAE showing the number of hidden units per layer (H) and the non-linear activation functions per layer in the 
encoder and decoder parts of the network. (RL: Rectified Linear Unit. SG: Sigmoid.)  

#  1 2 3 4 5 6 7 8 9 10 

Enc. 
H 193 128 128 64 32 16 8 4 2 + 2 – 

Act. RL RL RL RL RL RL RL RL – – 

Dec. 
H 2 4 8 16 32 32 64 128 128 193 
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Table 2 
Aggregated results from 5 repetitions of each method. The unsupervised model 
performs better than the classical models and adding the labelled data further 
improves clustering of unlabelled data. The median number of automatically 
determined clusters (K) are also reported. (ARI and AMI scores: higher is better.  

Models K ARI-score AMI-score 

PCA 5 0.15 ± 0.02 0.21 ± 0.01 
K-PCA 5 0.17 ± 0.02 0.22 ± 0.01 
HCA 16 0.11 ± 0.06 0.21 ± 0.10 
VAE 5 0.14 ± 0.09 0.20 ± 0.09 
β-VAE 7 0.25 ± 0.02 0.34 ± 0.03 
β-VAE (semi-sup.) 6 0.28 ± 0.05 0.37 ± 0.05  
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Fig. 3. Latent representation of optically recorded insect wingbeat frequency spectra. The proposed dynamic β-VAE is able to cluster unlabelled field recordings into 
compact clusters. Evaluated on labelled data, most species form compact clusters, as shown with different colours for each of the 12 named species groups. Closely 
related species groups, such as the Lucilaspp. and Muscidae spp. are partially overlapping but well separated from more distant species groups, such as the Bombus spp. 

(a) PCA (b) Kernel-PCA

(c) VAE (d) Unsupervised β -VAE (e) Semi-supervised β -VAE

Fig. 4. Example latent representation of unlabelled field data and the four test species. While all methods map the high dimensional input data to a two dimensional 
feature space, the dynamic β-VAEs creates clusters with less overlap between the species groups. The inclusion of 10% labelled data for training further improves the 
results, yielding denser clusters with less overlap than the unsupervised β-VAE. 

K. Rydhmer and R. Selvan                                                                                                                                                                                                                    



74

Ecological Informatics 66 (2021) 101456

7

optima into account. The specific formulation of these control mecha-
nisms in Eqs. (6)–(8) force the model optimization to not deviate from 
the previous optimal solutions. The terms comprising min over (: t � 1) 
epochs in Eqs. (6) and (7) provide a form of memory of the previous local 
optima. The trade off between long and short term memory of the losses 
and the corresponding optima help the model to steer towards more 
global optima. These equations provide a sufficiently general formula-
tion for adjusting β as they are only dependent on the two loss compo-
nents. Further, one can also envision a learnable neural network with 
long short-term memory (LSTM) that can perform this dynamic control 
in a recurrent neural network type formulation of a closed loop control 
system (Hochreiter and Schmidhuber, 1997). 

5.2. Influence of the β and γ parameters 

As seen in Fig. 1, the initial effect of a dynamic β is similar to 
β-annealing, where β gradually increases during training in order to 
prevent posterior collapse (Bowman et al., 2015). However, the key 
difference with β annealing is that the rate of annealing is not pre-
determined, as the β dynamics described in Section 3.1 enables 
self-regulation of β. This is witnessed during the latter part of training, 
where β repeatedly adapted either by increasing or decreasing its value 
dependent on the changes in the reconstruction- and regularization 
terms. This behaviour is similar to what is reported with the cyclic β-VAE 
(Fu et al., 2019) where the shakeup often allows the model to obtain new 
global minimum loss. The similarity to the cyclic β-VAE is further 
enhanced by automatically increasing β when there has been no change 
for a large number of epochs (500 in our case). However, unlike a cyclic 
β-VAE, β is only cycled if it has reached a stationary condition and Δreg 
and Δrec are within limits. This helps both the unsupervised- and 
semi-supervised instances of dynamic β-VAE to latch on the historical 
minimum of both ℒrec and ℒreg. 

The β dynamics introduced in Section 3.1 is also similar to adaptive 
strategies used in models such as the controlVAE (Shao et al., 2020). A 
controlVAE stabilizes the model by adjusting β to keep the regulariza-
tion loss (KLD) at a constant level. However, finding an appropriate KLD 
level can be difficult as it could vary across datasets and downstream 
tasks. In contrast, the dynamic β-VAE keeps the model stable by 
constantly comparing both ℒrec and ℒreg with their historical minima. A 
gain on either loss term, at the expense of the other, is counteracted by 
adjusting β. This self-regulating β dynamics that is not dependent on 
fixing KLD value is an advantage with our formulation. 

Including the additional loss term scaling term γ(t)ℒcls in Eq. (9) 
further improved the clustering performance of the model. In this 
implementation γ was cycled between 0.01 and 2 in order to keep the 
contribution from ℒcls in a similar range as ℒrec and ℒreg. A logical next 
step could be to expand Eq. (4) to include a dynamically adjusted γ(t)ℒcls 

term. This would however make the model less generalized to other 
tasks. 

5.3. Performance comparison 

Comparing the performance between the models reported in Table 2, 
the dynamic β-VAE perform better than the baseline models. Adding 
15% of labelled data from 8 different species to the training set further 
improves the clustering performance. While using HCA on high 
dimensional frequency spectra have been successfully used to identify 
mosquito clusters in field data (Brydegaard et al., 2020) and biodiversity 
evaluation (Kouakou et al., 2020), our results show better performance 
for PCA + Kmeans. While the Kernel-PCA generally produced more 
heterogeneous latent distributions, it did not show any significant im-
provements over the standard PCA. 

The non adaptive β-VAE showed large variation in its performance 
but was on average comparable with the conventional methods. The 
dynamic β-VAEs kept β < 1 during most of the training, as exemplified in 

Fig. 1, and since a higher β term favours a well generalised latent space 
over good reconstructions, a reduction in clustering performance could 
be expected. Additionally, the non-adaptive VAE was more cumbersome 
to train as the model collapsed frequently during training. 

5.4. Selection of number of clusters 

In this work, the appropriate number of clusters was automatically 
selected by maximizing the average silhouette score. However, when 
manually evaluating the average silhouette score and comparing it with 
commonly used empirical measurements, such as the elbow method 
(Thorndike, 1953) and intra-cluster sum-of-squares, a user might typi-
cally identify a higher number of clusters. Having more clusters yield 
more similar recordings within each cluster. An example is show in 
Fig. 6a and b where the number of clusters were manually selected. As in 
previous work by lidar-entomologists (Brydegaard et al., 2020), some 
species groups can be identified from these clusters at this level by 
comparing the average spectra of each cluster with known data. For 
example a cluster of possible mosquitoes can be identified by their high 
wing-beat frequency the lower right corner of Fig. 6b. 

With the 3000 randomly chosen insect recordings from multiple sites 
during summer, we expect the total number of species represented in the 
test set to be one or several orders of magnitude larger. We tested a range 
of 5 � 50 clusters as even reasonably coarse clustering will be useful for 
quantifying biodiversity. Once fully deployed on a network of insect 
sensors, a dataset recorded in an environment with high biodiversity 
could yield more clusters than a dataset captured in a biologically poor 
environment. This would allow the automated and optically recorded 
insect data to be correlated with conventional monitoring methods and 
greatly improve the ability to monitor insect biodiversity at scale. 

5.5. Computation time and inference 

Computation time for PCA + K-Means is significantly shorter 
compared to HCA on the full spectra (Brydegaard et al., 2020; Kouakou 
et al., 2020). While the initial training of the dynamic β-VAE takes a few 
hours depending on the number of epochs, once trained, the inference 
time for the model is comparable with that of using PCA + K-Means. 
Once deployed in the field, the dynamic β-VAE model is not expected to 
be retrained regularly but to be used as a dimensionality reduction 
method. Therefore, inference time is a more important metric than the 
initial computation time. 

5.6. Exploring the latent space 

Samples generated from the latent space of the semi-supervised 
model are shown as a latent space cart-wheel in Fig. 5. Traversing 
different lines in the latent space results in samples that smoothly 
transition between different spectra types. As a side note, we point that 
the two latent features do not appear to be entirely disentangled; this is 
manifested as dense islands and sparse spaces of spectra in the latent 
space. For our downstream clustering task, fully disentangled features 
are not required. However, one could introduce an additional loss 
component that enforces orthogonality between the different latent di-
mensions to achieve improved disentanglement. 

The latent representation of the unsupervised model can be further 
validated by comparing Fig. 3 with the average spectra of each group, 
shown in Fig. 2. Species groups with similar spectra, such as Aleyrodidae 
spp., Aphididae spp., Tortricidae spp. and Chrysopidae spp. are positioned 
in similar areas. Similarily, all dipterans (Lucilia spp., Muscidae spp. and 
Drosophila spp.) have overlapping clusters except the mosquitoes (Culi-
cidae spp.) which have a much higher WBF and are more isolated. In 
Fig. 3, the model performs less well on the weevils (Ceutorhynchus spp.) 
compared to the other species. It is likely due to a larger variation in 
their WBF than for the other groups. 
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optima into account. The specific formulation of these control mecha-
nisms in Eqs. (6)–(8) force the model optimization to not deviate from 
the previous optimal solutions. The terms comprising min over (: t � 1) 
epochs in Eqs. (6) and (7) provide a form of memory of the previous local 
optima. The trade off between long and short term memory of the losses 
and the corresponding optima help the model to steer towards more 
global optima. These equations provide a sufficiently general formula-
tion for adjusting β as they are only dependent on the two loss compo-
nents. Further, one can also envision a learnable neural network with 
long short-term memory (LSTM) that can perform this dynamic control 
in a recurrent neural network type formulation of a closed loop control 
system (Hochreiter and Schmidhuber, 1997). 

5.2. Influence of the β and γ parameters 

As seen in Fig. 1, the initial effect of a dynamic β is similar to 
β-annealing, where β gradually increases during training in order to 
prevent posterior collapse (Bowman et al., 2015). However, the key 
difference with β annealing is that the rate of annealing is not pre-
determined, as the β dynamics described in Section 3.1 enables 
self-regulation of β. This is witnessed during the latter part of training, 
where β repeatedly adapted either by increasing or decreasing its value 
dependent on the changes in the reconstruction- and regularization 
terms. This behaviour is similar to what is reported with the cyclic β-VAE 
(Fu et al., 2019) where the shakeup often allows the model to obtain new 
global minimum loss. The similarity to the cyclic β-VAE is further 
enhanced by automatically increasing β when there has been no change 
for a large number of epochs (500 in our case). However, unlike a cyclic 
β-VAE, β is only cycled if it has reached a stationary condition and Δreg 
and Δrec are within limits. This helps both the unsupervised- and 
semi-supervised instances of dynamic β-VAE to latch on the historical 
minimum of both ℒrec and ℒreg. 

The β dynamics introduced in Section 3.1 is also similar to adaptive 
strategies used in models such as the controlVAE (Shao et al., 2020). A 
controlVAE stabilizes the model by adjusting β to keep the regulariza-
tion loss (KLD) at a constant level. However, finding an appropriate KLD 
level can be difficult as it could vary across datasets and downstream 
tasks. In contrast, the dynamic β-VAE keeps the model stable by 
constantly comparing both ℒrec and ℒreg with their historical minima. A 
gain on either loss term, at the expense of the other, is counteracted by 
adjusting β. This self-regulating β dynamics that is not dependent on 
fixing KLD value is an advantage with our formulation. 

Including the additional loss term scaling term γ(t)ℒcls in Eq. (9) 
further improved the clustering performance of the model. In this 
implementation γ was cycled between 0.01 and 2 in order to keep the 
contribution from ℒcls in a similar range as ℒrec and ℒreg. A logical next 
step could be to expand Eq. (4) to include a dynamically adjusted γ(t)ℒcls 

term. This would however make the model less generalized to other 
tasks. 

5.3. Performance comparison 

Comparing the performance between the models reported in Table 2, 
the dynamic β-VAE perform better than the baseline models. Adding 
15% of labelled data from 8 different species to the training set further 
improves the clustering performance. While using HCA on high 
dimensional frequency spectra have been successfully used to identify 
mosquito clusters in field data (Brydegaard et al., 2020) and biodiversity 
evaluation (Kouakou et al., 2020), our results show better performance 
for PCA + Kmeans. While the Kernel-PCA generally produced more 
heterogeneous latent distributions, it did not show any significant im-
provements over the standard PCA. 

The non adaptive β-VAE showed large variation in its performance 
but was on average comparable with the conventional methods. The 
dynamic β-VAEs kept β < 1 during most of the training, as exemplified in 

Fig. 1, and since a higher β term favours a well generalised latent space 
over good reconstructions, a reduction in clustering performance could 
be expected. Additionally, the non-adaptive VAE was more cumbersome 
to train as the model collapsed frequently during training. 

5.4. Selection of number of clusters 

In this work, the appropriate number of clusters was automatically 
selected by maximizing the average silhouette score. However, when 
manually evaluating the average silhouette score and comparing it with 
commonly used empirical measurements, such as the elbow method 
(Thorndike, 1953) and intra-cluster sum-of-squares, a user might typi-
cally identify a higher number of clusters. Having more clusters yield 
more similar recordings within each cluster. An example is show in 
Fig. 6a and b where the number of clusters were manually selected. As in 
previous work by lidar-entomologists (Brydegaard et al., 2020), some 
species groups can be identified from these clusters at this level by 
comparing the average spectra of each cluster with known data. For 
example a cluster of possible mosquitoes can be identified by their high 
wing-beat frequency the lower right corner of Fig. 6b. 

With the 3000 randomly chosen insect recordings from multiple sites 
during summer, we expect the total number of species represented in the 
test set to be one or several orders of magnitude larger. We tested a range 
of 5 � 50 clusters as even reasonably coarse clustering will be useful for 
quantifying biodiversity. Once fully deployed on a network of insect 
sensors, a dataset recorded in an environment with high biodiversity 
could yield more clusters than a dataset captured in a biologically poor 
environment. This would allow the automated and optically recorded 
insect data to be correlated with conventional monitoring methods and 
greatly improve the ability to monitor insect biodiversity at scale. 

5.5. Computation time and inference 

Computation time for PCA + K-Means is significantly shorter 
compared to HCA on the full spectra (Brydegaard et al., 2020; Kouakou 
et al., 2020). While the initial training of the dynamic β-VAE takes a few 
hours depending on the number of epochs, once trained, the inference 
time for the model is comparable with that of using PCA + K-Means. 
Once deployed in the field, the dynamic β-VAE model is not expected to 
be retrained regularly but to be used as a dimensionality reduction 
method. Therefore, inference time is a more important metric than the 
initial computation time. 

5.6. Exploring the latent space 

Samples generated from the latent space of the semi-supervised 
model are shown as a latent space cart-wheel in Fig. 5. Traversing 
different lines in the latent space results in samples that smoothly 
transition between different spectra types. As a side note, we point that 
the two latent features do not appear to be entirely disentangled; this is 
manifested as dense islands and sparse spaces of spectra in the latent 
space. For our downstream clustering task, fully disentangled features 
are not required. However, one could introduce an additional loss 
component that enforces orthogonality between the different latent di-
mensions to achieve improved disentanglement. 

The latent representation of the unsupervised model can be further 
validated by comparing Fig. 3 with the average spectra of each group, 
shown in Fig. 2. Species groups with similar spectra, such as Aleyrodidae 
spp., Aphididae spp., Tortricidae spp. and Chrysopidae spp. are positioned 
in similar areas. Similarily, all dipterans (Lucilia spp., Muscidae spp. and 
Drosophila spp.) have overlapping clusters except the mosquitoes (Culi-
cidae spp.) which have a much higher WBF and are more isolated. In 
Fig. 3, the model performs less well on the weevils (Ceutorhynchus spp.) 
compared to the other species. It is likely due to a larger variation in 
their WBF than for the other groups. 
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6. Conclusions 

In this work, we have presented, to our knowledge, the first VAE 
designed for clustering of optically recorded insect signals. The dynamic 
β-VAE was developed in order to achieve a stable model, optimizing 
both reconstruction- and regularization terms. When trained on unla-
belled data recorded during field conditions, the model is able to auto-
matically create meaningful clusters. The unsupervised clustering 
performance was validated with labelled data collected in controlled 

conditions showing promising results. By using 15% of labelled data 
during the training process for semi-supervision, this clustering perfor-
mance is further improved. Already at this stage, it is possible to extract 
easily identifiable insect groups such as mosquitoes from the automat-
ically identified clusters and we expect this capability to grow as the 
collection of labelled reference data continues. 

The future aim of our work is to further improve automatic identi-
fication of the number of clusters. In the near future, the model will be 
deployed on several sensors in the field, and estimated cluster sizes and 

Fig. 5. Latent space cart-wheel visualization. Samples from the latent representation of the semi-supervised dynamic β-VAE are shown with decoded latent samples 
when the lines are traversed. While the two dimensions do not appear fully disentangled, the latent space is regularized and transitions between various areas are 
smooth and gradual. 

(a) Latent representation (b) Average WBF spectra and IQR in each cluster

Fig. 6. K-means clustering in the latent representation of unlabelled field data from the semi-supervised β-VAE into 15 clusters. The model is capable of generating a 
low dimensional space where similar insect recordings are represented clustered together. The lower right cluster in (b) are likely to contain mosquitoes due to their 
high WBF. 

K. Rydhmer and R. Selvan                                                                                                                                                                                                                    



76

Ecological Informatics 66 (2021) 101456

9

distributions will be compared to conventional methods. This will 
greatly improve monitoring possibilities and decision support tools for 
entomologists and agronomists. In order to mitigate the trend of 
declining insect communities, the first step is to ensure adequate data 
collection. In the near future, we believe methods based on the proposed 
dynamic β-VAE will be useful to quantify and, thus, help conserve insect 
biodiversity. 
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distributions will be compared to conventional methods. This will 
greatly improve monitoring possibilities and decision support tools for 
entomologists and agronomists. In order to mitigate the trend of 
declining insect communities, the first step is to ensure adequate data 
collection. In the near future, we believe methods based on the proposed 
dynamic β-VAE will be useful to quantify and, thus, help conserve insect 
biodiversity. 
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20 agricultural fields in Kansas, USA. Measurements were compared to conventional assessments of insect 50 
diversity from sweep nets and Malaise traps. Species richness was estimated on optical insect data by applying a 51 
clustering algorithm to the optical insect sensor’s signal features of wing-beat frequency and body-to-wing ratio. 52 
Species richness correlated more strongly between the optical richness estimate and each of the manual methods 53 
than between the two manual methods, suggesting sensors can be a reliable indicator of invertebrate richness. 54 
Shannon- and Simpson indices were calculated for all three methods but were largely uncorrelated including 55 
between conventional methods. Although the technology is relatively new, optical sensors that are calibrated 56 
against known communities may provide next-generation insight into the spatiotemporal dynamics of 57 
invertebrate biodiversity and their conservation. 58 
 59 
Significance Statement 60 
The implications of this research extend from the farm level to the regional level. Much of what scientists 61 
understand about the decline of invertebrates comes from a small number of long-term studies that can be coarse 62 
and correlational in nature. High-resolution biodiversity data sets on fields to landscapes may provide the insight 63 
needed for the successful management and accounting of biodiversity by government, industry, and 64 
communities. Such high-resolution data has potential to support global efforts and coordination of biodiversity 65 
conservation. 66 
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Introduction 68 

Invertebrate biodiversity is fundamental to ecosystem processes, functions, and services (Yang & Gratton, 69 
2014). Monitoring invertebrate populations and communities can inform management and policy at multiple 70 
scales. Such data are critical to agriculture operations and sustainability (Landis et al., 2008). However, 71 
invertebrate biodiversity is difficult to quantify (Geiger et al., 2016b; Shortall et al., 2009) and monitor at broad 72 
spatial and temporal scales (Sánchez-Bayo & Wyckhuys, 2019; Tilman et al., 1994) 10,11. The difficulty is 73 
largely due to the necessity of skilled labor required for taxa identification on which biodiversity quantification 74 
relies (Wägele et al., 2022) and is both limited and prohibitively costly(Gardner et al., 2008) . Common 75 
approaches to collecting insect inventories include sweep netting as well as Malaise-, pan-, and light traps. Each 76 
method has its own bias toward certain insect groups (Montgomery et al., 2021; Morris, 1960) often resulting in 77 
the concurrent use of techniques in studies and practice (LaCanne & Lundgren, 2018a). 78 
 79 
There is a need for new technology to monitor invertebrate biodiversity in real time for agricultural systems. 80 
Such a tool would provide data to support biodiversity-focused management at field, farm, and landscape scales 81 
(LaCanne & Lundgren, 2018a) and allow for tracking of the impact of conservation measures, or the lack 82 
thereof. Automation of systems has the potential to reduce labor, time, and costs. While many automated insect 83 
monitoring tools are available for agricultural pest monitoring (Bick et al., 2023; Preti et al., 2021; Silva et al., 84 
2013), overall, these approaches are not suitable for assessing biodiversity as they focus on the identification of 85 
indicator species, not communities eg. (LaCanne & Lundgren, 2018b; J. G. Lundgren & Fausti, 2015). The 86 
automatic quantification of invertebrate biodiversity could improve the data available for monitoring and 87 
evaluation of conservation efforts but currently, no method exists at scale(Wägele et al., 2022) despite calls for 88 
such data and analytics to inform the assessment and management of ecosystems (Garcia et al., 2023a). 89 
 90 
Concurrently collected real-time data on invertebrate biodiversity likely would improve our understanding of 91 
insect population changes at a regional or even global scale, filling a gap in tracking of insect change. The 92 
incorporation of ‘big data’ has been shown to help mitigate some methodological biases (Geiger et al., 2016a). 93 
One such effort is the global malaise project that is using automated taxonomic identification from traps using 94 
DNA, addressing the most labor-intensive part of this method (Krishna Krishnamurthy & Francis, 2012). It is a 95 
highly promising ‘big data’ approach; unfortunately, the method over-represents known species, has an inherent 96 
sampling bias towards flying insects, and emphasized species with large mitochondrial differences. Optical 97 
entomological methods such as lidar, where an optical signal is recorded from insects flying through a beam of 98 
emitted light, can record large numbers of insect flights without using a lure. However, it is unclear how optical 99 
sensors compares to conventional methods in measuring population and communities(Garcia et al., 2023b; 100 
Rydhmer et al., 2022). 101 
 102 
The goal of this study is to determine if the measurement of an insect biodiversity metric can be automated with 103 
the use of optical near-infrared insect sensors. In this work, we deployed sensors (Rydhmer et al., 2021) in 20 104 
agricultural fields across six crops in Kansas, USA. The sensors were deployed alongside Malaise traps and the 105 
sites were sampled with sweep nets. Each site was evaluated on two different occasions to capture seasonal 106 
changes. Specifically, we compared manual methods to each other and with the novel biodiversity metric 107 
utilizing unsupervised clustering of data collected by a lidar-based sensing method.  108 
 109 
 110 

Materials and Methods 111 

Data collection 112 

Insect populations were monitored at 20 sites (Figure 1) in June and July of 2020 using sensors alongside 113 
manual methods (Malaise traps and sweep nets). Representative agricultural crops of central Kansas were 114 
sampled including three corn, three sorghum, six soybean, one alfalfa, two pasture, and five complex cover 115 
crops. The complex cover crops consisted of approximately eight species of annual grass and forb cover crops. 116 
An autonomous near-infrared sensor (described in (Rydhmer et al., 2021) and produced by FaunaPhotonics 117 
ApS., Copenhagen SV, Denmark) was placed ~50 m from field margin and was monitored continuously for two 118 
periods of three days in June and in July. The sensor uses light-emitting diodes to transmit infrared light (810 119 
nm & 970 nm), creating a measurement volume between 5 and 70 L, depending on insect size (Rydhmer et al., 120 
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2021). Insects flying in front of the sensor back-scatter light, which is recorded by a photodiode as a time signal 121 
and saved for further processing. 122 
 123 

 124 
Figure 1. Map of 20 field site location distributed around central Kansas. Fields are color coded by crop type. 125 
Field A and B are separated slightly for readability. Map data from www.openstreetmap.org. 126 
 127 
Insect recordings are automatically separated from noise originating from other sources (e.g. rain drops or plant 128 
interference) using a proprietary neural network from the instrument manufacturer, similar to 19,29. Additionally, 129 
observations without clearly identified wingbeats or body-to-wing ratios were discarded. A total of 1,057,115 130 
observations were recorded, of which 106,083 remained after filtering and were included in the study. A 131 
recorded observation consists of a time series data from which information pertaining to the physical features of 132 
the individual insect can be obtained (Rydhmer et al., 2021). 133 
 134 
Sensors were compared with manual sampling of invertebrates (sweep nets and Malaise traps) in the same 135 
fields. Foliar and low flying insects were captured using a sweep net (38 cm diam., Bioquip™, Rancho 136 
Dominguez, CA, USA). Insects were collected at 50, 100, and 150 m from the field edge along a linear transect. 137 
Sweeps (n = 50 per location) were performed perpendicular to the transect, parallel to the field edge. Insects 138 
were transferred to a sealed plastic bag and were frozen until processed. In the laboratory, insects were thawed, 139 
sorted from the plant material, and identified. 140 
 141 
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Townes-style trap (dimensions 1.8 long; 1.8 m at its tallest height, and 1.2 m at its shortest height) was placed 143 
100 m from the margin and adjacent to the ecosystem service sampling areas. The wall of the trap was parallel 144 
with the field margin. The traps were allowed to operate for 24 h, and the insects captured in the collection vials 145 
were preserved in ethanol.  146 
 147 
All specimens collected by sweep net and malaise traps were identified to the lowest possible taxonomic unit 148 
(i.e., species or morphospecies). Due to a lack of species identification knowledge and time limitations, thrips 149 
(Insecta: Thysanoptera) were not identified beyond the family level and were not included in community metrics 150 
analyses (abundance, species richness, and diversity). All immature insects were identified to family and 151 
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adult stage due to their functional differences. All other specimens were identified to species using written and 153 
online taxonomic keys. Specimens that were not able to be positively identified to species were separated into 154 
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Collection at Blue Dasher Farm, Estelline, SD. 156 
 157 
Ecosystem services were evaluated for insect and weed seed predation. First, invertebrate predators were 158 
isolated from both the soil and foliar communities. Additionally, predation rates in each field were assessed 159 
using sentinel wax moths (Galleria mellonella L. [Lepidoptera: Pyralidae]) larvae following the (J. G. Lundgren 160 
et al., 2006) Lundgren et al., 2006protocol, using 15 sentinels per plot arranged in three 5 × 3 7.5 m grid 161 
orientations (n = 45 per field). Weed seed predation was assessed from isolating soil and foliar granivore 162 
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communities and their services using seed cards as described in Lundgren et al., 2006. Granivore services were 163 
measured on three abundant weed species (Johnsongrass (Sorghum halapense (L.) Pers.; Poaceae), 164 
lambsquarters (Chenopodium album L.; Amaranthaceae) and redroot pigweed (Amaranthus retroflexus L.; 165 
Amaranthaceae), V & J Seed Farms, Woodstock, IL, USA). Seeds were attached to 10 × 8 cm plastic cards 166 
(Avery™ insertable plastic dividers; #11200; Brea, CA, USA) using 6 cm strips of double-sided tape (Scotch, 167 
3M, St Paul, MN, USA). Each species (n = 20 seeds of each species; 60 seeds per card) were placed on a 2 × 10 168 
pattern each card. Fine quartz sand was spread over exposed areas of the tape to exclude visiting invertebrates. 169 
To exclude granivorous vertebrates, a wire cage (14 × 12 cm cage, 1.4 × 1.4 cm mesh opening) was placed over 170 
the card and placed >3 cm above it. Control cards were used to account for seed loss from environmental factors 171 
such as wind or rain and contained 1.5 × 1.5 mm black glass beads (Cousin™ DIY, #AJM61215021, Largo, FL, 172 
USA) of comparable size as the weed seeds (Lundgren et al., 2006). Each plot received three seed cards and one 173 
control card (n = 9 seed cards and three control cards per field), placed on the soil surface in the four corners of 174 
each plot. Granivory was measured as the number of seeds removed or damaged per card after a 3 d. exposure. 175 
 176 

Data analysis 177 

The wing-beat frequency (WBF) and body-to-wing ratio (BWR) was calculated from all observations in similar 178 
fashion to previous work by other groups(Gebru et al., 2018; Genoud et al., 2019; Kirkeby, Rydhmer, Cook, 179 
Strand, et al., 2021). The signal from the insect body (σb) and the diffuse and specular signal contributions were 180 
the insect wings (σdw and σsw) are estimated and separated using sliding minimum, sliding median and sliding 181 
maximum filters with a filter width corresponding to the wing beat period of the insect. The BWR is defined as 182 
the closed ratio between the body and wing contributions according to equation (1). An example of an insect 183 
signal is shown in Figure 1a. 184 
 185 
BWR = σb / (σdw + σb )          (1) 186 
 187 

  188 
Figure 2. Example of an insect signal and clustering. a) An example of an insect recording from the sensor. The 189 
wing beats are visible as modulations on top of the signal. The dashed red, solid magenta and dash-dotted blue 190 
curves show the body, diffuse- and specular wing signals respectively. The BWR is the ratio between the 191 
magnitude of the body- and diffuse wing signal. b) Clustered insect recordings from a soybean field (Field R) in 192 
July. The grey events are too sparse to form clusters and are therefore discarded. 193 
 194 
Insects of the same species exhibit similar physical properties, and therefore also similar signal features 195 
(Kirkeby, Rydhmer, Cook, & Strand, 2021). Normalization of the feature space is a standard procedure prior to 196 
clustering. While BWR values are bound between 0 and 1 by definition (equation 1), WBF values frequencies 197 
typically vary between 20 Hz (Jansson et al., 2019) and 1 kHz (Jansson et al., 2019). WBFs were therefore 198 
divided by 1000 to produce values falling predominantly between 0 and 1. For clustering, we used the 199 
DBSCAN (Density-based spatial clustering of applications with noise) algorithm (Ram et al., 2010) due to its 200 
suitability in identifying clusters without a Gaussian distribution assumption (Ester et al., 1996). DBSCAN uses 201 
two parameters, the minimum number of insects needed to form a cluster (min_samples) and the merge distance 202 
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ϵ, to determine which observations to merge into clusters. Data points too far away from any cluster and too 203 
sparsely distributed to form a new cluster are defined as outliers. This method was used to calculate the number 204 
of clusters or distinct groups (i.e. richness) and diversity index of cluster groups based on Shannon and Simpson 205 
indices. 206 
 207 
All insects collected with Malaise traps and sweep nets were classified by order, family, and species when 208 
possible. Then species richness (defined as the number of distinct taxonomic species present, independent of 209 
abundance), Shannon index, and Simpson index were calculated on the insect samples from both conventional 210 
methods for each field in June and July. 211 
 212 
The data from the capture methods were randomly divided into two data sets: one used to optimize the 213 
DBSCAN clustering algorithm, and the other used for testing. To have a sufficiently large test set, the 214 
optimization set was limited to 30% of the data collected. During the optimization, ϵ and min samples were 215 
tuned to maximize the Spearman correlation between biodiversity metrics from the sensors and conventional 216 
metrics using stochastic gradual descent. This process was repeated for the richness and Shannon and Simpson 217 
indices for each of the trapping methods, plus an additional model fitted to the combined species richness from 218 
both manual methods. Shannon and Simpson indices were not calculated on the combined dataset since these 219 
indices rely on the relative abundance of species, which are not comparable between the two methods.  220 
 221 
Optimal parameters could be found that produced significant correlation (p < 0.05) for four of the seven 222 
comparative measures, however no parameters could be found which satisfactorily modelled the Shannon index 223 
from the sweep netting nor the Simpson index for either trapping method. 224 
 225 
Spearman-rank correlations between the clustering results calculated from the optical sensor data and the 226 
biodiversity measures obtained with the two physical insect field-sampling methods were calculated. 227 
Additionally, Analyses of Variance (ANOVA) and TukeyHSD post hoc analyses were conducted to evaluate the 228 
impact of sampling month, crop type, and field on richness estimates. 229 
 230 

Results 231 

In total, 106,083 insect observations were recorded by the sensors. The Malaise traps collected 14,641 insects, 232 
whereas sweep nets collected 15,858 insects. The optical sensors recorded 106 083 insect observations. (Table 233 
1, Figure 3). Moreover, measured insect abundance was uncorrelated between both manual methods and sensors 234 
(Figure 4; Malaise trap counts and sweep net counts r = 0.25, p =0.16, sensor observations and sweep net counts 235 
r = 0.05, p = 0.78, sensor observations and Malaise trap counts r = 0.05, p= 0.88).  236 
 237  

SWEEP NET MALAISE TRAPS SENSORS  
ALFALFA N=2, µ=3416.5±4472.5 N=2, µ=784.0±1055.0 N=2, µ=4483.0±1479.3  

C. COVER CROP N=8, µ=434.4±232.2 N=10, µ=351.0±242.2 N=9, µ=3408.7±2157.2  

CORN N=6, µ=178.3±185.8 N=4, µ=375.5±339.6 N=3, µ=919.0±235.6  

PASTURE N=3, µ=411.0±274.4 N=3, µ=490.7±595.4 N=3, µ=1676.0±537.8  

SORGHUM N=6, µ=131.3±163.2 N=6, µ=451.0±545.2 N=5, µ=4862.2±2404.9  

SOYBEANS N=10, µ=245.9±245.3 N=12, µ=323.6±385.6 N=12, µ=2861.9±1872.7  

 238 
Table 1. Measured insect abundance per crop and monitoring method. Mean and standard deviation. 239 
  240 
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 241 

Figure 3. The number of recorded insect signals (lower) and collected insects in Malaise traps (middle) and 242 
sweep nets (lower) per field visit in June and July.  243 
 244 
Comparing the relative insect abundance between orders in manual methods (Figure 5) shows differences in 245 
capturing biases. Diptera were most frequently captured in Malaise traps, whereas Hemiptera then Diptera and 246 
Psocoptera were more frequently captured with sweep nets. In general, less flight-active insects were more 247 
prominent in the sweep net data. 248 
 249 
There were no discernible differences in variation between time points from sensors (F = 0.155, Pr = 0.71) and 250 
sweep nets (F = 0.87, Pr = 0.36). However, Malaise trap abundance showed significantly greater insect densities 251 
in July (µ = 76.9, F = 8., Pr = 0.007) than June (µ = 43.3). Average abundance per crop is presented in table 1. 252 
Crop type was found to impact sweep net abundance (F = 3.367, Pr = 0.01) but not sensor (F = 1.76, Pr = 0.15) 253 
or Malaise trap (F = 1.09, Pr = 0.44) abundance estimates. A series of TukeyHSD post hoc analyses found no 254 
differences in abundance estimates between sample time points for each field.  255 
 256 
For the sensors, the best correlation with the conventional method was found when optimizing the correlation 257 
between the number of clusters in the sensors and the combined richness of malaise and sweep nets. The 258 
correlation between the sensor estimates and each of the comparative biodiversity metrics are shown in Table 2. 259 
 260 
  261 
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 262 

 263 
Figure 4. Scatter plots of measured insect abundance comparing the monitoring methods on a logarithmic 264 
scale. a) Scatter plot of the number of insects captured with sweep nets and Malaise traps. b) Scatter plot of the 265 
number of insects captured with sweep nets and the number of insect observations recorded by the sensor. c) 266 
Scatter plot of the number of insects captured with Malaise traps and the number of insect observations 267 
recorded by the sensor. There are no significant correlations between any of the methods. 268 
 269 

 270 
Figure 5. The number of insects collected with sweep net sampling and Malaise trap monitoring, aggregated by 271 
order. 272 
 273 
Per field, the maximum number of clusters was 85 (N=34, µ= 41.1, σ=19.2). The Malaise traps had a maximum 274 
richness of 159 species (N = 37, µ = 60.5, σ=39.1) and contained 10 orders, 146 families, and 709 species. The 275 
maximum richness observed in the sweep nets was 132 (N=35, µ =47.4, σ=32.7) and contained 11 orders, 149 276 
families, and 664 species. Combined, the collected samples with both field-sampling methods contained 941 277 
different species distributed over 183 insect families and 11 orders. 278 
 279 
The three models fitted on sweep net, Malaise and combined species richness are generally comparable (ε: 280 
µ=8.71·10-3, σ=8.87·10 -4, min_samples: µ=5.67, σ=0.94). Identical DBSCAN parameters were calculated when 281 
the models were fit on the Malaise trap richness and Shannon index. A full list of model parameters is provided 282 
as supplementary material (supplementary table 3). As the model fitted on combined richness showed the best 283 
correlation with the conventional methods, it was used in the following results. 284 
 285 
All species richness metrics were correlated (Figure 6). The weakest correlation was between Malaise trap and 286 
sweep net richness metrics (R = 0.36, p = 0.046). The correlation between the number of clusters found in the 287 
sensor data and the conventional models was strongest for the combined richness, which was what the model 288 
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was fitted on (R= 0.55, p = 0.012; Figure 6d). Significant yet weaker correlations were also found between the 289 
model and the Malaise trap and sweep net richness respectively (R = 0.52, p = 0.014; R = 0.48, p = 0.028).  290 
 291 

Fitting data Correlation coefficients (R, p-value) 
 Richness Shannon Simpson 
 Malaise 

trap 
Sweep 
net 

Combine
d 

Malaise 
trap 

Sweep net Malaise 
trap 

Sweep net 

Richness Malaise 0.42, 
0.050 

0.26, 
0.246 

0.37, 
0.112 

0.44, 
0.044 

-0.22, 
0.359 

0.35, 
0.114 

0.01, 
0.964 

Richness sweep net 0.45, 
0.035 

0.44, 
0.046 

0.47, 
0.035 

0.11, 
0.612 

0.20, 
0.378 

0.09, 
0.702 

0.16, 
0.475 

Richness combined 0.52, 
0.014 

0.48, 
0.028 

0.55, 
0.012 

0.21, 
0.344 

0.20, 
0.394 

0.14, 
0.534 

0.14, 
0.537 

Shannon Malaise 0.42, 
0.050 

0.26, 
0.246 

0.37, 
0.112 

0.44, 
0.044 

-0.22, 
0.359 

0.35, 
0.114 

0.01, 
0.964 

Shannon sweep net 0.45, 
0.037 

0.37, 
0.097 

0.46, 
0.040 

0.27, 
0.221 

0.22, 
0.339 

0.17, 
0.459 

0.08, 
0.733 

Simpson Malaise 0.44, 
0.041 

0.32, 
0.159 

0.43, 
0.061 

-0.16, 
0.484 

0.03, 
0.893 

0.02, 
0.913 

0.06, 
0.797 

Simpson sweep net 0.05, 
0.837 

-0.13, 
0.569 

-0.07, 
0.774 

-0.73, 
0.005 

0.07, 
0.817 

-0.04, 
0.846 

0.12, 
0.598 

Table 2. Correlations between the automated sensors biodiversity metrics and those obtained from Malaise trap 292 
and sweep net collections on the test set. Rows in the table denote which data was used to fit the clustering 293 
algorithm, whereas columns indicate which parameters the obtained correlations refer to. Significant 294 
correlations with a p-value below 0.05 are marked in bold. 295 
 296 
No correlation was found when comparing sensor richness to any ecosystem services (Table 3). Manual 297 
sampling methods were typically not correlated with ecosystem services with one exception. Sweep net species 298 
richness was correlated with the percent of waxworms predated. 299 
 300 

Richness 
metrics 

% 
Waxworms 
Predated 

Total # of 
predators 

Johnsongrass 
predation 

Pigweed 
predation 

Lambsquarter 
predation 

All seed 
predation 

Sweep net 0.49, 0.04 0.34, 0.17 -0.37, 0.13 0.05, 0.85 -0.04, 0.89 -0.07, 0.78 
Malaise trap -0.16, 0.52 -0.13, 0.61 -0.16, 0.52 -0.36, 0.15 -0.40, 0.10 -0.45, 0.06 
Total - 
richness 0.21, 0.43 0.16, 0.56 -0.39, 0.14 -0.26, 0.33 -0.32, 0.23 -0.41, 0.11 
Sensor 
clusters -0.11, 0.66 -0.26, 0.29 0.14, 0.56 -0.11, 0.66 -0.15, 0.54 -0.11, 0.66 

 301 
Table 3. Correlation table between richness metrics calculated from sweep nets, Malaise traps, combined 302 
conventional methods, and sensor clusters (novel biodiversity metric) compared to ecosystem services of 303 
percent waxworm predation, total number of predators, Johnsongrass predation, Pigweed predation, 304 
Lambsquarter predation, and all seed predation. 305 
  306 
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 307 

Figure 6. Scatter plots and Spearman correlations for the richness estimations across all models. The sensor 308 
results are from the model fitted to the total richness in both Malaise traps and sweep nets. a) Malaise traps vs. 309 
sweep net samples, b) Sensors vs. sweep net samples, c) Sensors vs. Malaise trap samples, and d) Sensors vs. 310 
total richness across traps and sweeps. 311 
  312 
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Discussion  313 

The sensor recorded a greater total number of insects observations, almost one order of magnitude, than both 314 
Malaise traps and sweep nets. This difference in measurement rate may be explained as a combination of two 315 
factors: measurement period and measurement methodology. Firstly, the sensors continuously monitored each 316 
field for three times longer than the Malaise traps, the other continuous monitoring method. Since sweep nets 317 
provide point-in-time measurements, the methods are not directly comparable. Secondly, the sensor does not 318 
rely on trapping to record an insect signal. This means both that individual insects may be measured more than 319 
once as they fly in front of the optical sensor. Both factors may result in a higher insect measurement rate of 320 
sensors compared to conventional methodologies. This tendency has been observed in previous work, for 321 
example a similar sensor reported 19 times as many insects as water traps collecting over the same period 322 
(Rydhmer et al., 2021), and optical sensors with greater measurement volumes report recording tens of 323 
thousands of insect flights per day (Brydegaard et al., 2020).  324 
 325 
One challenge with the sensor’s dataset was the high proportion of noise signals, primarily thought to be caused 326 
by plant interference. Of the total 1,057,115 signals recorded by the sensor, only ca 10% were classified as 327 
insect signals and included in the analysis. We therefore expect that the reported number of insect observations 328 
is artificially increased. The signals generated by insects and plants moving through the sensor’s measurement 329 
volume are very different. While we believe the proprietary neural network model used to filter observations is 330 
highly accurate, even a small percentage of misclassifications of large number of noise events will inevitably 331 
inflate the total count. Most of these misclassified events have do not show any modulations in time, (since plant 332 
interference has no high frequency components) and are therefore assumed to be removed by filtering the data 333 
on frequency, and body-wing-ratio. Despite these efforts, it is likely that some noise remains. However, we also 334 
believe that the strong signals generated by vegetation will obscure weaker signals generated by small insects. 335 
This would in contrast reduce the total insect count.  336 
 337 
Our results suggest that the sensor-derived metric is correlated with conventional estimates of biodiversity. This 338 
indicates that metrics derived from optical sensors have the potential to provide accurate and autonomous 339 
measurements of insect species richness. Still, future work is needed to evaluate the extent to which the metric 340 
may be generalized across agroecosystems outside our study area and to other terrestrial ecosystems. While a 341 
species metric that does not characterize the composition of the insect community presents some added 342 
difficulty to stakeholders in formulating a targeted response, significant and growing evidence suggests that 343 
biodiversity itself is correlated with greater ecosystem functions such as pest control (J. G. Lundgren & Fausti, 344 
2015). 345 
 346 
The lack of correlation of abundance and the three methods (Figure 4) is surprising as previous work has shown 347 
correlations between sensor measurements and water traps for insect abundance (Rydhmer et al., 2021). 348 
However, while sweep netting occurred in conjunction with setting up or taking down the Malaise traps, these 349 
efforts were substantially less correlated with the setup of the optical sensors: to the nearest 3 days in June and 350 
nearest 22 days in July. The lack of abundance correlation between the Malaise traps and the sensors may be 351 
due to the long period between the monitoring sessions at each site. Insect flight activity is heavily influenced by 352 
the weather, or the seasonal differences between the beginning and end of July – both of which may also explain 353 
the significance of month on Malaise trap data. An additional factor may be the previously mentioned high noise 354 
composition of the recorded signals due to plant interference. During cleaning of this dataset, it is possible that 355 
variations in the relative degree of noise signals between fields (e.g. because of different crop heights and 356 
stiffness) has resulted in more data loss from noisier fields, thus introducing a systematic error in abundance 357 
measurements for the sensor data. 358 
 359 
Due to the similarities between the sensors and Malaise traps (both monitoring flying insects over extended 360 
periods of time), we expected stronger correlations between the sensors and Malaise traps compared to the 361 
sensors and sweep nets. However, those results were comparable. The results were less clear for the correlations 362 
between species diversity indices (Shannon and Simpson). The models fitted on malaise trap data yielded 363 
identical models for the richness and Shannon index. This is most likely due to the co-correlation between the 364 
richness and Shannon index in the malaise trap (R=0.6, p=0.01, Supplementary table 2). Other curiosities, such 365 
as the negative correlation with the Malaise trap Shannon index achieved when fitting on the sweep net Simpson 366 
index are also assumed to be the results of co-correlations between the conventional methods. A full table of all 367 
co-correlations is included as supplementary material. 368 
 369 
An entomological radar group called BioDAR is aiming to use libraries of insect radar signals for functional 370 
group classifications for high flying migratory insects at a regional scale (Lukach et al., 2022). Similar estimates 371 
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of insect functional groups might be similarly inferred from optical sensor recordings for all flying insects on a 372 
field scale. Similarly, vertical looking radar is used to classify insects into higher level taxonomic groups such as 373 
Order or even Genus (Chapman et al., 2002; Stefanescu et al., 2013; Wood et al., 2009). It seems likely that 374 
similar or even higher precision can be achieved by further analysis of optically recorded data. Future work 375 
could focus on identifying these groups, determining functional biodiversity, and quantifying their ecosystem 376 
services.  377 
 378 
The current study shows a single instance of correlation between richness and a measure of ecosystem services. 379 
Greater species richness does not always translate into an increase in functional biodiversity or ecosystem 380 
services, as there is often ecological redundancy (Greenop et al., 2018). The lack of a relationship may also 381 
reflect different ecological interactions among species in the upper canopy versus above canopy level. These 382 
questions can be further explored in future work when the sensors ability to estimate functional biodiversity has 383 
been developed. 384 
 385 
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 512 
  Sensor Malaise trap Sweep net  

Field 
name 

Crop type June July June July June July 

A ALFALFA 5529 3437 38 1530 254 6579 
B CORN - 1158 - - 79 62 
C CORN 5739 2244 108 828 169 546 
D CORN - 687 561 93 525 172 
E CORN - 912 761 87 13 219 
F HAYLAND 3718 704 493 303 626 583 
G ANNUAL PASTURE 1657 4162 7 278 12 68 
H ANNUAL PASTURE 5454 4290 51 398 303 81 
I ANNUAL PASTURE 6008 2281 243 636 427 740 
J SORGHUM 4845 3080 239 1437 8 24 
K SORGHUM 8492 5545 68 64 45 375 
L SORGHUM 2349 - 155 743 32 304 
M SORGHUM 7524 2310 144 948 254 80 
N PERENNIAL 

PASTURE 
- 1993 195 1176 708 167 

O PERENNIAL 
PASTURE 

1980 1055 - 101 358 - 

P SOYBEAN 865 1349 3 225 14 - 
Q SOYBEAN 1349 4679 32 1090 77 354 
R SOYBEAN 2443 3442 41 160 713 - 
S SOYBEAN 2696 1867 184 771 307 580 
T SUDANGRASS - 240 258 192 - - 

Supplementary Table 1. Crop type and insects abundance observed in each field in June and July across all 513 
three methods. 514 
  515 
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Fitting 
data 

Richness 
Malaise 

Richness 
sweep net 

Richness 
combined 

Shannon 
Malaise 

Shannon 
sweep net 

Simpson 
Malaise 

Simpson 
sweep net 

ε 0.007467 0.009467 0.0092 0.007467 0.0104 0.0084 5.33E-04 
min_ 
samples 

7 5 5 7 7 3 3 

 521 
Supplementary Table 3: Optimal model parameters for each fitted biodiversity metric. 522 
 523 
 524 

 525 
Supplementary Figure 2. A scatterplot depicting the correlation of the species richness metrics at each field, 526 
separated by the June and July timepoints.  527 
 528 
 529 



96



97
 

Paper V: Photonic sensors for comparative insect 
abundance and diversity in distinct habitats 

  



98

Photonic sensors for comparative insect 
abundance and diversity in distinct habitats 
Klas Rydhmer1,2, Samuel Jansson1, Laurence Still1, Brittany D. Beck1, Vasileia Chatzaki1, 
Karen Olsen1, Bennett Van Hoff1, Christoffer Grønne1, Jakob Klinge Meier1, Marta 
Montaro1, Inger Kappel Schmidt2, Carsten Kirkeby1,3, Henrik G. Smith4, Mikkel 
Brydegaard1,4,5 
 

1 FaunaPhotonics, Støberigade 14, 2450 Copenhagen, Denmark  

2 Department of Geosciences and Natural Resource Management, Faculty of Science, 
University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark 

3 Department of Veterinary and Animal Sciences, Section for Production, Nutrition and 
Health, University of Copenhagen, 1870 Frederiksberg C, Denmark 

4 Department of Biology & Centre of Environmental and Climate Science, Lund University, 
Sölvegatan 37, 223 62 Lund, Sweden 

5 Department of Physics, Lund University, Sölvegatan 14c. 22362 Lund, Sweden 

 

Abstract 

To mitigate the ongoing declines in insect biodiversity, there is a need of efficient yet accurate 
monitoring methods. The use of traditional catch-based survey methods is constrained by the 
costs and the need for expertise for manual taxonomic identification. Emerging methods, such 
as eDNA and robotic sorting, have the potential to reduce workload, but still requires resource-
intensive sample collection in the field.  Recently, remote sensing methods such as photonic 
sensors have shown promise for recording large numbers of insect observations. However, 
accurately determining species composition in the collected data remains challenging. 

In this study, we investigate the potential of photonic sensors for quantifying species richness 
in the field and compare the results with estimates based on conventional Malaise traps at five 
sites. Firstly, we evaluated two unsupervised clustering methods using a library of measured 
insect signals from known species. Then we correlated the estimated number of clusters with 
the species richness assessment by the Malaise trapping. Our results demonstrate that both 
clustering methods perform well when compared to the Malaise traps, indicating the potential 
of automated insect biodiversity monitoring. This offers the possibility of more efficient but 
still accurate methods for studying insect biodiversity with broader temporal and spatial 
coverage. 

Keywords: Insects, Biodiversity, Clustering, Photonics, Entomology, Ecology, Modulation 
Spectroscopy 
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1. Introduction/Background 

Declines of terrestrial insects in response to anthropogenic drivers [1]–[4] [5], [6] calls for 
documentation of trends and drivers. Rapid assessment of insect communities is needed to 
document such declines of insect biomass and diversity, understand its drivers, and evaluate 
strategies to mitigate them.  

Safeguarding insect abundance and diversity is important for many reasons. Negative 
population trends may ultimately result in the loss of species, violating the conservation 
promises in the Convention of Biological Diversity [7]. Insects are entangled in trophic webs 
and vital for ecosystem functions[8]. Additionally, insects contribute with ecosystem services 
important to humans, such as pollination, biological pests control, decomposition, and 
recreational values [9], [10]. These functions and services depend on specific species and thus 
their abundance, but are also often enhanced or stabilized by higher diversity [10], [11]. 
However, insects also play other roles, by acting as pests [12] or disease vectors of human 
diseases [13].  

Conventional catch-based survey methods, such as sweep netting or Malaise traps, are time 
consuming and resource intensive, both during data collection and the following taxonomic 
identification [13], [14]. The taxonomical identification to family or species level has 
historically been dependent on microscopic morphological taxonomic identification by experts. 
This laborious process hampers rapid evaluation of mitigation measures, and the sampling time 
resolution is insufficient to capture species weather preferences. Promising methods are in 
development including robotic sorting [15], [16] and meta-barcoding [17], [18], although these 
methods still require time-consuming collection of specimens. A challenge for eDNA methods 
is also to provide abundance estimates [19], although quantitative techniques are emerging 
[20]. In protected areas where there is an increasing need for monitoring, the destructive nature 
of catch based methods might also make them difficult to implement [21]. 

Automated monitoring approaches can provide data with high temporal resolution at low cost 
[4], [22]. Emerging technologies include e-traps [23], [24], as well as non-destructive methods 
such as acoustic [25], [26], machine vision [16], [27], [28] and photonic sensors [29]–[32]. 
Photonic monitoring of insects has been demonstrated over seasons [32], [33] and through 
wingbeat modulation characteristics, dozens of insect groups can be differentiated in situ  [34], 
[35]. Some of these methods could allow efficient retrieval of data with high temporal and 
spatial resolution across families, but it is important that their ability to accurately reflect true 
variation in insect abundance and diversity is evaluated. 

In this work, we aimed to demonstrate the utility of photonic sensors to generate proxies of 
biodiversity. We used commercial photonic sensors that emit modulated infrared light and 
records the backscatter from insects flying through the measurement volume. Using two 
different clustering algorithms, we estimated the number of unique signals. We developed 
models using data from from flight cages with known species and evaluated their performance 
by comparing online in situ field estimates at five different sites with concurrent results derived 
from catches by conventional Malaise traps. The structure of the study is outlined in Fig. 1. 
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Figure 1. Experiment flowchart. The algorithms were tuned on a dataset of signals from known 
species in flight cages. The best clustering algorithm parameters were then evaluated on data 
collected from sensors in the field, alongside Malaise traps. The number of clusters found by 
the algorithms in the sensor data was compared to the number of taxonomic families in the 
Malaise traps. 

 

2. Experiment design and material 

In this study, we evaluated two clustering methods of photonic sensor data for their potential 
use in biodiversity monitoring. To tune and validate the two clustering methods, we used a 
library of insect signals from known species recorded in flight cages. Subsequently, the tuned 
clustering methods were applied to data recorded at multiple field sites. In the same sites, we 
concurrently captured insects using Malaise traps that were emptied weekly. The richness 
estimates from photonic data, i.e. the number of identified clusters, were finally evaluated 
against the family richness (number of insect families present in the sample) estimated through 
morphological analysis of catches from Malaise traps. 

 

2.1. Insect sensor 
The study is based on a recently developed commercial insect sensor (Volito, FaunaPhotonics, 
Denmark), previously described by Rydhmer et al. [29]. The sensor emits modulated infrared 
light at 810 and 970 nm and records the backscatter from insects flying through the 
measurement volume with a quadrant photodetector. The instrument has a sampling bandwidth 
of 5 kHz and the measurement volume extends around 1 m from the sensors and comprise up 
to 70 l of air. Recorded insect observations are automatically extracted by the sensor and 
transmitted to a cloud platform via 4G mobile network for further analysis.  
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2.1. Insect sensor 
The study is based on a recently developed commercial insect sensor (Volito, FaunaPhotonics, 
Denmark), previously described by Rydhmer et al. [29]. The sensor emits modulated infrared 
light at 810 and 970 nm and records the backscatter from insects flying through the 
measurement volume with a quadrant photodetector. The instrument has a sampling bandwidth 
of 5 kHz and the measurement volume extends around 1 m from the sensors and comprise up 
to 70 l of air. Recorded insect observations are automatically extracted by the sensor and 
transmitted to a cloud platform via 4G mobile network for further analysis.  

In the cloud platform, a proprietary neural network is used to classify each recording as either 
an insect observation or noise. The classification algorithm is applied to each quadrant and 
band individually as described more extensively in the supplementary material. 

2.2. Collection of signals from single species cages 
Labelled reference data was recorded in flight cages with an approximate volume of 1 m3. 
During recordings, up to 100 insects from one species at a time, depending on flight activity, 
were inserted in the cages and recorded over several days. Water and species appropriate 
nutrients were present in the cages. In this work, we included 84779 individual insect 
observations from 42 different species, representing 27 families.  

We selected reference species for the flight cages with the aim of representing a wide range of 
morphological and taxonomic diversity, but selection was constrained by commercial and 
seasonal availability. Insects were collected in the field, provided by academical partners or 
acquired from commercial sources. The number of unique observations from each species 
varied from 653 to 5021 with an average of 2018 observations per species. A table of the 
included species is provided as supplementary material.  

2.3. Field data collection 
Sensors were installed within 5 m of conventional Malaise traps (BT1001, Megaview Science 
co.  LTD, Taiwan) at five sites in Denmark and southern Sweden (Table 2). The habitats 
included an oilseed rape field [29], grazed pasture grasslands [36], protected spruce forest [37], 
a moist meadow surrounded by deciduous forest [38]. The measurements spanned from April 
2020 to November 2020, however, with multiple interruptions resulting from technical or 
logistical challenges. Malaise traps were emptied weekly and collected insects were stored in 
ethanol until identification. An overview of the field sites is presented in table 3. During 
identification, the catch was randomly subsampled by a factor 6 and identified to family level 
by the authors using microscope and taxonomic keys. 

We collected 78 Malaise trap samples from the field sites, but limited the number of samples 
identified to match available resources. We initially selected 50 samples covering a wide range 
of abundances. However, 10 samples were later discarded due to technical problems with the 
sensors, leaving 40 samples available for time-matched comparisons between sensors and 
traps. 

3. Photonic signal processing 

3.1 Signal features 
Insect signals were recorded as dual-band time series sampled at 20 kHz (5 kHz bandwidth). 
An example of a recorded insect observation from one detector quadrant is presented in Figure 
2. From these observations, we isolated the contribution from the insect body (IB) from the 
diffuse and specular wing reflections (IDW, ISW). Using these signals, we could estimate 
morphological and behavioural properties.  

The calculated features used in this study are presented in Table 1 and a formal mathematical 
formulation of the features extraction algorithms are included as supplementary material. An 
overview of the median and inter quantile range (IQR) of the extracted features from individual 
insect observations, aggregated by family level, is presented in Figure 3. 
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Figure 2: Example of an insect recording of a solitary bee (Andrenidae vaga) by the sensor. 
Wingbeats are visible as a modulation on the signal. The body-, wing- and specular 
contributions are isolated by moving average and maximum filters. In this case, the insect body 
has a higher reflectance at 970 nm in b) than for 808 nm in a), while the amplitude of the wing 
signal is similar. This indicates a melanised body. A zoomed in view of the specular and diffuse 
wing envelopes is shown in c).  

 

Table 1. Calculated features from insect observations. All features, except the wing beat 
frequency, are defined as ratios between zero and one.  

Feature Variable Values Unit Definition Ref 
Wing beat 
frequency 

WBF 20..1000 Hz  [39]–[42] 

Body to wing 
ratio 

BWR 0..1 - IB,/(IB + IDW) [39], [43] 

Specular to 
diffuse wing ratio  

SWR 0..1 - ISW/(IDW + ISW) [39], [43] 

Body to specular 
wing  

BSR 0..1 - IB/(IB + ISW) 
 

[39], [43] 

Body 
melanization 

BM 0..1 - IB-970/(IB-808+ IB-970) [39], [43] 

Wing 
melanization  

WM 0..1 - IDW-970/(IDW-808+IDW-

970) 
[39], [43] 

Specular ratio SR 0..1 - ISW-808/(ISW-808 + ISW-

970) 
[39], [43] 
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Figure 3: Calculated features from the single species insect data, aggregated per family. 
Horizontal line indicates the median, boxes the 25-75% IQR and whiskers the 5-95% IQR. A 
shaded violin plot is drawn behind the boxes. 

 

3.2 Oscillation power spectra 
As a high dimensional complement to the low dimensional feature representation of the time 
signals, we calculate the oscillatory power spectra for each insect observation. These oscillation 
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powers and overtones are estimated by [44] and are contributed by the body, wing movements 
and specular reflections of glossy wings [30]. The calculation result in 100 frequency bins from 
0 to 2 kHz with 20 Hz steps for both wavelengths. The modulation spectra were subsequently 
concatenated and auto-normalized. The median- and IQR power spectra are presented for each 
family in Figure 4. 

 

 

 

Figure 4: Frequency power spectra from the caged single species recordings aggregated on 
family level. The median is plotted as a solid line and the 25-75% IQR as a shaded area. The 
zero Hz intercept correspond to body size, and the first peak is the fundamental wingbeat 
frequency. Following peaks are the overtones and a large number of overtones correspond to 
sharp, specular reflexes from the wings. For example, Hymenoptera Megachilidae have a 
wingbeat frequency around 230 Hz and several overtones at 460, 690 and 920 Hz. 
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4. Clustering insect data 

We evaluated two unsupervised clustering methods, with the aim of using the estimated 
number of clusters as an indicator for species richness. The first method was Density-Based 
Spatial Clustering of Applications with Noise (DBSCAN) [45] and the second method was 
Hierarchical Clustering Analysis (HCA) [46].  

In the DBSCAN algorithm, a random insect observation is selected as a starting point and all 
data points within a certain radius, ε, in the parameter space are added into its cluster. If less 
than MinPts data points are found within ε, the observation is discarded as noise and the 
algorithm continues with a randomly selected new observation until all data points are treated. 
The time signal features shown in figure 3 were mean scale normalized and clustered using 
DBSCAN and an estimated number of clusters, RDBSCAN, is obtained. We used the scikit-learn 
package implementation in Python [47]. 

In HCA, all observations starts as individual clusters. The pairwise Euclidian distances in the 
parameter space, and the corresponding linkage vector, between all insect observations are 
calculated and used to merge all clusters sequentially until only a single cluster remains. The 
linkages were calculated using Ward’s method [46] which merges clusters by minimizing the 
variance in each cluster. Pairwise distances and linkage vectors were calculated using the 
scikit-learn and fastcluster packages in Python [48]. HCA has previously been used to cluster 
insect observations in entomological lidar and to estimate the number of insect groups [34], 
[35]. In similar fashion, we applied the HCA to the logarithmized oscillatory power spectra. 
The linkage vectors contain information on the diversity of power spectra various methods can 
be applied to determine the appropriate number of clusters from it [49]–[51]. As the previously 
used elbow method [49] performed poorly, we developed a novel threshold according to: 

𝑅𝑅𝐻𝐻𝐻𝐻𝐻𝐻 = ∑(𝐿𝐿𝑛𝑛√𝑁𝑁 > 𝑝𝑝0𝑛𝑛𝑝𝑝1)         (1) 

where Ln contains the linkages, N is the number of observations, n∈{1…N-1}, p0 and p1 are 
tuning parameters.  

4.1 Performance tests on flight cage data 
During method development we defined two tests to evaluate the performance of the two 
clustering algorithms.  

Richness test 
The first test investigates the correlation between the estimated number of clusters (RDBSCAN, 
RHCA) and true number of included species, Rspec. We generated a selection of 1000 observations 
evenly distributed among Rspec ∈ {1…42}, by random selection without replacement. The 
observations were fed into the two algorithms and the number of clusters calculated. The 
correlation between the logarithmized number of clusters, RDBSCAN, RHCA, and Rspec was 
calculated by linear regression where 
 
Rspec = β0 Rclust + β1         (2) 
 
and the corresponding Pearson correlation ρ was measured. To improve the dynamic range and 
punish configurations that yielded a very low number of clusters, despite yielding high values 
of ρ, the performance metric Qrich was defined as 
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Qrich = ρ(Rspec, Rclust) β0        (3) 
 
Abundance insensitivity test 
The second test investigates whether the number of found clusters Rclust was related to the 
number of included insect recordings, Nobs. A new randomized dataset was created by randomly 
selecting one species and linearly increasing the number of insect observations from 100 to 
1000 in 20 steps. As Rspec was kept at one species during the entire test, the quality metric was 
defined as  

Qflat = μ(Rclust)/σ(Rclust)         (4) 

Where μ and σ is the mean and standard deviation respectively. 

4.2 Clustering parameter tuning 
To compare the performance of both tests, a quality criterion Q was defined as  

Q = Qrich * Qflat          (5) 

Where higher is better and Qrich and Qflat were truncated at 0 to remove any negative 
correlations. The tests were conducted on random samples of the data, as described below. 
Each test was repeated on 50 randomized permutations for both methods. The best performing 
parameters were found by a grid search at 450 points for DBSCAN and 314 points for HCA 
and  used in the field evaluation.  

 

 

Figure 5: Optimization landscape for the two clustering algorithms. Both methods find a 
clearly defined optimum.  
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4.3 Field validation 
The best performing configurations of the DBSCAN and HCA methods on the flight cage data 
were applied to the data recorded in the field. Insect observations from each sensor were 
aggregated by the weekly emptying schedule of the corresponding Malaise trap. The 
aggregated data was fed to the clustering algorithms and the number of found clusters was 
compared to the number of families identified in the corresponding Malaise traps. Due to the 
non-normal distribution of the data, the number of clusters and family richness were 
logarithmized before calculating the Pearson’s correlation. 

 

5. Results 

5.1. Labelled data tests 
The optimization landscapes for both methods are presented in Figure 5. The best performing 
parameters were ε=0.67, MinPts = 2 for the DBSCAN method and p0=1.58, p1 = -0.3 for the 
HCA. The individual test results for the best performing parameters are presented in Figure 6. 
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Figure 6: The results of the richness and abundance insensitivity tests for the best performing 
parameters of the DBSCAN (upper) and HCA (lower) methods. Individual clustering 
permutations are plotted as dots. The median is plotted in red and 25, 75% quantiles in dashed 
grey. In the richness test (left column), each dot represents a dataset with 1000 insect 
observations and the ideal result is a linear relationship between Rspec and Rclust. In the 
abundance insensitivity test (right column), each dot represents a dataset from a single species 
and the ideal result is a constant, low number of clusters.  

 

5.2. Field validation 
After sub-sampling the Malaise trap catch samples, a total of 9503 insects from 11 orders and 
195 families were morphologically identified. The most prevalent orders were Diptera and 
Hymenoptera, accounting for 75% and 15% of all identified insects, respectively. Among the 
families, Diptera Sciaridae sp. was the most common, accounting for 25% of all identified 
insects. Figure 9 shows the sample times and abundance in each trap . 

The sensors were active for a total of 75 weeks and recorded 2,402,345 observations. After 
removing observations caused by rain and dust (2,113,737) or where the feature extraction 
algorithms failed to estimate features (50,024), 238,584 observations remained available for 
clustering.  

 

Table 2. Overview of field samples for Malaise traps and sensors. 

Biotope Measurement 
period 

Location Collected 
trap 
samples 

Identified 
trap 
samples 

No. 
Weeks 
Sensors 

Used in 
comparison 

Spruce forest 16/3-20/7 & 
3/8-2/11 

56°20'08.1"N 
14°23'09.4"E 

28 20 27 16 

Deciduous 
forest 

8/6 - 9/11 55°41'46.4"N 
13°26'51.5"E 

18 15 20 12 

Grazed 
grassland 1 

1/4 - 1/7 55°49'40.4"N 
11°26'10.7"E 

10 2 13 1 

Grazed 
grassland 2 

8/4 – 10/6 55°48'07.0"N 
11°23'18.1"E 

17 8 8 6 

Oilseed rape 1/4 – 27/5 55°29'03.1"N 
11°29'32.6"E 

5 5 7 5 

 

For the 40 weeks were both sensor and trap data were available, the family richness in the 
Malaise traps was correlated with the number of clusters. Due to the non-normal distribution 
of the data, all measures were logarithmized. The Pearson correlation show that the sensor 
methods explain close to 40% of the variation in time and space of abundance and 30 to 45% 
of that of diversity (Figure 7, Table 3). The correlation between abundance and richness 
estimates is strong for all methods, including the traps, but especially for the HCA method. 
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Table 3. Pearson correlations between logarithmized biodiversity estimates. Calculated for 
the weeks were both trap and sensor data were available. All correlations are significant with 
p < 0.05. 
 

Ntrap Rtrap Nsensor RDBSCAN RHCA 
Ntrap 1 0.73 0.55 0.54 0.63 
Rtrap 0.73 1 0.59 0.54 0.67 
Nsensor 0.55 0.59 1 0.69 0.97 
RDBSCAN 0.54 0.54 0.69 1 0.75 
RHCA 0.63 0.67 0.97 0.75 1 

 

 

 

Figure 7. Relationship between measured and estimated abundance and biodiversity. a) The 
number of clusters found by the DBSCAN vs. the trap richness. b) The number of clusters found 
by the HCA vs- the trap richness. c) The trap richness vs the number of insect observations 
recorded by the sensor. d) The richness vs the number of caught insects in the Malaise traps. 
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Comparing insect abundance and richness evaluated by traps and sensors over the full 
experiment period, the sensors in general yield one order of magnitude more observations per 
week. However, the reported number of insects from the traps are sub-sampled by a factor 6. 
Both sensors and traps find the highest biodiversity and insect abundance at the meadow site 
during summer as shown in figure 8. 

 

 

Figure 8: Sensor and Malaise trap data from the full measurement period. Upper figures show 
the number of insects per week in Malaise traps (left) and sensors (right). Lower row show the 
measured family richness in the Malaise traps, and the number of clusters found by the 
algorithms. Due to hardware and connectivity issues, some data points are missing from the 
sensor data. 
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6. Discussion 

Both unsupervised clustering methods of categorizing optically recorded insect signals 
correlate well with estimates obtained by Malaise traps. This suggests that the optical sensors 
and similar instrumentation are viable tools for monitoring not only insect abundance, but also 
richness. Both algorithms yielded higher numbers of clusters than the measured family richness 
in the traps, but that may reflect that our clustering method had a higher resolution than our 
identification to family level of Malaise trap catches [52]. However, the match was not perfect, 
with correlations of 54% and 67%, which may be caused by how both the photonic and the 
Malaise trap methods are both estimates of the true biodiversity of insects [53]. 

While correlated, it is difficult to relate the number of clusters to an absolute number of species 
in the field. Many species have distinct differences in wing beat frequency between sexes [39].  
It is also known from literature that even a single species and sex can produce distinct optical 
signals depending on observation aspect [39], [54]. Therefore, photonic insect recordings can 
be challenging to differentiate due to overlapping features in the parameter space [39], [43], 
[55], [56]. While various machine learning methods still can perform very well, any photonic 
insect sensor will ultimately have a limit for the distinguishable number of species, depending 
on the instrument complexity. Despite these arguments, there is an expectation that a more 
diverse composition of species will produce a more diverse composition of optical signals, 
which is confirmed in this work. 

The number of observations recorded in the field was generally higher than the number of 
observations included in the caged data tests. We believe this raises some noticeable 
differences. The abundance insensitivity test was designed to minimize the correlation between 
the number of observations and the number of clusters. However, as seen in figure 6, In this 
test, the DBSCAN show a slow increase in the number of clusters while the HCA shows the 
opposite. However, on the field data the HCA is 97% correlated with the number of 
observations. We believe that a tuning of the parameters optimized on the caged data using 
data from the field would reduce this correlation but to reduce the risk of overfitting, we have 
avoided such adjustments in this work.  

In the field data, the number of observations recorded by the sensor is more correlated with the 
trap richness than the estimated richness by the DBSCAN. While the richness and abundance 
also were strongly correlated in the Malaise traps we do not believe abundance can be used as 
a biodiversity measure alone as this study primarily included protected areas where the insect 
abundance and richness were strongly correlated. 

The number of observations in each cluster were not well correlated with the distribution of 
families in the traps. It is therefore difficult to compare measures such as Shannon’s or 
Simpson’s index between the clustering methods and traps. The correlation between the sensors 
and traps of these indices are included as supplementary material. 

Comparing the methodology of all methods, the task of richness estimation closely resembles 
the challenge of finding and counting rare outliers. In identification of trap catches, single 
species observations could account for up to 30% of the identified richness [57], [58]. As 
DBSCAN cannot support clusters with single members, a larger number of observations per 
species are required in order to provide a meaningful estimate. In future work, the number of 
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singletons could be included in the richness estimate, but as the number of singletons can be 
large, there is a risk that they would outweigh the number of clusters and drive the entire metric. 

 

7. Outlook and conclusions 

Photonic methods have a high potential to benefit applied insect science and management for 
several reasons. First, it enables cost-efficient collection of data with a resolution in time and 
space that is hard to achieve using manual methods based on catches. This makes it an ideal 
method both for long-term monitoring and for detecting consequences of management 
interventions such as use of pesticides where local effects may be transient yet consequential.  
Second, it allows for monitoring inside protected areas, where destructive sampling may be 
non-ethical or legally prohibited. However, as a method, its value will be related to its accuracy 
and taxonomic resolution, while further development and quality controls are warranted. 

In this work, we have shown that photonic sensors in combination with unsupervised clustering 
algorithms are able to measure the species richness in situ. We tested two different algorithms, 
DBSCAN and HCA, on a low and high dimensional representation of the insect recordings 
respectively. Both methods showed a correlation between the number of clusters and the 
species richness in flight cage experiments. Further, comparison to diversity measures 
determined from conventional trapping yielded good correlation between sensors and Malaise 
traps richness on family level. This shows that photonic sensors can successfully be used for 
monitoring not only insect abundance but also diversity. 
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Appendix A – Data processing and feature extraction 

Insect observations are recorded as dual band signals in four segments, yielding a time signal 
with eight channels. Each segment covers a different volume in front of the sensor. To reduce 
artefacts from very weak signals, each channel is filtered individually, and empty channels are 
removed from further analysis. 

The filtering consists of an intensity threshold and a classification step. The intensity 
thresholding asserts that channel has a maximum intensity above 20 counts. The classification 
step applies a proprietary noise classifier. Unless an insect signal is observed in all segments, 
the channels from empty segments are discarded. We believe the design of this classifier is out 
of scope for this work, but it can be summarized as a one-dimensional convolutional neural 
network trained on manually annotated data from both cages and the field.  

The insect body, diffuse and specular wing contributions was estimated from the time signal 
I(t, λ) by running a moving minimum, average and maximum filter over the signal in each 
channel, using the extracted wingbeat period as filter width according to  

𝛿𝛿𝛿𝛿 = 1
𝑊𝑊𝑊𝑊𝑊𝑊 

𝐼𝐼𝐵𝐵(𝑡𝑡, 𝜆𝜆) = ‖𝐼𝐼(𝑡𝑡, 𝜆𝜆)… 𝐼𝐼(𝑡𝑡 + δ𝑡𝑡, 𝜆𝜆)‖𝑚𝑚𝑚𝑚𝑚𝑚 ⊗ 𝑒𝑒−
(𝑡𝑡−𝑇𝑇)2
δ𝑡𝑡2  

𝐼𝐼𝐷𝐷𝐷𝐷(𝑡𝑡, 𝜆𝜆) = ‖𝐼𝐼(𝑡𝑡, 𝜆𝜆)… 𝐼𝐼(𝑡𝑡 + δ𝑡𝑡, 𝜆𝜆)‖𝑚𝑚𝑚𝑚𝑚𝑚 ⊗ 𝑒𝑒−
(𝑡𝑡−𝑇𝑇)2
δ𝑡𝑡2  

𝐼𝐼𝑆𝑆𝑆𝑆(𝑡𝑡, 𝜆𝜆) = ‖𝐼𝐼(𝑡𝑡, 𝜆𝜆)… 𝐼𝐼(𝑡𝑡 + δ𝑡𝑡, 𝜆𝜆)‖𝑚𝑚𝑚𝑚𝑚𝑚 ⊗ 𝑒𝑒−
(𝑡𝑡−𝑇𝑇)2
δ𝑡𝑡2  

 

To cut away the signal rising and falling flanks of the signal, a centre time, t0, and transit time, 
Δt, was calculated accordingly: 

𝑡𝑡0 =
∑ 𝑡𝑡 ∑ 𝐼𝐼(𝑡𝑡, 𝜆𝜆)𝜆𝜆𝑡𝑡
∑ ∑ 𝐼𝐼(𝑡𝑡, 𝜆𝜆)𝜆𝜆𝑡𝑡

 

∆𝑡𝑡 = √∑ (𝑡𝑡 − 𝑡𝑡0)2 ∑ 𝐼𝐼(𝑡𝑡, 𝜆𝜆)𝜆𝜆𝑡𝑡
∑ ∑ 𝐼𝐼(𝑡𝑡, 𝜆𝜆)𝜆𝜆𝑡𝑡

 

Scalar estimates were obtained by calculating median values within a time window of t0 ± Δt: 

𝐼𝐼𝐵̅𝐵(𝜆𝜆) = ‖𝐼𝐼𝐵𝐵(𝑡𝑡0 − Δ𝑡𝑡… 𝑡𝑡0 + Δ𝑡𝑡, 𝜆𝜆)‖𝑚𝑚𝑚𝑚𝑚𝑚 

𝐼𝐼𝐷𝐷𝐷𝐷̅̅ ̅̅ ̅(𝜆𝜆) = ‖𝐼𝐼𝐷𝐷𝐷𝐷(𝑡𝑡0 − Δ𝑡𝑡. . 𝑡𝑡0 + Δ𝑡𝑡, 𝜆𝜆)‖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐼𝐼𝐵̅𝐵(𝜆𝜆) 

𝐼𝐼𝑆𝑆𝑆𝑆̅̅̅̅̅(𝜆𝜆) = ‖𝐼𝐼𝑆𝑆𝑆𝑆(𝑡𝑡0 − Δ𝑡𝑡. . 𝑡𝑡0 + Δ𝑡𝑡, 𝜆𝜆)‖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐼𝐼𝐵̅𝐵(𝜆𝜆) 
Calculated features are averaged over all non-empty channels. Dual band features (body and 
wing melanization and specular ratio) are averaged over all non-empty segments. For single 
band features (BWR, SWR, BSR) we chose the features recorded in the 808 nm band to limit 
the number of features used in the model. For the wingbeat frequency, we calculated the 
median across all non-zero channels.   



119

Appendix A – Data processing and feature extraction 

Insect observations are recorded as dual band signals in four segments, yielding a time signal 
with eight channels. Each segment covers a different volume in front of the sensor. To reduce 
artefacts from very weak signals, each channel is filtered individually, and empty channels are 
removed from further analysis. 

The filtering consists of an intensity threshold and a classification step. The intensity 
thresholding asserts that channel has a maximum intensity above 20 counts. The classification 
step applies a proprietary noise classifier. Unless an insect signal is observed in all segments, 
the channels from empty segments are discarded. We believe the design of this classifier is out 
of scope for this work, but it can be summarized as a one-dimensional convolutional neural 
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Appendix B – Labelled data species: 

Order Family Species Number of observations 
Coleoptera Chrysomelidae alni 1310 
Coleoptera Chrysomelidae chrysocephalus 1564 
Coleoptera Curculionidae pallidactylus 1277 
Coleoptera Nitidulidae aeneus 2678 
Coleoptera Rutelidae japonica 3674 
Diptera Anthomyiidae antiqua 1733 
Diptera Calliphoridae sericata 4798 
Diptera Calliphoridae vomitoria 3443 
Diptera Cecidomyiidae acarisuga 653 
Diptera Cecidomyiidae aphidimyza 1307 
Diptera Cecidomyiidae brassicae 1089 
Diptera Culicidae aegypti 900 
Diptera Drosophilidae melanogaster 2676 
Diptera Muscidae aenescens 3540 
Diptera Muscidae domestica 3617 
Diptera Syrphidae corollae 1534 
Diptera Syrphidae rueppellii 1759 
Diptera Tephritidae oleae 2923 
Diptera Tipulidae oleracea 2534 
Hemiptera Aleyrodidae proletella 740 
Hemiptera Aleyrodidae vaporariorum 1060 
Hemiptera Cicadellidae titanus 1596 
Hemiptera Pentatomidae halys 1534 
Hemiptera Pentatomidae italicum 1596 
Hymenoptera Andrenidae vaga 1560 
Hymenoptera Apidae mellifera carnica 1552 
Hymenoptera Apidae mellifera iberica 3334 
Hymenoptera Apidae mellifera ligustica 2935 
Hymenoptera Apidae mellifera ligustica x 

iberica 
1595 

Hymenoptera Apidae pascuorum 1831 
Hymenoptera Apidae terrestris 5021 
Hymenoptera Braconidae colemani 1047 
Hymenoptera Braconidae matricariae 1074 
Hymenoptera Megachilidae rotundata 1721 
Hymenoptera Tenthredinidae pectinicornis 1517 
Hymenoptera Tenthredinidae rosae 1516 
Hymenoptera Vespidae vulgaris 1456 
Lepidoptera Plutellidae xylostella 1383 
Lepidoptera Tortricidae botrana 1193 
Lepidoptera Yponomeutidae padella 1618 
Neuroptera Chrysopidae carnea 3147 
Odonata Coenagrionidae elegans 1735 

 

Supplementary Table 1. The number of observations available from the flight cage recordings 
and used for method development.  
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Supplementary figure 1. Correlation of Simpson’s and Shannon’s diversity indices (D and H) 
respectively- The DBSCAN method is negatively correlated with the traps in both metrics as 
seen in a) and c). While the HCA methods number are much higher, they show good correlation 
with the traps b) & d). 
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